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Various planning-based know-how logics have been studied in the recent literature. In this
paper, we use such a logic to do know-how-based planning via model checking. In particular,
we can handle the higher-order epistemic planning involving know-how formulas as the goal,
e.g., find a plan to make sure p such that the adversary does not know how to make p false in
the future. We give a PTIME algorithm for the model checking problem over finite epistemic
transition systems and axiomatize the logic under the assumption of perfect recall.

1 Introduction

Standard Epistemic Logic (EL) mainly studies reasoning patterns of knowing that ¢, despite
early contributions by Hintikka on formulating other know-wh expressions such as knowing who
and why using first-order and higher-order modal logic. In recent years, there is a resurgence of
interest on epistemic logics of know-wh powered by the new techniques for fragments of first-
order modal logic based on the so-called bundle modalities packing a quantifier and a normal
epistemic modality together [26] [24, 21]]. Within the varieties of logics of know-wh, the logics
of know-how received the most attention in Al (cf. e.g., [25, 8] 20, [16]).

Besides the inspirations from philosophy and linguistics (e.g., [23]), the idea of automated
planning in Al also plays an important role in the developments of various logics of know-
how. The core idea is (roughly) to interpret knowing how to achieve ¢ as a de re statement of
knowledge: “there is a plan such that you know that this plan will ensure ¢”. Here, depending
on the exact notion of plans and how much we want to “ensure” that the plan works, there can
be different semantics based on ideas from conformant planning and contingent planning in Al
However, as shown by Li and Wang [[16], there is a logic core which is independent from the
exact notions of plans underlying all these notions of know-how. We can actually unify different
planning-based approaches in a powerful framework.

In this paper, we show that the connection between planning and know-how is not merely
one way in terms of planning-based know-how, it also makes perfect sense to do know-how-
based planning which generalizes the notion of planning to incorporate know-how based goals
to be explained in the next subsection. As observed in [16], the typical epistemic planning
problem given explicit models can be viewed as model checking problems in our framework
with the know-how modality Kh in the language. For example, Kh;(K,p A —=K3K,¢) captures
the epistemic planning problem for agent 1 to ensure that agent 2 knows that ¢ and keep it a
secret from agent 3. Such epistemic planning can also be done in other epistemic approaches,
for example, by using dynamic epistemic logic (cf. e.g., [3, 15, 4} [7]). However, we can do much
more with the Kh modality in hand, as explained below.
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234 Knowing How to Plan

1.1 Higher-order epistemic planning

A distinct feature of modal logic is that we can bring some notions of the meta-language to
the object-language. This is not merely formalizing the existing meta-language concepts more
precisely since the object language can open new possibilities. Consider the following multi-
agent epistemic language of know-that and know-how:

:=T|p|-0|(eN)|Ki|Khe

Since we have the know-how operators Kh; in the fully compositional logical language, the
goal of planning can involve the (Boolean combinations and nestings of) know-how formulas
as well, and we call such planning problems higher-order epistemic planning, i.e., planning
about planning. By higher-order we do not mean higher-order logic or higher-order epistemic
goals in terms of nested know-that formulas.

Although in the single-agent scenario, Kh;Kh;¢ is equivalent to Kh;¢ under reasonable
conditions as shown in [8] [16]], it still makes sense to do higher-order planning. For exam-
ple, the planning problem to achieve ¢ with the future control to turn it off is expressed by
Kh; (¢ AKh;—¢), which is not reducible to a formula without the nesting of Kh E]

In a multi-agent setting, given that different agent may have different abilities, the impor-
tance of higher-order planning is self-evident. Actually, it is a characteristic human instinct to
plan in such a higher-order way. A one-year-old baby girl may not know how to open a bottle
but she knows how to use her parents’ knowledge-how to achieve her goalE] As a more concrete
example about academic collaborations, it often happens that both researchers do not know
how to prove a theorem independently, but one knows how to show a critical lemma which can
simplify the original problem and thus enable the other to prove the final theorem using her
expertise about the simplified statement. In our language, the situation can be expressed as
—Kh; o A—=Kh,¢ AKhKhy@. Of course, it depends on the cooperation of agent 2 to finally ensure
the goal ¢ of agent 1. The nesting of know-how can go arbitrarily deep and also be interactive
such as Kh;Kh,Kh;Kh,¢. Such planning based on others’ knowledge-how is at the core of the
arts of leadership and management in general.

Higher-order planning also makes perfect sense in non-cooperative settings. For example, it
is sometimes important to ensure not only the goal ¢ but also that the adversary cannot spoil it
in the future. This is expressed by Kh;(¢ A =Kh,—¢) in our language of knowing how. It is also
interesting to have mixed goals with both K and Kh, such as showing a commitment by achieving
¢ while letting the other know you will not be able to change it afterwards: Kh;K,(¢ A—=Kh;—9).
In the more interactive game-like scenarios, Kh;—Kh;—Kh;¢ describe a winning strategy-like
plan. We will come back to the related work using Alternating-time Temporal Logic (ATL)-like
logics at the end of this introduction. Let us first see a concrete example.

Example 1 Suppose a patient is experiencing some rare symptom p. To know the cause (q or —q),
Doctor 1 in the local hospital suggests the patient first take a special fMRI scan (a) which is only
available in the local hospital at the moment, and bring the result to Doctor 2 in a hospital in
another city, who is more experienced in examining the result from the scanner. Then Doctor 2

'In contrast to normal modal logic, (Kh;@ AKh;y) <+ Kh; (¢ A y) is invalid thus Kh;Kh;¢ < Kh;¢ cannot be applied,
cf. e.g., [16].

2As new fathers, both authors know this well and sometimes it can be tiring to be a fully cooperative parent. At
the same time, the parents are eager to know how to let their children acquire relevant knowledge-how as early as
possible.



Yanjun Li & Yanjing Wang 235

will then know the cause, depending on which different treatments (b or ¢) should be performed by
Doctor 2 to cure the patient. Intuitively, Doctor 1 knows how to let Doctor 2 know how to cure the
patient although neither Doctor 1 nor Doctor 2 knows how to cure it without the help of the other.
The situation is depicted below as a model with both epistemic relations (dotted lines labelled by
1,2) and action relations (solid lines labelled by a,b,c). Note that only 1 can execute action a and
only 2 can perform b or c. Reflexive epistemic arrows are omitted.

S]:p—a—83.p—>b—>S55.
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<

$2:Pp,q —a4>S84:p,q —b>56:D,q

1,2

We would like to have —=Kh;—p A =Khy,—p AKh{((K2g V K,—g) A Khy—p) hold at s, according to the
semantics to be introduced.

In this paper, to facilitate such higher-order planning using model checking, we extend the
single-agent framework in [16] to a genuine multi-agent setting and study the model checking
complexity in details. Technical and computational complications arise due to the introduction
of multiple agents with different abilities and knowledge to base their own plans. To stay as close
as the intended application of automated planning, we will restrict ourselves to finite models
with perfect recallE] The model checking algorithm is based on a correspondence between
execution trees in the models and the syntactically specified knowledge-based plans. It turns
out that this correspondence result also enables us to significantly simplify the proofs of the
soundness and completeness of the proof system compared with the method in [8, [16].

We summarize our contributions below.

* A multi-agent framework of logic of knowing how, which can handle the diversity of
agents’ abilities and formally specified plans based on each agent’s own knowledge.

* A PTIME model checking algorithm for the full language.

* A complete axiomatization over finite models with perfect recall to ensure the semantics
works as desired [

1.2 Related work

Doing automated planning using model checking techniques is not a new idea (cf. e.g., [10]).
The most distinctive feature of our framework, compared to other approaches to (epistemic)
planning such as [5]], is that we can express the planning problem in the object language and
incorporate higher-order epistemic planning. Following [9], we base our framework on explicit-
state models to lay out the theoretical foundation, instead of using more practical compact
representations of models and actions which can generate the explicit-state models with certain
properties (cf. [15,16] for the discussions on the technical connections of the two). In contrast
to the informal, model-dependent notions of plans such as policies, we use a plan specification
language to formalize knowledge-based plans inspired by [13} 14, [27]], but with more expressive

3cf. [16] for the discussions on the implicit assumption of perfect recall in epistemic planning and the technical
difficulty of capturing it by axioms.
4Axiomatizations can also help us to do abstract syntactic reasoning about know-how without fixing a model.
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branching conditions and more general constructors. Instead of the general structural opera-
tional semantics in [16]], we give a more intuitive semantics for our knowledge-based plans in
this paper.

Comparing to the coalition-based know-how approaches such as [20], we do not have any
group know-how modality, but use a much more general notion of plans than the single-step
joint action there. Besides the axiomatizations, which are the main focus in the previous work on
the logic of know-how, we study the model checking complexity that is crucial for the application
of our work to planning. A second-order know-how modality HY was proposed in [19], where
HR ¢ says the coalition C knows how coalition D can ensure ¢ by a single-step joint action,
though D may not know how themselves. Note that H{{é}(p is neither Kh;Kh ;¢ nor K;Kh;¢ in our
setting, where i may not know the plan that others may use to reach the goal.

The Kh; operator is clearly also related to the strategy-based de re variants of the (single-
agent) ATL operator << i >> under imperfect information (cf. e.g., [22, [12]). In the setting of
concurrent games of ATL, the strategies are functions from finite histories (or epistemic equiva-
lence classes of them) to available actions, which induce the resulting plays of the given game
that are usually infinite histories, on which temporal properties can be verified. This “global” no-
tion of strategies leads to the problem of revocability of the strategies when nesting the << i >>
operators: can you change the strategy when evaluating << i >> ¢ in the scope of another such
operator [11} [1]? In contrast, it is crucial that our witness plans for know-how are not global
and always terminate, and there is no controversy in the nested form of Kh; operators in our
setting. It is also crucial that the plans are executed sequentially in our setting, e.g., Kh;Kh;¢p
simply means agent i knows how to make sure agent j knows how to make sure ¢ after agent
i finishes executing the witness plan for its know-how. Moreover, while the de re variants of ATL
are useful in reasoning about (imperfect information) concurrent games (cf. e.g., [18,[17]), our
framework is closer to the standard automated planning in Al over transition systems. We leave
it to the full version of the paper for a detailed technical comparison.

Structure of the paper In the rest of the paper, we first introduce briefly an epistemic language
in Section |2| to be used to specify the branching conditions of our plan specification language
in Section 3| In Section 4 we introduce the semantics of our know-how language and give a
PTIME model checking algorithm. Finally, we obtain a complete axiomatization in Section
and conclude with future directions in Section [6]

Due to the strict space limitation, we have to omit some proofs.

2 Preliminaries

To specify the knowledge-based plans, we need the following formal language EAL to express
the knowledge conditions.

Definition 2 (EAL Language) Let P be a set of propositional letters, I be a set of agents, and A
be a set of atomic actions. The language of Epistemic Action Logic (EALY) is defined as follows:

¢ = Tlpl-@|(ene)|Ke]lae

where peP, i€l and a € A.



Yanjun Li & Yanjing Wang 237

The auxiliary connectives and modalities —,V, (a) are defined as abbreviations as usual.

The semantics of EAL formulas is defined on finite models with both epistemic relations
and transitions labelled by atomic actions, which will also be used for the know-how logic. In
contrast with the single-agent model of [[16], for each agent i we have a special set of actions A,
that are executable by i. Note that an action may be executable by multiple agents. Moreover,
we implicitly assume each agent is aware of all the actions, even for those not executable by
itself.

Definition 3 (Model) An Epistemic Transition System (i.e., a model) .# is a tuple

(W {~ili eI} {Ai]ie1},{Q(a) [a€ [ JA},V)
i€l
where: W is a non-empty set; A; is a set of actions for each i € I, ~;C W xW is an equivalence
relation for each i € I, Q(a) C W x W is a binary relation for each a € U;cfA;; V: W — 2P is a
valuation. A frame is a model without the valuation function.

Notations In the rest of the paper, we use A to denote (J;.;A; for notational simplicity. We
use [s]’ to denote the set {t € W | s ~; t} and [W] to denote the set {[s] | s € W}. We sometimes
call the equivalence class [s]’ an i-belief-state. A model captures the agents’ abilities to act and
the uncertainty about the states.

EAL{ formulas are given truth values on pointed epistemic transition systems.
Definition 4 (Semantics) Given a pointed model (. ,s) where .# = (W, {~;|i € I},{A;|i¢€
I},{0(a) | a € A},V) and a formula ¢ € EALY, the semantics is given below:

M,sET < always
M,sEp & seV(p)
MSE-Q & M sEQ
MsE(QANY) & M,sEeand A sEY
M, sEKi@ & forallt, if s~;tthen 4 ,tE ¢
M,sEale < forallt, if (s,t) € Q(a) then At E ¢

A formula is valid on a frame if it is true on all the pointed models based on that frame.
Let X be a set of states. We sometimes use .#,X = ¢ to denote that .# sk ¢ for all s € X. Thus
M X ¥ ¢ denotes that .# s ¥ ¢ for some s € X, e.g., we may write ./Z, [s|' F K;p or . ,[s]' ¥ K; 0.
Here are some standard results about bisimulation that will be useful in the later technical
discussion (cf. e.g., [2]).
Definition 5 (Bisimulation) Given a model # = (W,{~;|ic1},{A;|ic€l},{Q(a)|acUtAi},V),
a non-empty symmetric binary relation Z on the domain of .# is called a bisimulation iff whenever
(w,v) € Z the following conditions are satisfied:
(1). ForanypeP:peV(w) < peV(v).
(2). forany i€l if w~; w for some w' € W then there exists a v’ € W such that v ~; v and w'Zv'.
(3). for any a € UA,, if (w,w') € Q(a) for some w' € W then there exists a v/ € W such that
(v,V') € Q(a) and w'ZV'.
The pointed models (.# ,w) and (.# ,v) are said to be bisimilar (.# ,w < .# ,v) if there is a
bisimulation Z such that (w,v) € Z.
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We use ., [s]' < .#,[s'] to denote that for each ¢’ € [s']!, there exists ¢ € [s] such that .#,t <
M 1" and vice versa. Given two pointed models (.#,s) and (.#,s'), we use .4 ,s =ea M s to

denote that for each ¢ € EALY, .#,sk ¢ if and only if .#,s' E ¢. Similarly, .#,s =EALA | M s
denotes that for each K;p € EALY, ., s K;¢ if and only if .Z,s' F K;o.
Please note that ./ ,s < .# ,s' implies .#,[s]' & .#,[s'), but the other way around does not

work in general.
As an adaption of the Hennessy-Milner theorem for modal logic (cf. e.g., [2]]), we have:

Proposition 6 Given a finite model .#, for each state s in .#, we have that ./ ,s = AL M iff
Ms M,

Moreover, if we only look at the K;¢ formulas, we have:

Proposition 7 Given a finite model .#, for each state s in .#, we have that .4 ,[s|' < 4 ,[s')" iff
M s S M5

Most approaches of epistemic planning implicitly assume the property of perfect recall (cf.
[16, Sec. 6.5]), here we will also consider this extra property which will play a role in model
checking.

Definition 8 (Perfect recall) Given a model .#, for each i € I and each a € A;, if (s1,52) € Q(a)
and s, ~; s4 then there must exist a state s3 such that s; ~; s3 and (s3,s4) € Q(a).

In words, if the agent cannot distinguish two states after doing a then it could not distinguish
them before. Perfect recall (PR) corresponds to the following property depicted below:

i 83
PR(a) %
54

| I
S¢ S\L

i S4 i

3 A specification language for knowledge-based plans

Inspired by [13]], we only consider knowledge-based plans for each agent. We introduce the fol-
lowing specification language which is a multi-agent variant of a fragment of the programming
language introduced in [16].

Definition 9 (Knowledge-based specification language KBP(i)) Based on EAL{, KBP(i) is de-
fined as follows:
t = ¢€l|al|(mmnm)|if Kip then welsen

where € is the empty plan, a € A; and ¢ € EAL}.

Note that the atomic action a in the above definition must belong to i, but the condition K;¢
can contain epistemic modalities and actions of other agents, e.g., K;~K;[b]p is a legitimate
condition for a knowledge-based plan for i even when b ¢ A;.
We will abbreviate if K;p then m else m, as K;@?x; : m,. We use n” to denote the program
m;--- 7, and n¥ is the em rogram €.
pty prog

n
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Let .# be an epistemic transition system, s be a state in .#, and n be a program in KBP(i).
The state set Q(7)(s), which is the set of states on which executing 7 on s will terminate, is
defined by induction on 7 as follows:

0(e)(s) = {s}
0(a)(s) = {1 | (s,) € Q(a)}
O(m;m)(s) ={v|thereisr € Q(m)(s):ve Q(m)(r)}

0t (s) — d () A sEKig
QK@ : m)(s) = {Q(ﬂz)(s) M s E K@

We use Q(7)([s]) to denote the set Uyes) @(m)(s'). Given the property of perfect recall, the
resulting states of a knowledge-based plan have a nice property.

Proposition 10 If .# has perfect recall and & € KBP(i), then Q(7)([s]’) is closed over ~;.

Next we will define a notion of strong executability which is a generalized version of the one
in [25].

Definition 11 (Strong executability) We define a program n to be strongly executable on a
pointed model (.# ,s) by induction on 7 as follows: (1)¢ is always strongly executable on .# ,s;
(2)a is strongly executable on . s if Q(a)(s) # 0; (3)m;m, is strongly executable on .# s if m is
strongly executable on .# ,s and m, is strongly executable on each t € Q(m;)(s); (DK;@?m : m is
strongly executable on .# ,s if either .4 ,s E K, and m, is strongly executable on . ,s, or M ,s ¥ K;@
and m, is strongly executable on .# ,s. We say that = is strongly executable on a set X of states if it
is strongly executable on .# ,s for each s € X.

To define the model checking algorithm later, we need to construct the tree of possible execu-
tions of a plan where each node is essentially an epistemic equivalence class (usually called a
belief state in automated planning).

Definition 12 (Execution tree) Given a model .# and an agent i € I, an execution tree of .4 for
i is a labeled tree 7 = (N,E,L), where (N,E) is a tree consisting of a nonempty set N of nodes
and a set E of edges and L is a label function that labels each node in N with an i-belief-state
and each edge in E with an action a € A,, such that, for all (n,m) € E, (1)L(n,m) is strongly
executable on L(n); (2)L(n,m) = L(n',m’) if (n',m") € E and n = n'; (3)there exists t € L(m) such
that t € Q(L(n,m))(L(n)); (dfor each t € Q(L(n,m))(L(n)), there exists k € N such that (n,k) € E
and t € L(k).

We use 7 (or simply r) to refer to the root node of the execution tree .7. The following two
propositions show the relations between execution trees and knowledge-based plans.

Proposition 13 Given a model .# and a program ©t € KBP(i), if 7 is strongly executable on [s]',
then there is a finite execution tree (N,E,L) of .# for i such that L(r) = [s]' and that for each leaf
node k, L(k) C Q(7)([s]").

Proposition 14 Let .7 = (N, E,L) be a finite execution tree of .# for i. There exists © € KBP(i) such
that & is strongly executable on L(r) and that for each t € Q(w)(L(r)), there exists a leaf node k such
that A ,[t]' < A ,L(k).
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4 Model checking knowledge-how

Extending the work of [[16], we introduce the multi-agent epistemic language of know-how and
its semantics and study the model checking complexity in detail.

Definition 15 (ELKh Language) Let P be a set of variables and I be a set of agents, the language
of epistemic logic with the know-how operator (ELKh) is defined as follows:

¢:=TIp[=0[ (9 )| Kip|Khip
where pePandiel

Definition 16 (Semantics) The truth conditions for basic propositions, Boolean connectives and
the epistemic operator K; are as before in the case of EAL.

M ,sEKhio < thereis a plan & € KBP(i) such that
1. 7 is strongly executable on [s]';
2. Mt F @ foreacht € Q()([s]").

The readers can go back to Example to verify the truth of the formula mentioned there.
We can show that ELKh is invariant under bisimualtion defined in Definition [5 which also
match labelled transitions (cf. [16]).

Proposition 17 If .# ,s < # ,u then A ,sE @ iff 4 ,uF ¢ for all ¢ € ELKh.

In the remainder of this section, we will propose a model checking algorithm for ELKh.
The key part of the model checking algorithm is to check the Kh;-formulas, and the problem
of whether .#,s F Kh;¢p depends on whether there is a good plan for Kh;¢. Our strategy is to
reduce the problem of whether there is a good plan for Kh;¢ to the nondeterministic planning
problem in [6], which we will briefly introduce below.

Definition 18 (Planning problem [6]) Let T = (D,A,{%|a € A}) be a labeled transition system,
where D is a finite set, A is a set of actions, and =+C D x D is a binary relation. A fully observable
nondeterministic planning problem is a tuple P = (T,s,G) where s € D is the initial state, and G C D
is the goal set.

Given a labeled transition system 7 (note that there is no epistemic relation), we often write
(s,1) €% as s 5 r. The sequence s Ay 51 2 ..., is called an execution trace of T from sy. A
partial function f : D — A is called a policy. An execution trace sy — s; — ---s, is induced by f
if f(sx) = axy1 for all 0 < k < n. It is complete w.r.t. f if 5, is not in the domain of f.

Definition 19 (Strong plan) A policy f is a strong plan for a planning problem P = (T,s,G) if
each complete execution trace induced by f from s is finite and terminates in G.

Proposition 20 Let .7 = (D,A,{%|a € A}). The existence of strong plans for a planning problem
P =(T,s,G) is in PTIME in the size of T.

PrROOF It is shown in [6] that the procedure presented in Algorithm (1) always terminates and
is correct for whether P has a strong plan. Moreover, the loop is executed at most |D| + 1 times.
Therefore, the procedure is in PTIME. O
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Algorithm 1: A planning procedure

Procedure StrongPlanExistence (7,s,G):
OldSA := false;
SA :=0;
while OldSA # SA and s ¢ GUSTs(SA) do /* STs(SA) is the state set
{veD]|(v,a) € SA for some ac A}. */
Prel :={(v,a) e Dx A |v¢ GUSTs(SA),v has a-successors, and all a-successors of
vare in GUSTs(SA)};
OldSA := SA;
SA := SAU Prel;

if s € GUSTs(SA) then return true;
return false;

Now we define the nondeterministic planning problem that corresponds to .#,s E Kh;.
Since the language of ELKh is a multi-agent one where different agents have different abilities,
the corresponding nondeterministic planning problem must take the agent i into account. This
makes the reduction more complex than that of single-agent know-how logics.

Given a model .7 = (W,{~;|i € I},{A;|i€1},{0(a) |a € A},V) and an agent i, a planning
problem for i is P(.#,i) = (T (4 ,i),[w]’,G) where [w]' is an i-belief-state, G is a set of i-belief-
states, and T'(.#,i) = (D,A;,{=|a € A;}) is a labeled transition system where D = [W]’ and for
eachac A;, [s]' % [t]) <= ais strongly executable on [s]’, and there exists ¢’ € [t]' : ¢’ € Q(a)([s]))}.

We will show that the problem of whether .# s E Kh;p indeed can be reduced to a nondeter-
ministic planning problem for i (Lemma [23)). Before that, we need two auxiliary propositions.

Proposition 21 Given a model .# and an agent i, if a program © € KBP(i) is strongly executable
on [s], then the planning problem P = (T (.4 ,i),[s]',G) where G = {[v]' | 4 ,[v]' < 4 ,[t]' for some
t € Q(m)([s]")} has a strong plan.

Proposition 22 Given .# and i, if a planning problem for i, P(.# i) = (T (A ,i),[s]',G), has a
strong plan, then there exists © € KBP(i) such that 7 is strongly executable on [s]" and that for each
t € Q(a)([s])), there exists [v]' € G such that .4 ,t < M ,v.

Lemma 23 Given a model .#, we have that .# s = Kh;¢ iff the planning problem P(.# i) =
(T (A ,i),[s]',G) where G = {[t]" | #,[t]' E K;@} has a strong plan.

ProOF If .#,sF Kh;, it follows that there exists © € KBP(i) such that 7 is strongly executable
on [s]’ and that .#,t F ¢ for each t € Q(x)([s]"). By Proposition |10} it follows that .#,[t]' F K;p
for each t € Q(n)([s]'). Let G’ be the set {[v] | #,[v] < .#,[t]' for some t € Q(n)([s]')}. By
Proposition (17, we have that .Z,[v]' F K;¢ for each [v]' € G'. It follows that G' C G. Let P’ be
the planning problem (T'(.#,i),[s]’,G'). By Proposition 21} the planning problem P’ has a strong
plan. Since G’ C G, it follows that the planning problem P(.# i) als has a strong plan.

If the planning problem P(.#,i) has a strong plan, by Proposition it follows that there
exists & € KBP(i) such that 7 is strongly executable on [s]’ and that for each ¢’ € Q(a)([s]'), there
exists 1]’ € G such that .#,1' <> .# 1. Since .# ,t = ¢ for each [t]' € G, by Proposition[17} it follows
that ./, F ¢ for each t' € Q(a)([s]'). We then have that .# s F Kh;o. O

Finally, we are ready to show the upper bound of model checking ELKh.



242 Knowing How to Plan

Algorithm 2: A model checking procedure

Procedure MC(.Z ,w,@): /* whether .# ,wE @ */
switch ¢ do /* Boolean cases are omitted */
case K;¢p do

foreach w' € [w]’ do
| if not MC(.#Z,w', @) then return false ;

return true;
ase Kh;¢p do
G :=0;
foreach [s)' in T(.#,i) do
L if MC (A ,s5,K;p) then G:=GU{[s]'} ;

return StrongPlanExistence (T(.Z,i),[w]’,G);

o

Theorem 24 The model checking problem of ELKh is in PTIME in the size of models.

PROOF  Algorithm |2| presents the model checking algorithm MC for ELKh on epistemic transi-
tion systems with perfect recall. By Lemma we call the procedure StrongPlanExistence
presented in Algorithm [1| to check whether .#Z,w I Kh;¢. Proposition |20[ shows that the proce-
dure StrongPlanExistence can be computed in PTIME of the size of T(.#,i). Since the size of
T+” is bounded by the size of .#, it follows that Algorithm [1|is in PTIME in the size of .. [

5 Axiomatization

In this section, we axiomatize our logic of know-how over finite models with perfect recall.
Note that we cannot apply the generic completeness result in [16] since our setting is not only
multi-agent but also with an extra condition of perfect recall. It turns out the axiomatization
is the multi-agent variant of the system in [[8] which has an extra axiom AxKhtoKhK than the
proof system in [[16]. Note that although the proof system is similar, the semantics of the Kh
in [8]] is based on model-dependent functions from equivalence classes to actions instead of the
syntactically specified plan in our work.

The proof system SILKHC is presented in Table

The property of perfect recall is sufficient to guarantee the validity of AxKhtoKhK, but the
axiom cannot characterize the property, as it is shown in [16]. Moreover, the composition axiom
AxKhKh in SLKHC is a weaker version of the axiom Kh(¢ VKhy) — Kh(¢ V y) in [16].

Due to the axiom AxKhtoKKh, the stronger composition axiom in [16] can be derived in
SLKHC based on AxKhKh.

Proposition 25 + Kh;(¢ VvV Kh;y) — Kh;(¢ V y).

Next, we will show that the proof system SLKHC is sound and complete over finite models
with perfect recall. By Propositions[13|and it follows that there is a correspondence between
execution trees and plans. With this correspondence result, we can significantly simplify the
proofs of the soundness and completeness of the proof system SLKHC than [8]] and [16]]. More
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Axioms

TAUT all axioms of propositional logic

DISTK Kip AKi(p — q) — Kig

T Kip = p Rules

4 Kip = KiKip P POV ek %
5 -Kip = Ki=K;p v Ko
AxKtoKh Kip — Kh;p MONOKh -y SUB 4
AxKhtoKhK Khip — KhiKip Khip — Kh;y oly/p]
AxKhtoKKh Kh;p — K;Kh;p

AxKhKh KhiKhip — Khip

AxKhbot —-Kh, L

Table 1: SLKHC

specifically, the validity of Axiom AxKhKh, which was highly non-trivial in [8]], follows from
the fact that two subsequent execution trees can be combined into one execution tree. (The
detailed proof can be found in the following theorem of soundness.) For the completeness, the
corresponding execution tree plays an important role in the proof of the truth lemma (Lemma

34).

Theorem 26 (Soundness) The proof system SLKHC is sound over finite models with perfect re-
call.

PrROOF The validity of axioms T,4,5 is due to the standard semantics for K;.

The axiom AxKtoKh says if p is known then you know how to achieve p. Its validity is
guaranteed the empty program. The axiom AxKhtoKhK is valid due to Proposition[10] The axiom
AxKhtoKKh is the positive introspection axiom for Kh; whose validity is due to the semantics for
Kh;. The axiom AxKhbot says we cannot guarantee contradiction, which indirectly requires that
the plan should terminate at someplace and is guaranteed by the condition (1) of the semantics
for Kh;.

Finally, we will show the validity of the axiom AxKhKh, that is, .#,s F Kh;¢ if .# ,s F Kh;Kh;o.
If #,sE Kh;Kh;e, it follows that there is a program & € KBP(i) such that x is strongly executable
on [s]' and that .#,t F Kh;¢ for each t € Q(7)([s]). By Proposition there is a finite execu-
tion tree .7 of ./ for i such that L(r) = [s]' and that for each leaf node k, L(k) C Q(x)([s]’). It
follows that .#,L(k) = Kh;¢ for each leaf node k. We then have that for each leaf node &, there
is a program m; € KBP(i) such that m; is strongly executable on L(k) and that .#,v & ¢ for all
v € QO(m)(L(k)). By Proposition [13|again, for each leaf k of .7, there is a finite execution tree .7
of .# for i such that L% (r7) = L(k) and that for each leaf node I of .7, L7%(I) C Q(m)(L(k)).
Moreover, since .#,v = ¢ for all v € Q(m)(L(k)), it follows that .#,L%(I)  K;¢p for each leaf
node [ of .7;. We then construct an execution tree .7’ of .# for i by extending each leaf node
k of 7 with ;. Since .7 and all .7, are finite, it follows that .7’ is finite. Moreover, we have
that the root of .7 is labeled with [s]' and .#,L” (I) E K;¢ for each leaf node / of .7’. By
Proposition there is a program 7’ € KBP(i) such that 7’ is strongly executable on [s]' and that
for each v € Q(n')([s]"), there exists a leaf node I of .7’ such that .#,[v]' & .#,L7"(I). Since
L7 (1) E K, for each leaf node I of .7, by Proposition we have that .Z,v F K, for all
v e Q(n')([s]"). Thus, we have that ., s F Kh;o. O
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Next, we will show the completeness of SLKHC. The key is to show that every consistent
formula is satisfiable. We will construct a canonical model that consists of all atoms which are
maximal consistent sets with respect to a closure set of formulas and show that every consistent
formula is satisfied in the canonical model.

Given a set of formulas A, let: Alx, = {Ki@ | Kip € A}, Al k, = {-Kip | =Kip € A}, Alkp, =
{Kh;@ | Kh;¢ € A}, Al-kn, = {—-Kh;@ | =Kh;p € A}. Let ® be a subformula-closed set of ELKh-
formulas that is finite.

Definition 27 The closure cl(®) is defined as:
PU{K;p,-K;@ | ¢ € ®,i €I occurs in P}.
If @ is finite, so is c/(P). Next, we will use it to build a canonical model with respect to ®.

Definition 28 (Atom) We enumerate the formulas in c/(®) by {wo,---,y,} where h € N. The
formula set A= {Y; | k < h} is an atom of cl(®) if

* Yy =y or Yy =~y for each y; € cl(D);
¢ A is consistent in SLKHC.

The following two propositions are similar with their single-agent versions in [8]].

Proposition 29 Let A be an atom of cl(®) and K, € cl(®). If Ki¢p & A then there exists A’ such
that A/|K,~ = A|K,- and lONS A

Proposition 30 Let A and A’ be two atoms of cl(®) such that Alg, = A'|x,. We have A|kn, = A'|kh-

Definition 31 (Canonical model) Given a subformula-closed set ®, the canonical model .#® =
(W {~i|i €I}, {A;|i€I},{0(a) | a € Uit Ai},V) is defined as:

* W={A|Aisan atom of cl(P)};

e foreachice, A~ T <= Alx, =Tk,

e foreachicl, A; ={(i,p) | Kh;p € ®};

* for each (i,p) € | JA;, we have that (A,T) € Q(¢) <= Kh;¢p € Aand K;p €T;

* foreachpe®, pcV(A) < peA.

Proposition 32 If T € Q(i,¢)(A) and I € [T],, then T' € Q(i,@)([A]"). In other words, the model
M® has perfect recall.

PROOF We only need to show that I € Q(i, ¢)(A). Since I € O(i, ¢)(A), it follows that Kh;p € A
and K;p € T. Since I € [I')), it follows that K;p € I". Thus, we have that I € Q(i, 9)(A). O

Proposition 33 Let A be a state in .#® and (i,w) € A; be executable at A. If Kh;o € A’ for all
A € Q(i,y)(A) then Kh;p € A.

PrOOF  First, we show that K,y is not consistent with —Kh;¢. Since (i, y) € A, is executable at
A, it follows that Kh;y € A and that there is some state in Q(i, ) (A) that contains K;y. Moreover,
it is obvious that Kh;¢ € c/(®). Assume that K,y is consistent with =Kh;¢. By a Lindenbaum
argument, there exists an atom I of ¢/(®) such that {K;y, —Kh;p} C T. By the definition of .#Z®,
it follows that (A,I") € Q(i, ). Since we know that Kh;p € A’ for all A’ € Q(i, y)(A), it follows
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that Kh;p € I'. It is contradictory with the fact that I" is consistent. Thus, K;y is not consistent
with —=Kh;¢. Hence, we have that - K;y — Kh;¢.

Since - K;y — Kh; @, it follows by Rule MONOKh and Axiom AxKhtoKhK that - Kh;y — Kh;Kh;¢.
Moreover, it follows by Axiom AxKhKh that - Kh;y — Kh;¢. Since we have shown that Kh;y € A,
we have that Kh;p € A. O

Lemma 34 (Truth Lemma) For each ¢ € cl(®), .#®,AFE ¢ iff p € A.

PROOF  We prove it by induction on ¢. The atomic and Boolean cases are straightforward. The
case of K;¢ can be proved by Proposition Next, we only focus on the case of Kh; .

Right to Left: If Kh;¢ € A, we will show .#®,AF Kh;p. We first show that K;¢ is consistent.
If not, namely F K; — L, it follows by Rule MONOKh that - Kh;K;¢ — Kh; L. It follows by Axiom
AxKhbot that - Kh;K; — L. Since Kh;p € A, it follows by Axiom AxKhtoKhK that A+ L, which
is in contradiction with the fact that A is consistent. Therefore, K;¢ is consistent.

By Lindenbaum’s Lemma, there exists an atom I" such that K;¢ € I. By the definition of .#®,
it follows that (i, @) € A; and that (A',T") € Q(i, @) for each A’ € [A]'. It means (i,9) is strongly
executable on [A]’. For each ® € Q(i,9)([A]’), by the definition of .#®, it follows that K¢ € ®.
By Axiom T, it follows that ¢ € ®. By IH, we then have that .#% 0k ¢ for each ® € Q(i, ¢)([A]").
Thus, we have that .#% A E Kh;.

Left to Right: Suppose .#Z®,A F Kh;p, we will show Kh;¢ € A. Since .#% A E Kh;p, it
follows that there exists & € KBP(i) such that 7 is strongly executable on [A]’ and that .Z® Tk ¢
for all T € Q(x)([A]'). By IH, we have that ¢ € T for all T' € Q(x)([A]'). Moreover, for each
I € Q(n)(]A]"), if I € [[), by Proposition [32] it follows that I € Q(7)(|A]'), and we then have
that ¢ € . Moreover, with Proposition |29}, it is easy to check that K;¢ € T for all T" € Q(x)([A]").

Since 7 is strongly executable on [A]’, by Proposition there is a finite execution tree 7
of .#® for i such that L(r) = [A]’ and that L(k) C Q(x)(|A]'). Since we have shown that K;p € T
for all T" € Q(x)([A]), it follows that if k is a leaf node then K;¢ is in all states in L(k). Next, we
firstly show the following claim:

for each node k and each ® € L(k) : Kh;p € ©.

Please note that the execution tree .7 is finite. We prove the claim above by induction on the
height of nodes. If the height of k is 0, it means that k is a leaf node. It follows that K;p € ®
for each ® € L(k). By Axiom AxKtoKh, it follows that Kh;¢ € ® for each ® € L(k). With the IH
that the claim holds for each node whose height is less than 4, we will show that the claim holds
for nodes whose height is 2 > 1. Given a node k whose height is A, since i > 1, it follows that
there is a node &’ such that (k,k’) is an edge in .7 and the height of &’ is less than 4, in other
words, k' is a child node of k. Let L(k) = [®]' and L(k,k’) = (i, y). Since .7 is an execution tree,
it follows that (i, y) is strongly executable on [®]’, and then (i, ) is executable on ©. For each
@ € 0(i,y)(®) C Q(L(k,k'))(L(k)), by the definition of execution trees, it follows that there is a
k-child k" such that ® € L(k”). Since k” is a child of k, by IH, it follows that Kh;¢ € ®'. Thus, we
have shown that Kh;p € @ for each ® € Q(i, y)(®). By Proposition 33} it follows that Kh;¢ € ©.
Thus, we have shown the claim. Since the root is labeled with [A]’, we then have that Kh;p € A. O

Let ¢ be a consistent formula. By Proposition [29] it follows that there is an atom A of c/(®)
such that ¢ € A, where @ is the set of subformulas of ¢. By Proposition [32] and Lemma it
follows that ¢ is satisfiable over finite models with perfect recall. The completeness then follows:
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Theorem 35 (Completeness) The proof system SLKHC is complete over finite models with per-
fect recall.

From the construction of the canonical model .#?® in Definition we can see that both
the state set W and the action set A are bounded. This implies that the logic has a small model
property. Moreover, by Theorem [24] the decidability then follows:

Theorem 36 The logic ELKh is decidable.

6 Conclusion

In this paper, we propose the notion of higher-order epistemic planning by using an epistemic
logic of knowing how. The planning problems can be encoded using model checking problems
in the framework, which can be computed in PTIME in the size of the the model. We also
axiomatize the logic over finite models with perfect recall.

As for future work, besides many theoretical questions about the knowing how logic as it is,
we may extend its expressive power to capture conditional knowledge-how, which is very useful
in reasoning about planning problems. For example, one may say I know how to achieve ¢ given
y. Note that it is very different from Kh;,(y — ¢) or K;y — Kh;@. The important difference is
that such conditional knowledge-how is global, compared to the current local semantics of Kh;.
This is similar to the binary global Kh; operator introduced in [25]. It would be interesting
to combine the two notations of know-how in the same framework. On the practical side, we
can consider the model checking problems over compact representations of the actions and
states using the techniques in [[15 [16] connecting the explicit-state models with the compact
representations.
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