
R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 4–16, doi:10.4204/EPTCS.110.3

Non-simplifying Graph Rewriting Termination

Guillaume Bonfante
LORIA

Université de Lorraine

Bruno Guillaume
LORIA

Inria Nancy Grand-Est

So far, a very large amount of work in Natural Language Processing (NLP) rely on trees as the core
mathematical structure to represent linguistic informations (e.g. in Chomsky’s work). However,
some linguistic phenomena do not cope properly with trees. In a former paper, we showed the
benefit of encoding linguistic structures by graphs and of using graph rewriting rules to compute on
those structures. Justified by some linguistic considerations, graph rewriting is characterized by two
features: first, there is no node creation along computations and second, there are non-local edge
modifications. Under these hypotheses, we show that uniform termination is undecidable and that
non-uniform termination is decidable. We describe two termination techniques based on weights and
we give complexity bound on the derivation length for these rewriting systems.

1 Introduction

Linguists introduce different levels to describe a natural language sentence. Starting from a sentence
given as a sequence of sounds or as a sequence of words; among the linguistic levels, two are deeply
considered in literature: the syntactic level (a grammatical analysis of the sentence) and the semantic
level (a representation of the meaning of the sentence). These two representations involve mathematical
structures such as logical formulae, λ -terms, trees and graphs.

I see that Mike begins to work

SUBJ SUBJ AUX

CPL COMP

COMP

One of the usual ways to describe syntax is to use the
notion of dependency [16]. A dependency structure is an
ordered sequence of words, together with some relations
between these words. For instance, the sentence ”I see
that Mike begins to work” can be represented by the struc-
ture on the right.

There is a large debate in the literature about the mathematical nature of the structures needed for
natural language syntax: do we have to consider trees or graphs? Trees are often considered for their
simplicity; however, it is clearly insufficient. Let us illustrate the limitations of tree-representations with
some linguistic examples. Consider the sentence ”Bill expects Mary to come”, the node ”Mary” is
shared, being the subject of ”come” and the object of ”expects” (below on the left). The situation can
be even worse: cycles may appear such as in the sentence below where edges in the cycle are drawn with
dashed line (below on the right).

Bill expects Mary to come

SUBJ OBJ AUX

SUBJ

COMP

a book which is hard to read

DET ANT SUBJ ATS AUX

REL COMP

OBJ

http://dx.doi.org/10.4204/EPTCS.110.3

G. Bonfante and B. Guillaume 5

BYTEvTHEq

CATn

RSTR

THEq

DOGn

RSTR

BARKv

ARG1

possv

ARG2

TOYn

ARG1

ARG1

A
RG

2EQ

EQ

defq

RS
TR

For the semantic representation of
natural language sentences, first order
logic formulae are widely used. To
deal with natural language ambiguity,
a more compact representation of a set
of logic formulae (called underspeci-
fied semantic representation) is used.
DMRS [4] is one of these compact rep-
resentation. The DMRS structure for
the sentence ”The Dog whose toy the
cat bit barked” is given in the figure on
the right.

To describe transformations between syntactic and semantics structures, there are solutions based on
many computational models (finite state automata, λ -calculus). It is somewhat surprising that Graph
Rewrite Systems (GRS) have been hardly considered so far ([8, 1, 5, 9]). To explain that, GRS im-
plementations are usually considered to be too inefficient to justify their extra-generality. For instance,
pattern matching does not take linear time where this is usually seen as an upper limit for fast treatment.

However, if one drops for a while the issue of efficiency, the use of GRS is promising. Indeed,
linguistic considerations can be most of the time expressed by some relations between a few words.
Thus, they are easily translated into rules. To illustrate this point, in [3, 12], we proposed a syntax to
semantics translator based on GRSs: given the syntax of a sentence, it outputs the different meaning
associated to this syntax.

In the two earlier mentioned studies, we tried to delineate what are the key features of graph rewriting
in the context of NLP. Roughly speaking, node creation are strictly restricted, edges may be shifted from
one node to another and there is a need for negative patterns. Based on this analysis, we define here a
suitable framework for NLP (see Section 3).

Compared to term rewriting, the semantics of graph rewriting is problematic: different choices can
be made in the way the context is glued to the rule application [15]. As far as we see, our notion does
not fit properly the DPO approach due to unguarded node deletion nor the SPO approach due to the shift
command, as we shall see. Thus we will provide a complete description of our notion. We have chosen
to present it in an operational way and we leave for future work a categorial semantics.

In our application, we use several hundreds of rules. To manage such a system, we use a notion of
modular graph rewriting system: the full set of rules is divided in smaller subsets (called modules) that
are used in turn.

In practice, we need some tools to verify termination and confluence properties of modules. In
Section 4, we provide two termination methods based on a weight analysis. First, there is a direct moti-
vation: in our NLP application, any computations should terminate. If it is not the case, it means that the
rules where not correctly drawn. Then, termination ensures partly the correctness of the transformation.
There is also an indirect reason to consider termination: one way of establishing confluence is through
Newman’s Lemma [11] which requires termination.

We consider two properties of the above mentioned termination methods. First, we show that they
are decidable, that is the existence of weights can be computed statically from the rules, and thus we have
a fully automatic tool to verify termination. Obviously, it is not complete. In a second step, we evaluate
the strength of the two methods. To do that, we consider what restrictions they impose on the length of
computations. We get quadratic time for the first method, polynomial time for the second. This article is
an extended abstract of [2].

6 Non-simplifying Graph Rewriting Termination

2 Linguistic motivations

Without any linguistic exhaustivity, we highlight in this section some crucial points of the kind of linguis-
tic transformation we are interested in and hence the relative features of rewriting we have to consider.

Node preservation property. As linguistic examples above suggest, the goal of linguistic analysis is
mainly to describe different kinds of relations between elements that are present in the input structure.
As a consequence, the set of nodes in the output structure is directly predictable from the input and only
a very restrictive notion on node creation is needed. In practice, these node creations can be anticipated
in some enriched input structure on which the whole transformation can be described as a non-size
increasing process.

X Y
begins

Z
to

T

SUBJ AUX

COMP

X Y
begins

Z
to

T

AUX

MOD

SUBJEdge shifting. In the first example of the introduction (for
the sentence ”I see that Mike begins to work”), the verb
”begins” is called a raising verb and we know that ”Mike”
is the deep subject of the verb ”work”; ”begins” being con-
sidered as a modifier of the verb. To recover this deep subject, one may imagine a local transformation
of the graph which turns the first graph on the right into the second one.

However, in our example above, a direct application of such a transformation leads to the structure
below on the left which is not the right structure. Indeed, the transformation should shift what the
linguists call the head of the phrase ”Mike begins to work” from the word ”begins” to the word ”work”
with all relative edges. In that case, the transformation should produce the structure below on the right:

I see that Mike begins to work

SUBJ AUXCPL

MODCOMP

SUBJ

I see that Mike begins to work

SUBJ AUX

MOD

SUBJ

CPL

COMP

In a more general setting, our transformations may have to specify the fact that all incident edges of
some node X must be transported to some other node Y . We call this operation shift.

To describe our graph rewriting rules, we introduce a system of commands (like in [6]) which ex-
presses step by step the modifications applied on the input graph. The transformation described above is
performed in our setting as follows:

X Y
begins

Z
to

T

SUBJ AUX

COMP

del edge (Y,SUBJ,X); del edge (Y,COMP,T);
add edge (T,SUBJ,X); add edge (T,MOD,Y);
shift (Y,T)

Negative conditions. In some situation, rules must be aware of the context of the pattern to avoid
unwanted ambiguities. When computing semantics out of syntax, one has to deal with passive sentence;
the two sentences below show that the agent is optional.

The banana was eaten

DET AUX

SUBJ

The banana was eaten by Mike

DET AUX AGT OBJ

SUBJ

G. Bonfante and B. Guillaume 7

In order to switch to the corresponding active form, two different linguistic transformations have to
be defined for these two sentence; but, clearly, the first graph is a subgraph of the second one. We don’t
want the transformation for the short passive on the left to apply on the long passive on the right. we
need to express a negative condition like “there is no out edge labeled by AGT out of the main verb” to
prevent the unwanted transformation to occur.

The woman whom John seems to love

DET SUBJ AUX

COMPMOD_REL

OBJLong distance dependencies. Most of the lin-
guistic transformation can be expressed with suc-
cessive local transformation like the one above.
Nevertheless, there are some cases where more
global rewriting is required; consider the sentence ”The women whom John seems to love”, for which
we consider the syntactic structure on the right. One of the steps in the semantic construction of this
sentence requires to compute the antecedent of the relative pronoun ”whom” (the noun ”woman” in our
example).

X
PRO_REL

Y Z T

OBJ (OBJ|COMP)* MOD_REL

add edge (X,ANT,T)

The subgraph we have to search in our graph (which
is depicted as a non-local pattern) and the graph modifi-
cation to perform are given on the right. The number of
OBJ or COMP relations to consider (in the relation de-
picted as (OBJ|COMP)* in the figure) is unbounded (in
linguistics, this phenomenon is called long distance dependencies); it is possible to construct grammati-
cal sentences with an arbitrary large number of relations.

As we want to stay in the well-known framework of local rewriting, we will use several local trans-
formations to implement such a non-local rule.

X
PRO_REL

Y

OBJ

add edge (X,TMP,Y)

X Y Z

TMP OBJ

del edge (X,TMP,Y)
add edge (X,TMP,Z)

X Y Z

TMP COMP

del edge (X,TMP,Y)
add edge (X,TMP,Z)

X Z T

TMP MOD_REL

del edge (X,TMP,Z)
add edge (X,ANT,T)

The second and the third rules above preserve the set of nodes and the number of edges of each kind.
Hence, this kind of rule will require special treatment with respect to termination issues.

3 Graph Rewriting for NLP

Before we enter into the technical sections, let us define some useful notations. First, we use the notation
~c to denote sequences. The empty sequence is written /0. The length of a sequence is denoted by |~c |. We
use the same notation for sets: the empty set is denoted /0 and the cardinality of a set S is written |S|. The
context will make clear whether we are talking about sequences or sets.

Given a function f : X→Y and some sets X ′ ⊆ X and Y ′ ⊆Y , we define f (X ′), { f (x) | x ∈ X ′} and
f−1(Y ′), {x∈ X | f (x)∈Y ′}; the restriction of the function f to the domain X ′ is f |X ′ : x′ ∈ X ′ 7→ f (x′).
The function cX : x∈ X 7→ c∈Y is the constant function on X . The identity function is written 1. Finally,
given a function f : X → Y and (x,y) ∈ X×Y , the function f [x 7→ y] maps t 6= x to f (t) and x to y.

The set of natural numbers is N, integers are denoted by Z. Given two integers a,b, we define
[a,b] = {x ∈ Z | a≤ x≤ b}.

8 Non-simplifying Graph Rewriting Termination

3.1 Graphs

The graphs we consider are directed graphs with both labels on nodes and labels on edges. We restrict
the edge set: given some edge label e, there is at most one edge labeled e between two given nodes α

and β . This restriction reflects the fact that, in NLP application, our edges are used to encode linguistic
information which are relations. We make no other explicit hypothesis on graphs: in particular, graphs
may be disconnected, or have loops.

In this paper, we suppose given a finite set ΣE of edge labels and another finite set ΣN of node labels.

Definition 3.1 (Graph). A graph G is defined as a triple (N , `,E) where

• N is a finite set of nodes;

• ` is a labeling function: ` : N 7→ ΣN;

• E is a set of edges: E ⊆N ×ΣE ×N .

Let n,m ∈N and e ∈ ΣE . When there is an edge from n to m labelled e (i.e. (n,e,m) ∈ E), we write
n e−→ m or n−→ m if the edge label is not relevant. If G denotes some graph (N , `,E), then NG, `G,
EG denote respectively N , ` and E .

Definition 3.2 (Graph morphism). A graph morphism µ from the graph G = (N , `,E) to the graph
G′ = (N ′, `′,E ′) is a function from N to N ′ such that:

• for all n ∈N , `′(µ(n)) = `(n);

• for all n,m ∈N and e ∈ ΣE , if n e−→ m ∈ E then µ(n) e−→ µ(m) ∈ E ′.

A graph morphism µ is said to be injective if µ(n) = µ(m) implies n = m. We make the follow-
ing abuse of notation: given some graph morphism µ : G→ G′, and a set E ⊆ EG, we let µ(E) =
{µ(n) e−→ µ(m) | n e−→ m ∈ E}.
Definition 3.3 (Basic pattern and basic matching). A basic pattern B is a graph. A basic matching µ of
the basic pattern B in the graph G is an injective graph morphism µ (written µ : B ↪→ G).

As shown in Section 2, negative conditions on patterns naturally arise in NLP. We classify negative
conditions in two categories: the local ones, that is negative conditions on edges within the basic pattern
and non-local ones, that is negative conditions concerning edges between a node of the basic pattern and
a node of the context (either in-edges or out-edges).

Definition 3.4 (Pattern). A pattern is a quadruple P = (B, Ē ,Ī ,Ō) of:

• a basic pattern B = (NP, `P,EP);

• a set of forbidden edges Ē ⊂NP×ΣE ×NP such that Ē ∩EP = /0;

• a set of forbidden in-edges Ī ⊂NP×ΣE

• a set of forbidden out-edges Ō ⊂NP×ΣE

Given a basic pattern B, we shorten (B, /0, /0, /0) to (B,~/0). In the following, given a pattern P, NP and
EP denote respectively the set of nodes of its basic pattern and the set of edges of its basic pattern.

Definition 3.5 (Matching). Let P = (B, Ē ,Ī ,Ō) be a pattern, G = (N , `,E) be a graph, and µ : B ↪→G
be a basic matching. We say that µ is a matching from P into G (also written µ : P ↪→ G) whenever it
satisfies the additional three conditions:

• µ(Ē)∩E = /0

G. Bonfante and B. Guillaume 9

• for each (n,e) ∈ Ī , {p ∈N \µ(NP) | p e−→ µ(n)}= /0

• for each (n,e) ∈ Ō , {p ∈N \µ(NP) | µ(n)
e−→ p}= /0

Example 3.1. Negative conditions are used to remove ’unwanted’ matching. To see their effect, consider
for instance the basic pattern B0 and its two basic matchings µ1 and µ2 in G0:

b0:α b1:β
Aµ1

g0:α

g1:β

g2:α

A

B

D

C

AE

µ2

g0:α

g1:β

g2:α

A

B

D

C

AE

• First, let P0 = (B0,~/0). Then, µ1 and µ2 are (the) two matchings P0 ↪→ G0.

• Second, let the pattern P1 = (B0,{(b1,C,b0)}, /0, /0); then, µ1 is the only matching P1 ↪→ G0.

• Third, let the pattern P2 = (B0, /0,{(b0,D)},{(b0,D)}). Then, there is no matching of P2 into G0.

In the following, patterns P1 and P2 are depicted as:

P1 = b0:α b1:β
A

C
×

P2 = b0:α b1:β
A

D×

D×

3.2 Graph decomposition

The proper description of actions of a rule on some graph G requires first the definition of two partitions:
one on nodes and the other on edges. They are both induced by the matching of some pattern P into G.

Definition 3.6 (Nodes decomposition: pattern image, crown and context). Let µ : P ↪→ G a matching
from the pattern P into the graph G = (N , `,E). Nodes of G can be split in a partition of three sets
N = Pµ ⊕Kµ ⊕Cµ :

• the pattern image is Pµ = µ(NP);

• the crown contains nodes outside the pattern image which are directly connected to the pattern
image: Kµ = {n ∈N \Pµ | ∃p ∈Pµ such that n−→ p or p−→ n};

• the context contains nodes not linked to the pattern image: Cµ = N \ (Pµ ∪Kµ).

Definition 3.7 (Edges decomposition: pattern edges, crown edges, context edges and pattern-glued
edges). Let µ : P ↪→ G a matching from the pattern P into the graph G = (N , `,E). Edges of G can be
split in a partition of four sets E = µ(EP)⊕K µ ⊕C µ ⊕H µ :

• the pattern edges is µ(EP);

• the crown edges set contains edges which links a pattern image node to a crown node: K µ =
{n−→ m ∈ E | n ∈Pµ ∧m ∈Kµ}∪{n−→ m ∈ E | n ∈Kµ ∧m ∈Pµ};

• the context edges set contains edges which connect two nodes that are not in the pattern image:
C µ = {n−→ m ∈ E | n /∈Pµ ∧m /∈Pµ}.

• the pattern-glued edges set contains edges which are not pattern edges but which connect two
nodes that are in the pattern image: H µ = {n−→ m ∈ E | n ∈Pµ ∧m ∈Pµ}\µ(EP).

10 Non-simplifying Graph Rewriting Termination

3.3 Rules

In our graph rewriting framework, the transformation of the graph is described through some atomic com-
mands (like in [6]). Commands definition refer to some pattern P and pattern nodes NP are used as iden-
tifiers. Let a,b∈NP, α ∈ΣN and e∈ΣE , the five kinds of commands are label(a,α), del edge(a,e,b),
add edge(a,e,b), del node(a) and shift(a,b).

Their names speak for themselves, however, we will come back to their precise meaning in the
subsection below. Before this, to ensure that commands always refer to valid node identifiers, we restrict
command sequences to consistent sequences, that is sequences c1, . . . ,ck such that for each command ci,
1≤ i≤ k, which is a node deletion command del node(a) for some a ∈NP, then the node name a does
not occur in any command c j with i < j ≤ k.

Definition 3.8 (Rule). A rule R is a pair R = 〈P,~c〉 of a pattern P and a sequence of commands ~c
consistent with respect to P. A rule R = 〈P,~c〉 is said to be node-preserving if ~c does not contain any
del node command.

3.4 Graph Rewrite System

Let G = (N , `,E) a graph, R = 〈P,~c〉 a rule and µ : P ↪→G a matching. The application of the sequence
~c on G is a new graph which is written G ·µ~c (shortened G ·~c when µ is clear from the context) and is
defined by induction on the length k of~c. If k = 0, G · /0 = G. If k > 0, let G′ = (N ′, `′,E ′) be the graph
obtained by application of the sequence c1, . . . ,ck−1; then we consider each command in turn:

Label: The command ck = label(a,α) changes the label of the node µ(a): G ·~c = (N ′, `′′,E ′) with
`′′ = `′[µ(a) 7→ α].

Delete: The command ck = del edge(a,e,b) deletes the edge from µ(a) to µ(b) labelled with e ∈ ΣE ;
G ·~c = (N ′, `′,E ′′) with E ′′ = E ′ \{µ(a) e−→ µ(b)}.

Add: The command ck = add edge(a,e,b) adds an edge from µ(a) to µ(b) labelled with e ∈ ΣE ;
G ·~c = (N ′, `′,E ′′) with E ′′ = E ′∪{µ(a) e−→ µ(b)}.

Delete node: The command ck = del node(a) removes the node µ(a) of G′; G ·~c = (N ′′, `′′,E ′′) with
N ′′ = N ′ \{µ(a)}, `′′ = `′|N ′′ and E ′′ = E ′∩{N ′′×ΣE ×N ′′}.

Shift edges: The command ck = shift(a,b) changes in-edges of µ(a) starting from the crown to in-
edges of µ(b) and all out-edges of µ(a) going to the crown to out-edges of µ(b). Formally,
G ·~c = (N ′, `′,E ′′) with the set E ′′ defined by, for all e ∈ ΣE :

• for all p ∈Kµ , µ(b) e−→ p ∈ E ′′ iff µ(b) e−→ p ∈ E ′ or µ(a) e−→ p ∈ E ′;

• for all p ∈Kµ , p e−→ µ(b) ∈ E ′′ iff p e−→ µ(b) ∈ E ′ or p e−→ µ(a) ∈ E ′;

• for all p,q ∈Pµ , p e−→ q ∈ E ′′ iff p e−→ q ∈ E ′;

• for all p,q ∈Kµ ∪Cµ , p e−→ q ∈ E ′′ iff p e−→ q ∈ E ′.

The commands label, del edge and add edge are called local commands: they modify only the
edges and the nodes described in the pattern. The commands del node and shift are non-local: they
can modify edges outside the pattern. Note that a rule add edge (resp. del edge) may have no effect
if the edge already exists (resp. does not exist). Note also that we can suppose that for a given sequence
~c and a given triple (a,e,b), there is at most one rule del edge(a,e,b) or add edge(a,e,b) in~c (if not,
only the last one is effective). Hence, we can define uniform rules:

G. Bonfante and B. Guillaume 11

Definition 3.9 (Uniform rule). For~c= c1, . . . ,ck without node deletion, the rule 〈P,~c〉 is uniform iff for all
1≤ i≤ k, if ci = add edge(n,e,m) then (n,e,m) ∈ ĒP and if ci = del edge(n,e,m) then (n,e,m) ∈ EP.

Definition 3.10 (Rewrite step). Let G = (N , `,E) a graph, R = 〈P,~c〉 a rule and µ : P ↪→G a matching.
Let G′ = G ·~c, then we say that G rewrites to G′ with respect to the rule R and the matching µ . We write
it G→R,µ G′ or G→R G′ or even simply G→ G′.

Definition 3.11 (Graph Rewrite System). A Graph Rewrite System G is a finite set of rules.

In our application, the translation of the syntax to semantics is split into several independent levels
of transformation driven by linguistic consideration (such as translation of passive forms to active ones,
computation of the deep subject of infinites). Rules are then grouped in subsets called modules and
modules apply sequentially; each module being used as a graph rewrite system on the outputs of the
previous module.

Lemma 3.1 (Linear modification). Given a GRS G , there is a constant C > 0 such that, for any rewriting
step G→R,µ G′ the two canonical corresponding edge decompositions EG = C µ ⊕Qµ and EG′ = C µ ⊕
Q′µ satisfy:

|Qµ | ≤C× (|G|+1) and |Q′µ | ≤C× (|G|+1)

Proof. Let C =max{2×|P|2×|ΣE |} | 〈P,~c〉 ∈ G }. Both in G and G′, edges that are not in the context are
either between two pattern nodes or between a pattern node and a crown node. The total number of edges
of the first kind (either pattern edges or glued-pattern edges) is bounded by |P|2×|ΣE |. For each pattern
node, the number of edges which connect this node to some non-pattern node is bounded by 2×|G|×|ΣE |
and so the total number of edges which link some pattern node to some non-pattern node is bounded by
2×|G|× |ΣE |× |P|. Putting everything together, |Qµ | ≤C× (|G|+1) and |Q′µ | ≤C× (|G|+1).

4 Weighted GRS

We recall that a GRS is said to be (strongly) terminating whenever there is no infinite sequence G1 →
G2→ ··· . Given a terminating GRS G and a graph G, we define the derivation height of G, next denoted
hG (G), to be the length of the longest derivation starting from G if such a derivation exists. If hG (G) is
defined for all G such that |G| ≤ n, then we define the derivation height of G by: hG (n) = max{hG (G) |
|G| ≤ n}.

Actually, for non-size increasing GRS as presented above, we have immediately the decidability
of non-uniform termination. That is, given some GRS G and some graph G, one may decide whether
there is an infinite sequence G1 → G2 → G3 → ·· · . Indeed, one may observe that for such sequence,
for all i ∈ N, |Gi| ≤ |G|. Thus, the Gi’s range in the finite set G≤|G| of graphs of size less or equal to
|G|. Consequently, either the system terminates or there is some j ≤ |G≤|G|| and some k ≤ j such that
G j = Gk. To conclude, to decide non-uniform termination, it is sufficient to compute all the (finitely
many) possibilities of rewriting G in less than |G≤|G|| steps and to verify the existence of such a j and k
above. Finally, since |G≤|G|| ≤ 2O(|G|2), the procedure as described above takes exponential time.

However, uniform termination— given a GRS, is it terminating?— of non-size increasing GRS re-
mains an open problem. Uniform termination was proved undecidable when we drop the property of
non-size increasingness (cf. Plump [14]). As a consequence, there is a need to define some termina-
tion method pertaining to non-size increasing GRS. Compared to standard work in termination [13, 7],
there are two difficulties: first, our graphs may be cyclic, thus forbidding methods developed for DAGs
such as term-graphs. Second, using term rewriting terminology, our method should operate for some

12 Non-simplifying Graph Rewriting Termination

non-simplifying GRS, that is GRS for which the output may be ”bigger” than the input. Indeed, the NLP
programmer sometimes wants to compute some new relations, so that the input graph is a strict sub-graph
of the resulting graph.

4.1 Termination by weight analysis

In the context of term-rewriting systems, the use of weights is very common to prove termination. There
are many examples of such orderings, Knuth-Bendix Ordering [10] to cite one of them. We recall that
all graphs we consider are defined relatively to two signatures ΣE of edge labels and ΣN of node labels.

Definition 4.1 (Edge weight, node weight). An edge weight is a mapping w : ΣE → Z. Given some
subset E of edges of G, the weight of E is w(E) = ∑n e−→m∈E w(e). The edge weight of a graph G is
w(G) = w(EG). A node weight is a mapping η : ΣN → Z. For a graph G = (NG, `G,EG), we define
η(G) = ∑n∈NG

η(`G(n)).

Let us make some observations. Let |G|e denote the number of edges in G which have the label e,
then w(G) = ∑e∈ΣE w(e)×|G|e. Second, for a pattern matching µ : P ↪→ G, w(µ(P)) = w(P).

The weight of a graph may be negative. This is not standard, but it is useful here to cope with non-
simplifying rules, that is rules which add new edges. Since a graph G has at most |ΣE |× |G|2 edges, the
following lemma is immediate.

Lemma 4.1. Given an edge weight w and a node weight η , let Kw = maxe∈ΣE (|w(e)|), KE = |ΣE |×Kw,
Kη = maxα∈ΣN (|η(α)|), then

(a) for each subset of edges E ⊂ EG of some graph G, we have w(E)≤ Kw×|E|.

(b) for each graph G, we have −KE ×|G|2 ≤ w(G)≤ KE ×|G|2;

(c) for each graph G, we have |η(G)| ≤ Kη ×|G|.

Definition 4.2. Let R = 〈P,~c〉 a rule, we define inductively Φ~c : NP →NP which describes the global
effect of the shift commands in a rule: Φ /0 = 1; Φ~c,shift(m,n) = 1[m 7→ n]◦Φ~c and Φ~c,c = Φ~c if c is not
a shift command.

Definition 4.3 (Compatible weight). Given a rule R = 〈(P, Ē ,Ī ,Ō),~c〉, an edge weight w is said to be
compatible with R if:

1. either~c contains a del node command

2. or R is a node-preserving rule and satisfy the three properties:

(a) R is uniform,
(b) w(P ·1~c)< w(P),
(c) for all e ∈ ΣE such that w(e)< 0, for all n ∈Φ(NP), let Mn ⊂ EP be the set Φ

−1
~c (n); then Mn

contains at most one element m such that (m,e) 6∈ Ī and Mn contains at most one element
m′ ∈Mn such that (m′,e) 6∈ Ō .

An edge weight is said to be compatible with a GRS G if it is compatible with all its rules. A weighted
GRS is a pair (G ,w) of a GRS and a compatible weight.

Hypothesis (2.b) will serve to manage edges in the pattern images while Hypothesis (2.c) will serve
for the crown edges. One may note that when there is no shift commands in the rule, the Hypothesis
(2.c) holds whatever w is. Indeed, in that case, Φ is the identity function and all the sets Mn are singletons.

G. Bonfante and B. Guillaume 13

Lemma 4.2. Let (G ,w) a weighted GRS, let G→G′ be a rewrite step of G . Either |G|> |G′| or |G|= |G′|
and w(G)> w(G′).

The problem of the synthesis is the following. Given a GRS G , is there a weight w compatible with
G ? Since the existence of weights can be described in Presburger’s arithmetic, we have a positive answer:

Theorem 4.1. Given a GRS G , one may decide whether or not it has a compatible weight.

Second point, the existence of weights induce termination:

Theorem 4.2. Any weighted GRS (G ,w) is strongly terminating in quadratic time. Moreover, this
quadratic bound is a lower bound: there is a GRS G with a compatible weight such that hG (n)≥O(n2).

Condition (2.c) of Definition 4.3 is necessary. Here is a counter-example of a non-terminating system
with a compatible weight up to this condition. Consider the two rules 〈Q1,~c1 〉 and 〈Q2,~c2 〉:

0:e 1:e

A

B

del edge(0,A,1)
shift(0,1) 3:e 4:e5:e

C

B
add edge(3,A,4)
add edge(5,C,3)

Set w(A) = w(B) = 1 and w(C) =−2. Observe that w(Q1 ·~c1) = 1 < 2 = w(Q1) and w(Q2 ·~c2) =−2 <
−1 = w(Q2). However, there is an infinite sequence G1→R1 G2→R2 G1→R1 · · · with G1 and G2 being:

0:e 1:e 2:e
A

B

C

C
0:e 1:e 2:e

B

C

�G1 = = G2

Proof sketch of Theorem 4.2. We begin to show the lower bound. Let ΣE = {E}, ΣN = {e}. Consider
the two rules GRS G defined by the two basic patterns:

0:e 1:e
E

del edge(0,E,1) 2:eE del edge(2,E,2)

Set w(E) = 1. The rules are compatible with w. Each rule deleting exactly one edge, since the clique
Cn of size n has n2 edges, the derivation height hG (Cn) = n2. The lower bound follows.

For the upper bound, let C be the constant as defined by Lemma 3.1, let K = max(1,Kw) (we recall
that Kw =maxe∈ΣE (|w(e)|)). Finally, let H =max{n | (P,c1, . . . ,cn)∈ G }. Let A = 2×K×C×(H+1)+
1. Let Ω be the ’energy function’ defined on graphs Ω(G) = w(G)+A×|G|2. For each rule application
G→ G′, one may verify that Ω(G) > Ω(G′). The last inequality together with Lemma 4.1 leads to the
conclusion.

Full proofs of Theorem 4.1 and of Theorem 4.2 are given in [2].

4.2 Termination by lexicographic weight

In our experiments, in most cases, the weight analysis of the preceding section was sufficient. The main
counter-example is however systems composed of rules as given in Section 2. The GRS is strongly
terminating but there is no compatible weight. This section provides a conciliable extension of this ter-
mination proof method. With a little abstraction, the linguistic example of Section 2 about long distance
dependencies is computed by some ’non-local rule’ Rnl:

14 Non-simplifying Graph Rewriting Termination

Rnl =

b0:P

b1:X b2:X

O

O

A
×

b′0:X b′1:X
O

b′2:X

M

A
×

add edge(b0,A,b′2)

Such non-local rules can be implemented by rules:

INIT REC STOP CLEAN

b0:P

b1:X

O

A ×

E
×

label(b0,P�)
add edge(b0,E,b1)

E×

E×
b0:P�

b1:X b2:X

E

O

A ×

E
×

add edge(b0,E,b2)

b0:P�

b1:X b2:X

E

M

A ×

E
×

add edge(b0,A,b2)

label(b0,P)

E×

E×
b0:P

b1:X

E

del edge(b0,E,b1)

Figure 1: Local implementation of the non-local rule

However, these rules are not compatible with any weight. Actually, as justified in [2], there is no imple-
mentation of such a rule by some weighted rules.

Given an order ≺ on some set U , its lexicographic extension to sequences in U is defined by
(u1, . . . ,uk) ≺lex (v1, . . . ,vm) iff ∃ j ≤ min(m,k) : u j ≺ v j ∧∀i < j : ui = vi. The order ≺lex is not well-
founded in general, but its restriction to sequences of equal length is such as soon as ≺ is well-founded.

Definition 4.4 (Contextual weight). An edge contextual weight is a (finite) map ω : ΣN×ΣE ×ΣN → Z.
As for weights, it extends to any set E ⊆ EG of some graph G by: ω(E) = ∑n e−→m∈E ω(`(n),e, `(m)). And
the weight of a graph is ω(G) = ω(EG).

A contextual weight is a 4-tuple π = (a,ω,b,η) with a,b ∈ N, ω an edge contextual weight and η a
node weight. We define π(G) = a×ω(G)+b×η(G).

Let e ∈ ΣE , if a 6= 0 and there are α,β ,α ′,β ′ ∈ ΣN such that ω(α,e,β) 6= ω(α ′,e,β ′), then we say
that π is e-fragile.

Definition 4.5. Given an edge weight w0 : ΣE → Z, given k contextual weights π1, . . . ,πk and a rule
R = 〈P,~c〉, we write P′ = P ·1~c. We say that R is compatible with (w0,π1, . . . ,πk) iff:

1. either~c contains a del node command,

2. or R is an uniform and node-preserving rule such that:

(a) either the two properties below hold
(i) w0(P′)< w0(P);

(ii) and for all e∈ ΣE such that w(e)< 0, for all n∈Φ(NP), let Mn be the set Φ−1(n); then
Mn contains at most one element m such that (m,e) 6∈ Ī and Mn contains at most one
element m′ ∈Mn such that (q,m′) 6∈ Ō .

(b) or the four properties below hold
(i) w0(P′) = w0(P);

(ii) (π1(P′), . . . ,πk(P′))<lex (π1(P), . . . ,πk(P));

G. Bonfante and B. Guillaume 15

(iii) if~c contains a command label(n,α) and if some πi is e-fragile, then (n,e) ∈ Ī ∪ Ō;
(iv) ~c does not contain any shift commands.

When a weight w0 and k contextual weights are compatible with all the rules of some GRS G , we
say that G is lexicographically weighted by (w0,π1, . . . ,πk).

Example 4.1. We define w0 = 0ΣE [A 7→ −1], and ω = 0ΣN×ΣE×ΣN [(P,E,X) 7→ 1,(P�,E,X) 7→ −1]. Con-
sider the lexicographic weight π = (1,ω,0,0ΣN). For rules in Figure 1, we have: rule STOP decreases
by (2.a); rules INIT and REC decrease by (2.b): there is one more edge labeled E starting from P� and
rule CLEAN decreases by (2.b): one edge labeled E starting from P disappears.

Theorem 4.3. Whenever a program G is compatible with the lexicographic weight (w0,π1, . . . ,πk), it is
strongly terminating in polynomial time. The bound is tight, that is for all k > 0, there is a GRS whose
derivation height is O(nk).

Proof. Examples for the lower bound are proposed in [2]. For the upper bound, let

Kω = max{|ω(n,e,m)| | (n,e,m) ∈ ΣN×ΣE ×ΣN} and Kπ = a×|ΣE |×Kω +b×Kη

Then, adapting Lemma 4.1(b) to the present context, we can state that |ω(G)| ≤ Kω ×|ΣE |× |G|2.
With Lemma 4.1(c), we have |η(G)| ≤ Kη ×|G| and finally |π(G)| ≤ a×Kω ×|ΣE |× |G|2 + b×Kη ×
|G| ≤ Kπ ×|G|2.

Let K0 = maxi∈[1,k](Kπi). Finally, let KE be the constant as given by Lemma 4.1 for w0, we define
K = max(K0,KE). Then, for all i≤ k, we have: |πi(G)| ≤ K×|G|2 and |w0(G)| ≤ K×|G|2.

Let κ(G) = (|G|,w0(G),π1(G), . . . ,πk(G)). If G→ G′, then κ(G) > κ(G′). Consider a sequence
G1 → G2 → ·· · . For all graph Gi of the sequence, |Gi| ≤ |G1|. Due to previous equations, κ(Gi) is
ranging in L = [0, |G1|]× [−K×|G1|2,K×|G1|2]k+1. Thus the result.

5 Conclusion

The polynomial derivation height that we have proved in the last section can be reconsidered in the
following way. The example of a GRS working in O(nk) can be used as a clock. Then, since each
transition of a (non-size increasing) Turing-Machine can be easily simulated by graph rewriting, we can
state that any PTIME-predicate can be simulated by a lexicographically weighted GRS (up to a polynomial
reduction). Since lexicographically weighted confluent GRS can be computed in polynomial time (each
rewriting step can be simulated in linear time), it becomes clear that lexicographically weighted GRSs
actually characterize PTIME. This provides a precise description of the computational content of the
method.

We have implemented a software —called GREW (grew.loria.fr)— based on the Graph Rewriting
definition presented in this article. In [12], the software was used to produce a semantically annotated
version of the French Treebank; in this experiment, the system contains 34 modules and 571 rules and
the corpus is constituted of 12 000 sentences of length up to 100 words. This experiment is a large scale
application which shows that the proposed approach can be used in real-size applications.

As said earlier, despite the global non-confluence of the system, we can isolate subsets of rules that
are confluent and use our system of modules to benefit from this confluence in implementation. In our
last experiment, 26 of our 34 modules are confluent, but confluence proofs are tedious. We leave for
further work the study of the local confluence of terminating GRS and the general study of confluence of
Graph Rewriting Systems.

grew.loria.fr

16 Non-simplifying Graph Rewriting Termination

References
[1] B. Bohnet & L. Wanner (2001): On using a parallel graph rewriting formalism in generation. In: EWNLG

’01: Proceedings of the 8th European workshop on Natural Language Generation, Association for Computa-
tional Linguistics, pp. 1–11, doi:10.3115/1117840.1117847.

[2] G. Bonfante & B. Guillaume (2013): Non-size increasing Graph Rewriting for Natural Language Processing.
to appear in Mathematical Structures for Computer Science.

[3] G. Bonfante, B. Guillaume, M. Morey & G. Perrier (2011): Modular Graph Rewriting to Compute Semantics.
In: IWCS 2011, Oxford, UK, pp. 65–74.

[4] A. Copestake (2009): Invited Talk: Slacker Semantics: Why Superficiality, Dependency and Avoidance of
Commitment can be the Right Way to Go. In: Proceedings of the 12th Conference of the European Chapter
of the ACL (EACL 2009), Association for Computational Linguistics, Athens, Greece, pp. 1–9.

[5] D. Crouch (2005): Packed Rewriting for Mapping Semantics to KR. In: Proceedings of IWCS.
[6] R. Echahed (2008): Inductively Sequential Term-Graph Rewrite Systems. In: Proceedings of the 4th inter-

national conference on Graph Transformations, ICGT ’08, Springer-Verlag, Berlin, Heidelberg, pp. 84–98,
doi:10.1007/978-3-540-87405-8 7.

[7] E. Godard, Y. Métivier, M. Mosbah & A. Sellami (2002): Termination Detection of Distributed Algorithms
by Graph Relabelling Systems. In A. Corradini, H. Ehrig, H.-J. Kreowski & G. Rozenberg, editors: ICGT,
Lecture Notes in Computer Science 2505, Springer, pp. 106–119, doi:10.1007/3-540-45832-8 10.

[8] E. Hyvönen (1984): Semantic Parsing as Graph Language Transformation - a Multidimensional Approach
to Parsing Highly Inflectional Languages. In: COLING, pp. 517–520, doi:10.3115/980491.980601.

[9] V. Jijkoun & M. de Rijke (2007): Learning to Transform Linguistic Graphs. In: Second Workshop on
TextGraphs: Graph-Based Algorithms for Natural Language Processing, Rochester, NY, USA.

[10] D.E. Knuth & P.B. Bendix (1970): Simple word problems in universal algebras. In J. Leech, editor: Compu-
tational problems in abstract algebra, Pergamon, pp. 263–277.

[11] M. Newman (1942): On Theories With a Combinatorial Definition of ”Equivalence”. Annals of Math. 43(2),
pp. 223–243, doi:10.2307/1968867.

[12] G. Perrier & B. Guillaume (2012): Semantic Annotation of the French Treebank with Modular Graph Rewrit-
ing. In Jan Hajic, editor: META-RESEARCH Workshop on Advanced Treebanking, LREC 2012 Workshop,
META-NET, Istanbul, Turquie. Available at http://hal.inria.fr/hal-00760577.

[13] D. Plump (1995): On Termination of Graph Rewriting. In: Proceedings of the 21st International Workshop
on Graph-Theoretic Concepts in Computer Science, WG ’95, Springer-Verlag, London, UK, pp. 88–100,
doi:10.1007/3-540-60618-1 68.

[14] D. Plump (1998): Termination of Graph Rewriting is Undecidable. Fundamenta Informaticae 33(2), pp.
201–209, doi:10.3233/FI-1998-33204.

[15] G. Rozenberg, editor (1997): Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations. World Scientific.

[16] L. Tesnière (1959): Eléments de syntaxe structurale. Librairie C. Klincksieck, Paris.

http://dx.doi.org/10.3115/1117840.1117847
http://dx.doi.org/10.1007/978-3-540-87405-8_7
http://dx.doi.org/10.1007/3-540-45832-8_10
http://dx.doi.org/10.3115/980491.980601
http://dx.doi.org/10.2307/1968867
http://hal.inria.fr/hal-00760577
http://dx.doi.org/10.1007/3-540-60618-1_68
http://dx.doi.org/10.3233/FI-1998-33204

	1 Introduction
	2 Linguistic motivations
	3 Graph Rewriting for NLP
	3.1 Graphs
	3.2 Graph decomposition
	3.3 Rules
	3.4 Graph Rewrite System

	4 Weighted GRS
	4.1 Termination by weight analysis
	4.2 Termination by lexicographic weight

	5 Conclusion

