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We give a probabilistic analysis of inductive knowledge and belief and explore its predictions con-
cerning knowledge about the future, about laws of nature, and about the values of inexactly measured
quantities. The analysis combines a theory of knowledge and belief formulated in terms of relations
of comparative normality with a probabilistic reduction of those relations. It predicts that only highly
probable propositions are believed, and that many widely held principles of belief-revision fail.

How can we have knowledge that goes beyond what we have observed – knowledge about the future,
or about lawful regularities, or about the distal causes of the readings of our scientific instruments?
Many philosophers think we can’t. Nelson Goodman, for example, disparagingly writes that “obviously
the genuine problem [of induction] cannot be one of attaining unattainable knowledge or of accounting
for knowledge that we do not in fact have” [20, p. 62]. Such philosophers typically hold that the best
we can do when it comes to inductive hypotheses is to assign them high probabilities. Here we argue
that such pessimism is misplaced. We give a purely probabilistic analysis of inductive knowledge and
(rational) belief, and motivate it by drawing out its attractive predictions about a range of cases.

Our analysis builds on two recent strands of research. The first strand is the idea that knowledge
and (rational) belief can be analyzed in terms of a notion of normality: among the possibilities that are
compatible with an agent’s evidence, their knowledge rules out those that are sufficiently less normal
than their actual circumstances, and their beliefs rule out those that are sufficiently less normal than
some other evidential possibilities.1 The second strand is that what a person knows or believes is always
relative to a contextually supplied question.2 Our guiding observation is this: there is a natural way to
define the comparative normality of evidential possibilities in terms of the probabilities of the answers to
a question. This fact allows us to give an analysis of knowledge and belief in terms of probability and
evidence, two notions that even skeptics about inductive knowledge typically accept.

Here is our plan. We begin by presenting a version of the theory of knowledge and belief in terms
of comparative normality that we have defended elsewhere [19, 18]. We next explain how comparative
normality can be reduced to evidential probability in a question-relative way. We then use this frame-
work to model knowledge and belief about ongoing chancy processes (section 3), lawful regularities
(section 4), multiple independent subject matters (section 5), and the values of quantities measured us-
ing instruments that are subject to random noise (section 6).3 As these case studies will illustrate, the
framework is conservative in its synchronic predictions but revisionist in its diachonronic ones: what an
agent knows and believes is closed under entailment and always has a high probability of being true, but
getting new evidence can lead to changes in what one believes that violate widely endorsed principles
about belief-revision. Three appendices explain ways in which the framework can be extended in order
to model a wider range of cases of inductive knowledge.

1 See [44, 45, 46, 17, 21, 11, 19, 18, 6, 33, 4, 7, 34, 16] for related ideas about knowledge, [39, 40, 41, 42, 43] for related
ideas about justified belief, and [27, 35] and references therein for related ideas about non-monotonic reasoning.

2See [38, 55, 25] for precedents in the case of knowledge, and [29, 56, 24, 5] for precedents in the case of belief.
3See [10, 2, 3, 41, 42, 19, 18] for recent discussion of the kind of cases in §§3-5, and [50, 51, 53, 54, 8, 17, 47, 45, 6, 12, 7, 18]

for recent discussion of the kind of cases in §6.
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1 The Normality Framework

Our models of knowledge and belief will be a version of Hintikka semantics for a single agent.4 Both
knowledge and belief are given by accessibility relations, in the sense that an agent knows/believes p in
a world w iff p is true in all worlds epistemically/doxastically accessible from w. What is distinctive of
the framework is how these accessibility relations are defined in terms of other relations between worlds,
encoding the agent’s evidence and worlds’ comparative normality.

Let a normality structure be a tuple 〈S,E ,W,<,Ï〉 such that:

1. S is a non-empty set (of states),

2. E ⊆P(S)\{ /0} (the possible bodies of evidence)

3. W = {〈s,E〉 : s ∈ E ∈ E } (the set of (centered) worlds),

4. < is a preorder on W (read ‘w < v’ as ‘w is at least as normal as v’),

5. Ï is a well-founded relation on W (read ‘w Ï v’ as ‘w is sufficiently more normal than v’), such
that, for any worlds w1,w2,w3,w4:

(a) If w1 Ï w2, then w1 < w2;
(b) If w1 < w2 Ï w3 < w4, then w1 Ï w4.

The intuitive idea behind modeling worlds as state/set-of-state pairs is that we are only modelling the
agent’s knowledge and beliefs about a certain subject matter – the state of the world – and for this
purpose we may idealize and treat worlds as individuated by the state of the world together with the
agent’s evidence about the state of the world, modelled as the set of states compatible with their evidence.
As we will understand it, a person’s evidence is a subset of their knowledge, and hence is true; this is
why in any world the actual state is a member of the set of states compatible with the agent’s evidence.
We use Re to denote the function mapping each world to the set of worlds that are evidentially accessible
from it, in the sense of being compatible with the agent’s evidence:

Re(〈s,E〉) := {〈s′,E〉 : s′ ∈ E}
Next, we define a function Rb for doxastic accessibility, characterizing the set of worlds compatible

with what the agent believes in any given world. The idea is that what the agent believes goes beyond
what is entailed by their evidence: the doxastic possibilities are those evidential possibilities that are not
sufficiently less normal than any other. Formally,

Rb(w) := {v ∈ Re(w) : ¬(∃u ∈ Re(w) : u Ï v)}
Finally, we define a function Rk for epistemic accessibility, characterizing the set of worlds compatible
with what the agent knows in any given world. There are two natural definitions here: one for those
who follow Stalnaker [44, 45, 46] in thinking that epistemic accessibility is a transitive relation (in
which case knowing p entails knowing that you know p), and another for those who follow Williamson
[48, 50, 52, 53] in thinking that epistemic accessibility cannot be transitive because knowledge requires
a margin for error. The difference concerns whether worlds that are doxastically inaccessible should
be epistemically accessible when they are less normal but not sufficiently less normal than actuality: the
Stalnakerian answers “no” (the agent knows those worlds don’t obtain), while the Williamsonian answers
“yes” (for all the agent knows, those worlds obtain). Formally, these answers correspond to the following
respective definitions:

4We can model the knowledge/beliefs of n agents by generalizing clause 2 of the definition of a normality structure so E ⊆
P(S)n (giving the possible patterns of bodies of evidence among the agents) and modify the remaining definitions accordingly.
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Rk(w) := Rb(w)∪{v ∈ Re(w) : v < w} (Stalnakerian)

Rk(w) := Rb(w)∪{v ∈ Re(w) : v < w} ∪
the margin for error︷ ︸︸ ︷

{v ∈ Re(w) : w < v∧¬(w Ï v)} (Williamsonian)

The results we will be exploring in this paper don’t depend on which definition of knowledge we adopt.5

Although we will remain neutral on which definition is preferable by focusing mainly on belief, we
believe that the normality framework is recommended in large part by its ability to integrate an anti-
skeptical theory of knowledge with a non-trivial theory of inductive belief; we make this case at greater
length in [18].

The framework also allows us to model the dynamics of knowledge and belief about the state of
the world in response to new evidence about the state of the world. To make this idea precise, we
first introduce the projection functions πi such that πi(〈x1, . . . ,xn〉) = xi. We then define which states are
accessible from a world w as R∗(w)= {π1(v) : v∈R∗(w)}where ∗∈ {e,b,k}. (So, e.g., Re(w)= π2(w).)
For any set of states p and pair of worlds w and v, we say that v is the result of discovering p in w iff
π1(v) = π1(w) and π2(v) = p∩ π2(w). Although Rb(w)∩Rb(v) = /0 whenever v is the result of (non-
trivially) discovering p in w (non-trivially in the sense that w 6= v), the dynamics relating Rb(w) and
Rb(v) (and Rk(w) and Rk(v)) are more interesting, as we will explore below. Note that, unlike standard
models of belief-revision, there may be no v that is the result of discovering p in w – for example, if
p is incompatible with the state of the world in w. And since only truths can be discovered, normality
structures allow us to easily model iterated discoveries (in contrast to formally similar models of theories
of belief-revision like AGM [1], first developed in [22], which do not handle iterated belief-revision).6,7

2 Reducing normality to probability

Appealing to notions of comparative normality (or comparative plausibility) is, by now, a familiar idea
in theorizing about knowledge and belief. The main advance of this paper is to explore the consequences
of an analysis of these notions in terms of the result of conditioning a prior probability distribution on
the agent’s evidence.

Let us begin with the at-least-as-normal relation <. An initially attractive idea is that w < v iff w is at
least as probable as v. Unfortunately, this simple proposal faces a number of problems. For example, the
probability of a world depends on how finely we individuate worlds in our model in ways that intuitively
shouldn’t make a difference to what an agent knows or believes; also, natural ways of individuating
worlds often make them all have the same probability, thereby trivializing inductive knowledge and
belief. For these reasons, as well as others explained in section 5, we will model knowledge and belief

5Note that the Williamsonian definition is equivalent to the much simpler definition Rk(w) := {v ∈ Re(w) : ¬(w Ï v)}
in normality structures where < is a total preorder on E for all E ∈ E , which includes all normality structures generated
from probability structures in the way described below; see [18] (which considers a slightly more complicated Williamsonian
definition to ensure that the set of epistemically accessible evidential possibilities is closed under <).

6Normality structures are also related to models in dynamic epistemic logic, since instead of modeling accessibility as a
relation between worlds, we could equivalently treat it as family of relations between states indexed by bodies of evidence,
much like how accessibility is relativized to propositions in dynamic epistemic logic. Another formal precedent is [9], in which
formulas are evaluated relative to a pair of a world and a set of worlds containing it. (Thanks to Aybüke Özgün for drawing our
attention to this work.) Note that what “world” the agent is in changes as they get new evidence; those who prefer to reserve
the word “world” for something unchanging can substitute “situation”, “case”, or “centered world”.

7The framework presented here sides with [18] over [19] by treating normality relations as holding between worlds rather
than states. But it sides with [19] by presupposing that worlds can be factored into state/evidence pairs, which in turn implies
that evidential accessibility is an equivalence relation. Appendix A explains how to modify the definitions below in order to
model scenarios in which evidential accessibility is not an equivalence relation.
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as relative to a contextually supplied question about the state of the world. Doing so allows for a more
robust characterization of normality in terms of probability, as we will now explain.

Let a probability structure be a tuple 〈S,E ,W,Q,P, t〉 such that:

1. S,E ,W satisfy clauses 1-3 of the definition of normality structures,

2. Q (the question) is a partition of S,

3. P (the prior) is a probability distribution over S such that P(q|E) is defined for all q∈Q and E ∈ E ,

4. t ∈ [0,1] (the threshold).

We will now explain how to generate a normality structure from a probability structure. We identify the
normality of a world with the evidential probability at that world of the true answer to Q at that world.
Formally, letting [s]Q (the answer to Q in s) be the cell of Q containing s, Pw (the evidential probability
at w) be P(·|π2(w)), and λ (w) (the likeliness of w) be Pw([π1(w)]Q), we adopt the following definition of
one world being at least as normal as another:

NORMALITY AS LIKELINESS: w < v := λ (w)≥ λ (v) and v ∈ Re(w)

Next, let the typicality of a world be the evidential probability, at that world, that things are no more
normal than they are at that world: formally, τ(w) = Pw({π1(v) : w < v and v ∈ Re(w)}). We will adopt
the following definition of one world being sufficiently more normal than another:

SUFFICIENCY: w Ï v := 1− τ(v)
τ(w) ≥ t and v ∈ Re(w)

It is easy to verify that, so defined, 〈S,E ,W,<,Ï〉 is a normality structure.8 In this normality structure,
what the agent believes about the state of the world is the strongest disjunction of answers to Q that (i)
includes the most probable answers, (ii) includes all answers at least as probable as any it includes, and
(iii) has total probability at least t.9 (This will also be what the agent knows about the state of the world
if one of the most probable answers to Q is true.) NORMALITY AS LIKELINESS ensures (i) and (ii), while
SUFFICIENCY ensures (iii), which may be more precisely stated as follows:10

THRESHOLD: Pw(Rb(w))≥ t for all w ∈W .
8The requirement that < and Ï only relate evidentially accessible worlds is needed to validate conditions 5a and 5b of the

definition of a normality structure, since worlds with the same likeliness but different evidence can have different typicality.
For example, let S = {1, . . . ,7},E = {{1,2,3},{4,5,6,7}},Q = {{s} : s ∈ S},P(1) = P(2) = P(4) = .2;P(3) = P(5) = P(6) =
P(7) = .1; t = .5: Let w = 〈3,{1,2,3}〉 and v = 〈5,{4,5,6,7}〉. λ (w) = λ (v) = .2, but τ(w) = .2 6= τ(v) = .6.

9Compare the theory of belief in [24], which implies (i) and a slight weakening of (ii) (with “more probable” in place of
“at least as probable”), but not (iii). Rather than seeing this view as a competitor to ours, we prefer to see it as concerned with
a weaker notion of belief that is less closely tied to knowledge. [26] has independently developed a theory of knowledge and
belief very close to the one presented here, which he applies to the preface and St. Petersburg paradoxes.

10SUFFICIENCY does make some somewhat surprising predictions. Suppose Alice holds 999 tickets in a fair lottery and each
of the million other entrants holds 1000 tickets. Assume P gives each ticket an equal probability of being chosen given the
setup, that the question Q is who will win, and the threshold t = .99, and consider worlds in which the agent’s evidence is that
this is the setup. If Alice will lose, can the agent know this? SUFFICIENCY predicts they can, which seems odd. (This might
not seem so odd at first, since we don’t deny the agent can know this relative to a different question Q′ = how many tickets does
the winner have. To bring out the oddity, we can modify the example by adding another loser Bob who holds 1001 tickets; it
seems odd that the agent would know that Alice will lose but not that Bob will lose.) To avoid this prediction, we might add
a requirement that a world is sufficiently more normal than another only if it is also sufficiently more likely. (Compare the
discussion of having no “appreciably stronger reason” (emphasis ours) to believe one entrant to a lottery will win compared to
any other in [23, p.16].) We might implement this idea by adopting the stronger principle:

SUFFICIENCY+: w Ï v := 1− τ(v)
τ(w) ≥ t and v ∈ Re(w) and 1− λ (v)

λ (w) ≥ t

This definition also determines a normality structure; while we actually find it more attractive than SUFFICIENCY, we will
ignore it in the main text to simplify our presentation.
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3 Inductive knowledge about the future

In this section and the next we’ll review two cases of inductive knowledge involving coin flips from Dorr,
Goodman and Hawthorne [10] to help illustrate the framework. The first case illustrates the possibility
of inductive knowledge about the future:

Flipping for Heads: A coin flipper will flip a fair coin until it lands heads. Then he will flip
no more.

Assume that the agent’s evidence entails that this is the setup, and that they are watching the experiment
unfold. We can model the case using the probability structure in which S = {1,2, . . .}, E = {{n,n+
1,n+2, . . .} : n ∈ S}, P is the probability function such that P({n}) = 2−n for all n, Q = {{s} : s ∈ S},
and t = .99. Intuitively, n is the state in which the coin lands heads on the nth flip, the possible bodies
of evidence are those compatible with having watched some initial sequence of zero or more flips that
all landed tails, and Q is the question on what flip does the coin land heads. In the normality structure
generated from this probability structure, 〈n,E〉< 〈m,E〉 iff n≥ m, and 〈n,E〉Ï 〈m,E〉 iff n≥ m+7.11

So if the agent has seen the coin land tails x times, what they believe is that it will land heads within the
next 7 trials – i.e., on trials x+1 to x+7. The predictions about knowledge match those of [10], on the
Williamsonian definition of epistemic accessibility, and those of [19], on the Stalnakerian definition.

Notice that this model involves a kind of non-monotonic belief revision (which is prohibited by
AGM). Let w = 〈2,{1,2, . . .}〉, v = 〈2,{2,3, . . .}〉, and p = {2,3, . . .}. So v is the result of discovering
p in w. At the start of the experiment, the agent is in w; after the first trial, the coin lands tails and the
agent is in v (and, unbeknownst to them, the coin is about to land heads). Rb(w) = {1, . . . ,7}, which is
compatible with p, yet Rb(w)∩ p 6= Rb(v) = {2, . . . ,8}. Discovering something compatible with their
prior beliefs leads the agent to give up some those beliefs. We think this is exactly the right prediction.12

4 Inductive knowledge of laws

The second case from [10] provides a simple model of inductive knowledge of lawful regularities:
Heading for Heads: You know a bag contains two coins: one fair, one double-headed.
Without looking, you reach in and select a coin. You decide to flip it 100 times and observe
how it lands.

If inductive knowledge of lawful regularities is ever possible, it should be possible here: that is, you can
learn that the coin is double headed by seeing it land heads 100 times in a row. Our framework predicts
this. Consider the probability structure with 2100 +1 states, encoding the pattern of heads and tails and
whether the coin is fair or double-headed. Let c be the state where the coin is fair but lands heads every
time by coincidence, and d be the state where it is double-headed. For every state there are two worlds,
corresponding to your evidence before and after flipping, so E = {S}∪ {c,d}∪ {{s} : s ∈ S\{c,d}}.
P({d}) = .5 and P({s}) = .5101 for s ∈ S\{d}. Q = {{s} : s ∈ S} and t = .9999999. As desired, this
structure predicts that, after seeing the coin land heads 100 times, you can know it is double headed.13

11τ(〈n,E〉) = 21−n, and 1−2−6 < .99 < 1−2−7, so 1− τ(〈m,E〉)
τ(〈n,E〉) ≥ .99 iff n≥ m+7.

12Even more surprising behavior is possible if we modify the case by allowing the agent to get partial information about
the result of the experiment after it is over, so that {1, . . . ,7} ∈ E . Consider w = 〈1,{1,2, . . .}〉, v = 〈1,{1, . . . ,7}〉, and
p = {1, . . . ,7}. Rk(w) = Rb(w) = p and v is the result of discovering p in w, yet Rk(v) = Rb(v) = {1, . . . ,6}: you can gain
new beliefs and knowledge by discovering (i.e., gaining evidential knowledge of) something you already (inductively) knew.

13The theory similarly predicts that one can come to know how many sides of a die are painted red by observing the outcomes
of a sufficient number of rolls of the die. It thus explains not only knowledge of law-like generalizations, but also knowledge
of the objective chances associated with different physical processes.



176 Knowledge from Probability

Notice that, although 〈c,{c,d}〉 6∈ Rk(〈d,{c,d}〉), nevertheless 〈c,S〉 ∈ Rk(〈d,S〉).14 In other words:
although you know the coin is double-headed after seeing it land heads every time, nevertheless, before
flipping it, for all you knew the coin was fair and about to land heads every time by coincidence. This
fact highlights a notable feature of the present framework that departs from our models in [19]: the
comparative normality of two worlds is not a function only of those worlds’ underlying states, but also
depends on the agent’s evidence. (This is perhaps more intuitive if we gloss < and Ï as relations of
comparative plausibility: what hypotheses about the state of the world are more or less plausible depends
on what your evidence about the state of the world is.) The case also illustrates some more extreme
departures from AGM-style dynamics of knowledge and belief, since discovering p (that the coin landed
heads every time) can allow one to know q (that it isn’t fair) even if, prior to the discovery, p∧¬q was
an epistemic possibility. While such behavior is unfamiliar (and claimed in [10] to be impossible), we
again submit that in this case it is a plausible prediction.15

5 Inductive knowledge about multiple subject matters

Theories of inductive knowledge that accept THRESHOLD face a well-known challenge. Assuming induc-
tive knowledge is possible at all, we should be able to know propositions whose evidential probability
is less than 1. Now consider many independent subject matters about which we have such inductive
knowledge, and the conjunction of everything we know concerning any one of these subject matters.
If knowledge is closed under conjunction, as Hintikka semantics predicts, it follows that we know this
conjunction. But if we are pooling knowledge across enough independent subject matters, then this
conjunction is liable to have low evidential probability, even if the evidential probaility of each of its
conjuncts is high, thereby violating THRESHOLD.

Our proposal responds to this challenge by maintaining that “know” (and “believe”) are context-
sensitive, with the question Q being the relevant parameter of context-sensitivity. For any given question,
knowledge relative to that question is closed under conjunction. But there need be no single question
relative to which an agent knows every proposition that they know relative to some question or other, and
hence no question relative to which they know the conjunction of all such propositions. We will illustrate
this aspect of the proposal using the following case we discuss in [19]:

Racing for Heads: Each of n coin flippers has a fair coin. Each will flip their coin until it
lands heads.

If what the agent knows/believe about each coin flipper is like what they know/believe about the single
coin flipper in Flipping for Heads, then as n grows the totality of what they know/believe can have
arbitrarily low probability, violating THRESHOLD.16 We will now explain our preferred treatment of the
case, in terms of probability structures. We will show how its predictions about the agent’s knowledge
and beliefs depend on the contextually supplied question.

For concreteness, we will investigate the version of the case with 10 coin flippers. The probability
structure is the one defined in the obvious way like in Flipping for Heads, with states modeled as

141− τ(〈c,{c,d}〉)
τ(〈d,{c,d}〉) =

2100

2100+1 ≥ .9999999; but 1− τ(〈c,S〉)
τ(〈d,S〉) = .5 < .9999999.

15Note that the fact that, for all you know at the outset, the coin is fair and will land heads every time by coincidence,
depends on the choice of question. Consider instead Q′ = is the coin fair and how many times will it land heads. Relative to
this question, you do know at the outset that, if the coin is fair, it won’t land heads every time. This is because the change in
question from Q to Q′ changes the typicality of 〈c,S〉 from .5 to .5−100 – this is because fair-and-all-heads is less normal than
all other states relative to Q′ except for fair-and-all-tails (which is equally normal).

16[49] defends the existence of such THRESHOLD violations; [19] shows how they can be modeled using normality structures.
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sequences of 10 positive integers, indicating how many trials it will take for each of the 10 coins to land
heads, and P corresponding to the chances of various outcomes prior to the experiment.

What about Q? In reflecting on Racing for Heads a number of natural questions suggest themselves.
Some of these are the 10 different questions of the form how many times will this particular coin land
heads. Relative to any such question, your knowledge is exactly like that in Flipping for Heads with
respect to this particular coin, and trivial concerning every other coin. But other natural questions include
(i) what will the exact outcome of the whole experiment be; (ii) what will the shape of the outcome be
– that is, how many coins will take how long to land (the exact outcome up to isomorphism); (iii) how
many total tails will there be in the experiment as a whole; (iv) how long will it be before all the coins
have landed heads; and (v) how many of the coins will ever land heads at the same time. For each of
these question, we can ask what you know and believe about a number of issues, such as how many total
tails there will be, how long the experiment as a whole will last, and whether all the experiments will end
on the same flip (a claim labelled ‘same end’ below). The table below records what the agent believes at
the start of the experiment for different choices of Q, for thresholds t = .75 and t = .95. This will also be
what the agent knows in the most normal worlds.

Q which worlds are
most normal

t min
tails

max
tails

min
trials

max
trials

same
end?

(i) exact
outcome

all coins land
heads first time

.75 0 13 1 14 maybe

.95 0 18 1 19 maybe
(ii) outcome
shape

6×1 flip, 3×2
flips, 1×3 flips

.75 1 15 2 8 no

.95 0 22 1 12 maybe
(iii) how many
total tails

8 or 9 total tails
[tied]

.75 5 14 1 15 maybe

.95 2 18 1 19 maybe
(iv) how long
until over

ends on 4th trial
.75 2 50 3 6 maybe
.95 1 70 2 8 maybe

(v) how many
end together

5 flippers get
heads at once

.75 3 ∞ 2 ∞ no

.95 2 ∞ 2 ∞ no

The table illustrates a general difference between relatively fine-grained questions (such as exact
outcome or outcome shape) and more coarse-grained ones (such as how many total tails, how long until
over, and how many end together). When the topic of our knowledge aligns with a coarse-grained
question, we will generally know more relative to that question than we know relative to a more fine-
grained question: for example, we know more about how many tails there will be relative to how many
total tails than we do relative to exact outcome or outcome shape. But this increase in knowledge comes
at a cost, since relative to a coarse-grained question we will know very little about the many topics that
are orthogonal to that question: for example, we know little about how many tails there will be relative to
how long until over or how many end together. These two facts share a common explanation. By treating
all worlds that agree on the answer to a coarse-grained question as equally normal, we make it easier
to exceed t as we add probabilities along the normality order while staying within a relatively restricted
class of answers to that question, thus generating a lot of knowledge about that question. But in doing
this, we will be including some worlds amongst the relatively normal ones in which things unfold in the
least probable way they might with regard to some orthogonal subject matter.
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6 Inductive knowledge from instrument readings

We often learn about the values of continuous quantities like weight and temperature by measuring them
using less than perfectly reliable scales, thermometers, and so on. Modeling such knowledge requires two
generalizations of the present framework. One concerns cases where there are a continuum of possible
bodies of evidence, so P(E) = 0 for some E ∈ E . To handle such cases, we relax the requirement
that evidential probabilities are always the result of conditioning a prior probability distribution on your
evidence. Instead, we directly associate every E ∈ E with a probability distribution PE over E. A second
problem concerns cases where Q has a continuum of answers all of which have evidential probability
0, yet we want to allow for non-trivial inductive knowledge. Here the natural solution is to generalize
the operative notion of probability to probability density; see appendix B for the technical details. Our
example in this section will illustrate both of these issues. Again, we will show that the framework allows
us to derive (from purely probabilistic considerations) models of agents’ knowledge and beliefs that have
been defended in the literature on independent grounds.

Consider the kind of case made famous by Williamson [53]. You are going to glance at an unmarked
modernist clock, with only an hour hand. S = [0,2π)× [0,2π), where 〈x,y〉 is a state in which the hand’s
orientation is x (so that, e.g., π

2 represents 3-o-clock) and its apparent orientation when you look at it
is y. We assume that, before looking at the clock, you have no idea how it will look or what time it is;
after looking at the clock, your evidence is exhausted by how it appeared. That is, E = {S}∪{{s ∈ S :
π2(s) = y} : y ∈ [0,2π)}, and PS is uniform concerning both the hand’s real and apparent orientations, in
the sense that, for any interval I = [a,b]⊆ [0,2π), PS({s : π1(s) ∈ I}) = PS({s : π2(s) ∈ I}) = b−a

2π
. Since

your evidence after seeing the clock (i.e., that the apparent orientation was y) had prior probability 0,
your new evidential probabilities cannot be given by conditioning your prior evidential probabilities on
your new discovery. Moreover, if the question is how the hand is oriented – i.e., if Q = {{s ∈ S : π1(s) =
x} : x ∈ [0,2π)} – then, since your eyesight is imperfect, each of its answers will still have probability 0
after looking at the clock. The case thereby illustrates both issues described in the last paragraph.

To allow for non-trivial inductive knowledge concerning the position of the hand, we must modify
NORMALITY AS LIKELINESS so that evidentially accessible worlds can differ in normality after looking
at the clock. Fortunately, there is a natural way to do this. The key observation is that, after looking,
not all intervals of orientations are on a par – their probabilities are no longer given merely by their
length. Their probabilities are given instead by a non-uniform probability density function, a “bell curve”
centered on the apparent orientation y. The area under this curve between two points gives the probability
that the hand’s true orientation is in that interval. This fact suggests modifying the definition of < as
follows: rather than ordering worlds according to the respective probabilities of their answers to Q, we
can instead order them by the respective probability densities (i.e., heights of the “bell curve”) of their
answers to Q. The formal details are given in appendix B.

The normality structures generated in this way determine epistemic and doxastic accessibility rela-
tions of the same kind that have been defended in the literature. The agent’s beliefs about the hand’s
orientation will be characterized by a non-trivial interval centered on its apparent orientation. Their
knowledge will also be characterized by such an interval, in a way that may or may not always leave
a “margin for error”, depending on whether we adopt a Williamsonian or a Stalnakerian definition of
epistemic accessibility.17 We believe that the present framework is strongly recommended by its ability
to vindicate natural and anti-skeptical models of our knowledge in cases of this kind.

17Williamson [53] and Stalnaker [45] respectively defend such models of our knowledge about the unmarked clock. In [18],
we discuss how other models in the literature arise from various combinations of definitions of epistemic accessibility and
claims about the comparative normality of the relevant possibilities.
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7 Conclusion

In this paper we have offered a new framework for modeling inductive knowledge and (rational) belief us-
ing resources congenial to philosophers in the Bayesian tradition. We did so by showing how the relations
of comparative normality that have recently been used to model knowledge and belief can themselves be
analyzed in probabilistic terms. The framework offers a unified account of our knowledge about chancy
processes (section 3), lawful regularities (section 4), and imprecisely measured quantities (section 6). By
positing a certain kind of context-sensitivity in “know” and “believe”, it offers a way of avoiding induc-
tive skepticism while maintaining that only highly probable propositions are ever known or rationally
believed (section 5). An urgent question for further research is how the contextually-supplied question
that features in the probabilistic analysis of normality is determined.18
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A Primitive evidential accessibility

Rather than modeling worlds as state/set-of-state pairs, we could treat them as unstructured points, and
explicitly specify an evidential accessibility relation on them. This no longer allows us to model the
notion of discovery, but it avoids the presupposition that there is a principled way of factoring worlds
into state/set-of-state pairs. Moreover, it allows us to model evidential accessibility as an arbitrary re-
flexive relation. To handle cases where evidential accessibility is not an equivalence relation, we will
need to relativize relations of comparative normality to a reference world – the world whose evidential
probabilities are being used to assess the comparative normality of two other worlds.19

Let a relativized normality structure be a tuple 〈W,Re,<,Ï〉 such that:

1. W is a non-empty set,

2. Re : W →P(W ) such that w ∈ Re(w) for all w ∈W ,

3. For each w ∈W , <w is a preorder on W ,

4. For each w ∈W , Ïw is a well-founded relation on W such that, for any worlds w1,w2,w3,w4:

(a) If w1 Ïw w2, then w1 <w w2;
(b) If w1 <w w2 Ïw w3 <w w4, then w1 Ïw w4.

We define Rb(w) and Rk(w) as in section 1, replacing </Ï with <w/Ïw.
Now let a worldly probability structure be a tuple 〈W,Re,Q,P, t〉 such that:

18Note that relative to the question is it true that p, knowing that p requires only that p is true and has a high enough evidential
probability. This might be considered objectionable for familiar reasons to do with Gettier cases [13]. If so, that would be one
reason to deny that such questions are supplied by any context – although see [25] for arguments that there are contexts in
which “knowledge” is this easy to come by.

19[48] argues that evidential accessibility is not an equivalence relation; [32] and [46] maintain that it is. [6] and [34] argue
for a kind of world-relativity of (non-comparative) normality; see [18] for discussion in the context of comparative normality;
ordering semantics for counterfactuals is a formal precedent, cf. [30].
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1. W,Re satisfy 1 and 2 in the definition of a relativized normality structure,

2. Q is a partition of W ,

3. P is a probability distribution over W such that P(q|Re(w)) is defined for all q ∈ Q and w ∈W ,

4. t ∈ [0,1].

Let λw(v) := P([v]Q|Re(w)) and τw(v) := P({u : v <w u and u ∈ Re(w)}|Re(w)). With these world-
relative notions of likeliness and typicality in hand, we can now define v <w u := λw(v) ≥ λw(u) and
v Ïw u := 1− τw(u)

τw(v)
≥ t. It is easy to verify that these definitions yield a relativized normality structure

that also obeys THRESHOLD (reformulated with R in place of the now ill-defined R).

B Probability densities

Let a density structure be a tuple 〈S,E ,W,P,Q,m, f , t〉 such that:20

1. S, E , W , Q, and t are as in a probability structure and t > 0,

2. For all E ∈ E :

(a) PE is a probability distribution over E,
(b) PE(q) = 0 for all q ∈ Q,

3. m : Q→ R (the measuring function),

4. f : E → RR such that fE is the density of PE relative to m.

The intuitive idea behind a probability density function is that of a curve the area under which gives
the associated probabilities. So, in particular,

∫ b
a fE(x)dx = PE(

⋃
{q ∈ Q : m(q) ∈ [a,b]}). A formal

characterization of f is given in a footnote; the role of m will be illustrated in appendix C.21

To understand this definition, let us return to the unmarked clock. As described in section 6, P sat-
isfies clause 2 (where Q is what is the hand’s orientation). Let m([s]Q) = π1(s) – i.e., it maps answers
to Q (understood as sets of states) to corresponding real numbers in [0,2π). fS(x) = 1

2π
, the constant

function. By contrast, f{s∈S:π2(s)=y} – the probability density function determining your evidential prob-
abilities after discovering that the hand’s apparent orientation is y – will be a ‘bell curve’ centered on
and symmetric around y (e.g. a ‘wrapped normal distribution’). In cases like this, rather than generating
a normality order via NORMALITY AS LIKELINESS from a probability function, we instead generate it
from this probability density function. Let d(w) (the density of w) be fπ2(w)(m([π1(w)]Q)), and define
being at least as normal as follows:

NORMALITY AS DENSITY: w < v := d(w)≥ d(v) and v ∈ Re(w)

As before, Ï is defined by SUFFICIENCY.22

To see this definition in action, we will consider a modification of the clock case that allows us to
work with familiar Gaussian probability density functions (also known as ‘normal distributions’). We do
so by considering a continuous quantity whose values are not confined to [0,2π), such as the difference
in weight of two objects. Suppose Q is the question how much heavier is this apple than this orange,

20It would also be natural to require that, where possible, P behaves as if it were the result of conditioning a prior on the
agent’s evidence – i.e. that, for all E,E ′ ∈ E , if PE is defined on E ∩E ′, then PE(·|E ∩E ′) = PE ′(·|E ∩E ′).

21Formally, fE is the density of PE with respect to the reference measure µ ′ (defined as usual in terms of the Radon-Nikodym
derivative), where µ ′(p) = µ{m(q) : q⊆ p} for all p on which PE is defined, and µ is the Lebesgue measure on R.

22Requiring that t > 0 ensures that Ï is well-founded; for an illustration of why this is needed, see dI in appendix C.
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and our scale reads µ grams. Suppose, as a first approximation, that our evidential probabilities are now
characterized by a Gaussian probability distribution over weight-difference in grams, with mean µ and
standard deviation σ . m will be the function from answers to Q to corresponding real numbers of grams
and fE(x) = 1

σ
√

2π
e−

1
2 (

x−µ

σ
)2

, where our evidence E = {〈x,µ〉 : x ∈ R}. (We model states as ordered
pairs of actual and measured values of the quantity, as before.) By setting t = .9545 . . . , we predict that
Rb(〈〈x,µ〉,E〉) = {〈x′,µ〉 : |x′− µ| ≤ 2σ} for all x ∈ R: we will believe that the scale reads µ grams
and that the true weight-difference is within two standard deviations of that. Predictions concerning
knowledge depend on which of the two clauses for Rk are adopted, but in either case our knowledge will
be non-trivial (and will coincide with what we believe when the scale is perfectly accurate – i.e., when
x = µ). This model (simplified from [17]) shows how, at least in favorable circumstances, we can see
familiar uses of confidence intervals in inferential statistic as corresponding to non-trivial knowledge and
(rational) beliefs about the values of imprecisely measured quantities.23

Our view is not that normality relations are always determined by density structures. Sometimes they
are determined by probability structures. It depends on whether the answers to Q have positive probabil-
ities or only probability densities. When answers differ in this regard, we advocate a hybrid approach,
with < determined by λ among pairs of answers one of which has positive probability and by d among
pairs of answers with well-defined probability densities. Another generalization of density structures is
also needed to handle multidimensional probability densities. In the case of n dimensions, we will then
have fE : Rn → R. This generalization is needed when the relevant quantity is multidimensional (e.g.,
where a dart will land on a dartboard) and/or when Q concerns the outcomes of multiple independent
noisy measurements of a given quantity (which will be modeled as a vector of real numbers).

C Normality de dicto and de se

In the main text, we modelled a question as a partition of S. However, some natural questions cannot be
modelled in this way, because they don’t merely concern the state of the world. In Flipping for Heads,
we might, for example, wonder how many more times a coin will be flipped – two worlds in which it
is flipped a total of 5 times can differ on the answer to this question, because in one it is part of your
evidence that the coin has already been flipped (only) 2 times while in another it is part of your evidence
that it has been flipped 3 times. Following [31], we will think of these as de se questions, concerning not
only the history of the world but also your place in it. Formally, we implement this idea by modeling
Q as a partition of W , as in appendix A – recall that members of W should be thought of as centered
worlds, two of which can agree on the complete history of the world while disagreeing on your evidence
(because they concern your evidential situation at different times in that history).

Unlike appendix A, for present purposes we may keep P defined on subsets of S – this is natural
in cases where we want P to conform to the prior objective chances which are (plausibly) only defined
over histories of the world (i.e., states). Since P is now not defined on answers to Q (these being sets of
worlds), we need to modify the definition of λ . For q ∈ Q, we let qE = {π1(w) : w ∈ q and π2(w) = E};
then QE := {qE : q ∈ Q} is a partition of E. So we can redefine λ (〈s,E〉) as P([s]QE |E).24

23In the case of belief, our models correspond to the “minimum likelihood” method for generating confidence intervals
(which yields the shortest possible intervals that have probability t). The idea of ordering possibilities by probability density
for this purpose goes back to [36]. This procedure has been criticized in the case of asymmetric distributions; in particular, in
the case of χ2 distributions, where it yields different verdicts from ordinary χ2 tests [15, 37, 28]. We lack the space to address
these criticisms here, except to note that the Decay example in appendix C illustrates why we find appealing the distinctive
predictions that the minimum likelihood approach makes in the case of certain asymmetric distributions.

24This definition is a proper generalization of the previous one since, if we start with a partition QS of S and use it to generate
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We will illustrate this generalization by showing how it allows us to model the following case (also
discussed in [18]):

Decay: A radioactive atom is created; eventually, it will decay. The average time for an
atom of this isotope to decay is one year.

Assume that the agent’s evidence entails that this is the set-up, that they are keeping track of time, and
that, when the atom decays, they will be alerted of this fact. So states can be modeled as positive real
numbers, specifying how many years from its creation it will be before the atom decays, and possible
bodies of evidence (in which the atom has yet to decay) are intervals (t,∞) for positive real t.

What should the agent believe about how many years after its creation the atom will decay? A
natural thought is that, at every time t before the atom decays, the agent’s doxastic possibilities will be
characterized by the interval [t +a, t +b], for some 0 < a < 1 < b. (Compare other events that tends to
happen unexpectedly, like when you will next have an urge to sneeze, or when you will next get an email
from an intermittent correspondent: you think they won’t happen in the next second, you think they will
have happened within a decade, and the doxastically possible times form an interval, at least to a first
approximation.) To ensure that the shape of this interval is the same at every time, we model the case
using the de se question how long after the current time will the atom decay. To predict that the agent
believes that the atom will take at least a years to decay, we need to choose the measuring function m of
our density structure to reflect the fact that extremely short times to decay can be as far from average, in
the relevant sense, as extremely long times to decay.

We will now make these ideas precise using the framework of density structures from appendix B
(generalized to allow de se questions). Let S = R+, E = {(t,∞) : t ≥ 0}, and let P(t,∞) be given by the
objective chances at t (which are entailed by the agent’s evidence at t, since it entails the setup and the
time). Q = {qr : r ∈ R+}, where qr = {〈t ′,(t,∞)〉 : t ′− t = r}. But this does not yet specify a den-
sity structure, since it is compatible with different choices of measuring functions m and corresponding
probability density assignments f .

How should we associate answers to Q with real numbers? The simplest choice is the index function
mI , where mI(qr) = r. Given this choice, the corresponding density f I

E(x) = e−x (for all E ∈ E , so the
agent’s beliefs about how much longer it will be before the atom to decays don’t change if they see the
atom hasn’t decayed yet), from which it follows that dI(〈t ′,(t,∞)〉) = et−t ′ , since [〈t ′,(t,∞)〉]Q = qt ′−t .
Since the shortest lengths of time until decay correspond to the highest densities, it is always doxastically
possible that the atom will decay arbitrarily soon.

f I
(t,∞)(x) dI(qr)

x r

To avoid this prediction, we must choose a different measuring function. And there is a natural
alternative: the logarithmic measuring function mln, where mln(qr) = ln(r). This choice corresponds to

a partition QW of W in the obvious way, defining likeliness as above using QW yields the same results as the original definition
of likeliness using QS.
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a different density function f ln
E = exe−ex

(for all E ∈ E ), from which it follows that dln(〈t ′,(t,∞)〉) =
(t ′− t)et−t ′ .25 Intuitively, this choice of measuring function amounts to thinking of intervals between the
present time and the time of decay in terms of the order of magnitude of their duration. In addition to
being mathematically natural, this choice is psychologically well-motivated, as there is a large body of
psychometric research showing that we perceive temporal duration in this way; see [14].

f ln
(t,∞)(x) dln(qr)

x r

Unlike dI(qr) (which has its highest values as r approaches 0), dln(qr) approaches 0 as r approaches
0. This means that, for r < 1, smaller values of r make for increasing abnormality, and (centered) worlds
in which the atom is going to decay extremely soon are hence doxastically inaccessible. More gener-
ally, the doxastically possible answers to Q are those whose value of d falls above a certain horizontal
line (which depends on the probability threshold t); inspection of the graph of dln above shows that, as
desired, this will always be an interval that excludes both possibilities in which the atom decays imme-
diately and ones in which it won’t decay for a very long time.

This model combines two ideas: the appeal to a de se question, and the appeal to a logarithmic
measuring function. One might wonder whether the first of these is really necessary. Couldn’t we have
achieved the same effect by using a logarithmic measuring function on the de dicto question Q∗: how
long after its creation does the atom decay? The answer is “no” – doing so achieves the same effect
only at the moment the atom is created. This is because, unlike the probability densities of answers to
Q, the probability densities of answers to Q∗ change as new evidence becomes available: when the atom
hasn’t decayed 9 months after its creation, the probability that it will decay within the next year remains
unchanged, but the probability that it will decay within its first year clearly decreases. (In particular,
after a year, the answer to Q∗ that implies that the atom will decay immediately will have the highest
probability density even with a logarithmic measuring function; so possibilities in which the atom decays
immediately will then be doxastically accessible.) Intuitively, it is unsurprising that a de se question is
needed for the desired dynamical behavior in Decay. The idea that one is always entitled to believe that
the atom isn’t about to decay relies on there being something particularly odd about it decaying right
now or very soon; but that oddity is clearly tied to de se notions, and cannot be articulated without them.

25By definition, f ln
E (x) is such that ∫ y

−∞

f ln
E (x) = PE

(⋃{
qr : mln(qr) ∈ (−∞,y)

})
=
∫ ey

0
e−xdx (for all E ∈ E )

=−e−ey
+1

Differentiating both sides with respect to y then yields f ln
E (x) = exe−ex

. So dln(〈t ′,(t,∞)〉) = f ln
(t,∞)(m

ln([〈t ′,(t,∞)〉]Q)) =
f ln
(t,∞)(ln(t

′− t)) = (t ′− t)et−t ′ .
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