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Interaction nets are a graphical model of computation, which has been used to define efficient eval-
uators for functional calculi, and specificallyλ -calculi with patterns. However, the flat structure of
interaction nets forces pattern matching and functional behaviour to be encoded at the same level,
losing some potential parallelism. In this paper, we introduce bigraphical nets, or binets for short, as
a generalisation of interaction nets using ideas from bigraphs and port graphs, and we present a for-
mal notation and operational semantics for binets. We illustrate their expressive power by examples
of applications.

Keywords: Interaction Net, Port Graph, Bigraph, RewritingCalculus.

1 Introduction

Interaction nets [15] are graphical rewrite systems used for the specification of logical proof systems
(e.g., [1, 16]), for the implementation of efficient evaluators for theλ -calculus (e.g., [12, 4, 18]), and for
visual programming (e.g., [13, 20, 19]).

The visual nature of interaction nets makes them well suitedas a specification tool, and, sinceall
the computation steps are explicit and expressed in the sameformalism (there is no external machin-
ery), interaction nets are also well suited for the study of the dynamics of programming languages and
rewriting systems [9, 7, 22]. However, interaction nets have some drawbacks. When the nets are large or
growing during reduction, being able tostructurethe graph is crucial to understand the system modelled,
but interaction nets lack mechanisms to structure the system. Moreover, to formally prove properties of
the system modelled or implement reduction, aformal, algebraic notation, with a precise operational
semantics, should also be available. In this paper, we address these two points:

• First, inspired by Milner’s bigraphs [21], we define a generalisation of interaction nets, which we
call bigraphical nets, or simplybinets, where not only the connectivity but also the hierarchical
structure of the system is taken into account. Binets borrowfrom bigraphs a notion of locality that
is missing in interaction nets.

• Then, we present a formal algebraic notation for binets, with an operational semantics which can
serve as a basis for their implementation.

Related Work. Binets can be seen as hierarchical graph rewriting systems that permit links between
nested nets and external subgraphs (like bigraphs, and unlike hierarchical graphs [6]). Rewriting can take
place across boundaries. Both of these features will be of use in our encoding of theρ-calculus.

Binets inherit from interaction nets the notion of principal port. But, in contrast with interaction nets,
binets do not force all interactions to be binary, and in contrast with bigraphs, they place restrictions on
reactions to simplify the implementation of rule application.
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Interaction nets have been used as an implementation language for functional calculi, and as a tool
to understand their dynamics [12, 4, 17, 18, 8, 7, 11]. Interaction net encodings of theρ-calculus [5],
an extension of theλ -calculus where we can abstract on patterns, not just on variables, shed light on the
implicit parallelism present in theρ-calculus, and at the same time, motivate a generalisation of interac-
tion nets, as shown in [10]. In this paper, we develop and formalise this idea. Our main contribution is a
formal syntax and operational semantics for binets, via a textual calculus.

The class of portgraphs defined by Andrei and Kirchner [3] canalso be seen as a generalisation of
interaction nets, but although binets are graphs with ports, due to their hierarchical nature they cannot be
defined as portgraphs. It would be interesting to consider a generalisation of portgraphs with a notion of
locality; the inclusion of this feature in PORGY [2] could serve as a starting point for the development
of a specification environment based on binets.

2 Background

Interaction Nets. A system of interaction nets is specified by a setΣ of symbols with fixed arities, and
a setR of interaction rules. An occurrence of a symbolα ∈ Σ is called anagent. If the arity of α is
n, then the agent hasn+1 ports: a principal port depicted by an arrow, andn auxiliary ports. Such an
agent will be drawn in the following way:

✒✑
✓✏

α
❄

❅ �· · ·
x1 xn

A net N is a graph (not necessarily connected) with agents at the vertices and each edge connecting at
most 2 ports. The ports that are not connected to another agent arefree. There are two special instances
of a net: an empty net, and a net consisting only of edges (no agents). Theinterfaceof a net is the set of
free ports of agents and free extremes of wires. We refer to [15] for more details.

An interaction rule((α ,β ) =⇒ N) ∈ R replaces a pair of agents(α ,β ) ∈ Σ×Σ connected together
on their principal ports (anactive pairor redexand writtenα ⊲⊳ β ) by a netN with the same interface.
Rules must satisfy two conditions: all free ports are preserved during reduction (there are no global
operations: only the part of the net involved in the rewrite is modified), and there is at most one rule
for each pair of agents (such a rule will thus be sometimes denoted byα ⊲⊳ β ). The following diagram
shows the format of interaction rules (N can be any net built fromΣ).
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We use the notation=⇒ for the one-step reduction relation, or==⇒
α⊲⊳β

if we want to be explicit about

the rule used, and=⇒∗ for its transitive and reflexive closure. If a net does not contain any active pairs
then we say that it is in normal form. The key property of interaction nets is that reduction is strongly
confluent. We refer the reader to [15] for more details and examples.

Bigraphs. In [21, 14] a notion of graph transformation system is defined, using nested (or hierarchical)
graphs calledbigraphs. Bigraphs represent two kinds of structure: locality (nodes may occur inside



76 Binets

other nodes) and connectivity (nodes have ports that may be connected by links). We recall the basic
terminology of bigraphs and refer the reader to [21] for details and examples.

A bigraph is a pair of aplace graphand alink graph over the same set of nodes. It has interfaces,
which define the way in which it can be composed with other bigraphs. The place graph, or placing, is
a set of trees with interfaces, and the link graph, or linking, is a hypergraph with interfaces. A placing
has inner and outer interfaces. The inner interface corresponds to thesiteswhere other graphs can be
placed, and the outer interface corresponds to therootsof the trees. The linking also has inner and outer
interfaces, which are names of ports, that is, the points where edges can be attached.

Nodes are labelled bycontrolswith fixed arities; the arity of a control corresponds to the number of
ports of the node. A control isatomicif it cannot contain a nested graph, otherwise it is non-atomic.

The reduction relation is defined by a set of reaction rules, which are pairs of bigraphs (called redex
and reactum). The redex has awidth, corresponding to the number of sites it occupies in the outer
bigraph [14]. A non-atomic controlK can be specified as active, in which case reactions can occur
inside, or passive, in which case reactions in the internal bigraph can only occur after the controlK has
been destroyed.

Interaction nets can be seen as a particular kind of bigraphswithout nesting: all controls (called
agents in interaction nets) are atomic, and have a distinguished port (the principal port). Interaction rules
can be seen as reactions in which both redex and reactum have width 1, and redexes are restricted to just
two controls connected by one link through the distinguished ports.

3 Binets

3.1 Informal presentation

Bigraphs [14] introduce a notion of locality (using nestingto indicate that a graph is local to a certain
node) which is missing in interaction nets. In this section,we define binets as a generalisation of interac-
tion nets to incorporate this feature. We start with an informal definition of binets, contrasting them with
interaction nets, before presenting a formal syntax and semantics for them.

A binet is a labelled graph consisting of a set of nodes (also calledagents) and a set of edges, which
are attached to nodes at connection points calledports. Each edge connects at most two ports. The label
of a node (i.e., the agent’s name) determines its arity, thatis, the number of ports it has. Each agent has a
distinguished port, called theprincipal port, and a (possibly empty) set ofauxiliary ports. An agent can
be located inside another agent, and edges can connect portsof agents situated at different nesting levels
(i.e., edges can cross node boundaries).

Interaction rules, also called reaction rules, define interactions between two agents connected by
their principal ports, or interactions of an agent with its local subnets, preserving the interfaces.

Figure 1 shows a binet representing aρ-term. Ovals and circles represent agents, their names are
written inside; principal ports are marked with an arrow, the free port at the top is marked by a dangling
edge. Theε-agent is drawn outside the→-agent to exploit a non-strict semantics as early in the reduction
process as possible.

In contrast with interaction nets, the left-hand side of a reaction rule can specify the location in which
the reacting agents are, or the locations contained in thesecontrols, and reactions can take place across
boundaries. However, reduction is still local in the sense that it only affects the nodes that match the left
hand side (no global conditions or updates are specified). The latter point is relevant for implementation.

Agents in binets correspond to the notion of control in bigraphs, and binet reaction rules are a partic-
ular class of bigraph reaction rules. Each binet has an associated place graph and link graph, similarly to
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Figure 1: Binet for theρ-term(x→ H)((F → I)G).

bigraphs. All the examples of bigraphs for theπ-calculus and ambient calculus given in [14] (part I) can
be recast as binets by adding principal ports and copy/eraseagents (controls) to preserve the interface of
the reactions.

Comparing with the properties of interaction nets, we remark that confluence does not hold in general
for binets, because of the possibility of interactions across boundaries. To study the formal properties of
binet reduction, below we give a calculus for binets.

3.2 A calculus for binets

As Milner [21] stated: “Diagrams are valuable for rapid appreciation of a system’s structure. On the
other hand, algebra is essential to express [...] the ways inwhich a system may be resolved into compo-
nents.” In this section we give a formal, algebraic presentation for binets. First we give the syntax of the
language, and then we present an operational semantics for programs written in this language.

Syntax. A textual syntax for binets has to capture, dually, the connections between agents (including
where those connections are principal ports), differentiating between internal or external with respect to
the originating agent and also the locality of agents withina system, i.e., their physical position within
other agents. It is the intention of this syntax to unambiguously state these three properties without
over-complication.

We define below agents and binets over asignatureA ,L, whereA is a set ofagent names, each
with an associated arity(n,m) corresponding to the number of ports in its internal and external interface,
respectively, andL is a set of port labels. We assumeL∩A = /0.

Definition 3.1 (Agent) An agentover the signatureA , L is written Al〈E | I |N〉, where A∈ A is the
agent name, which determines its arity(n,m), l ∈ L is the label given to the principal port of A, and
the lists I,E of lengths n,m respectively, whose elements are port labels in L, denote the internal and
external agent interfaces; the order denotes the geographic position of the ports (in similar fashion to
interaction nets reading in a clockwise direction from the principal port for external ports and, without
loss of precision, in an arbitrary clockwise direction for interior ports). N is a (possibly empty) list
corresponding to the set of agents located within the agent.

The definition above is inductive (due to the inclusion of thesetN within A) but not recursive; agents are
not permitted to be located within themselves.

Definition 3.2 (Binet) A binet over the signatureA , L is defined as a set of agents and wires overA ,
L. Agents have already been defined. Awire is an edge joining two ports, written a−b where a,b are the
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labels of the ports. Each port label in L occurs at most twice in a binet; thenet interfaceof the binet is
defined as the subset of labels occurring only once.

The binet containing no agents and wires is a special case. For brevity, agents of the form Ai〈X | /0| /0〉
will be denoted Ai〈X〉 and the particular case when X= /0 will be written Ai〈〉.

A binet, similar to a bigraph, can be decomposed into a place graph and a link graph. The link
graph is explicit in the definition of binet (a binet is a set ofagents and wires); the place graph can be
reconstructed from the nesting of agents.

Reduction in binets occurs onactive pairs, which are pairs of agents connected via their principal
ports, similarly to interaction nets although significantly rules in binets must be aware of locality context.
More precisely, a rule may affect the agents in the place graph of the active pair. We illustrate it with an
example: the interaction rule presented in [10] between thematching agent,M and any other agentα is
one such occurrence and would be written:

Ma〈b| /0|X〉 , αa〈Y〉 ⇒ αb
M〈Y | /0|X〉

The metavariablesX andY denote a subnet and series of labels respectively that remain unchanged under
graph reduction. Here, the interaction between the agentsM andα causes the subgraph located within
the agentM (denoted byX) to move to the new agent namedαM with principal portb.

Contrary to interaction nets, binets permit reductions to occur on certain graph configurations despite
the nonexistence of an active pair, calledinactive rewriting in the sequel. See for example the config-
uration in [10] of an empty matching agent,M, where the net is rewritten to a wire without interaction
through active pairs. This is written as follows (the arrow explicitly shows the type of rule being applied):

Ma〈b〉=⇒inactive a−b

The reduction calculus is defined below, but first we give an example: a reduction sequence for
the binet shown in the previous subsection, representing the ρ-term (x → H)((F → I)G). The textual
representation of each binet is shown in the table below.

→

@

@

G
→

F

I

ε H

⇒∗

M

G
M

F

I

ε H

⇒∗

I

ε

⊥

ε H

⇒∗ H

First Binet Second Binet Third Binet Fully Reduced
→ x〈a|b| /0〉 Ma〈c〉 Hc〈〉 Hc〈〉
εb〈〉 Ha〈〉
Ha〈〉 ⊥d〈〉
@x〈c,d〉 εd〈〉 εd〈〉
@y〈d,e〉 M f 〈d | /0|Fe〈〉〉
→ y〈 f |g|Fg〈〉〉 I f 〈〉 I f 〈〉
I f 〈〉 Ge〈〉 ε f 〈〉
Ge〈〉
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The second binet contains three active pairs but parallel firing of the rule for agentsM f andI f with
the rule forFe andGe would clearly be incorrect; the general rule forM with α involves a rewriting
that affects all of the nested nets withinM, hence a reduction strategy is required. Informally, thereis
a choice to delay either active pair until the other has had the opportunity to reduce (although in this
instance either derivation will eventually lead to the intended destruction of this disjoint net). A strategy
is also required in the same configuration to either fire the rule for Ma andHa or, as in the example, to
perform an inactive rewrite onMa and reduce it to the wirea−c (see the second textual rule above).

Reduction Rules. Rewrite rules follow the simplicity of interaction nets when the reductum has no
rewrite implications for any agent except for the agent (in the case of inactive rewriting) or agents (active
pair rewriting) directly involved. However, due to the moreexpressive graph rewriting allowed by binets,
rewrite rules require additional machinery to resolve rewriting of nested agents within the place graph of
the net. Unlike interaction net rules they incorporate metavariables and an additional strategy language.

A priori knowledge of how a rule may affect the surrounding subnet is essential when the rule is
defined. For example, theε rule within theρ-calculus scheme is the garbage collection agent responsible
for deleting nets. This agent propagates through subnets, terminating when it forms an active pair with
anotherε-agent, hence when defining the interaction ofε andM, the subnets withinM should also be
reduced, as follows:

εa〈〉, Ma〈b| /0|X〉 =⇒ εb〈〉, X, foreachx in I(X): εx〈〉 andε x̄〈〉

whereI(X) is the collection of labelled ports that constitute the interface of the nested netX andx̄ is a
fresh label for the port outside ofM that was connected to the interface atx.

The ability of binets to rewrite over agent boundaries meansthe efficiency (measured in the number
of interactions: typical of interaction nets although cruder for binets) can be improved by rephrasing the
rule to propagateε only over the wires that are free in this subnet (i.e., those wires that extend beyond
the locality of theM-agent). Each of these wires can be identified by a label appearing only once in the
subnetX and so the above rule can be reinterpreted as follows, whereX is removed in one step:

εa〈〉, Ma〈b| /0|X〉=⇒ εb〈〉, foreachx in LX wherex is unique:εx〈〉

whereLX is the multiset of labelled ports inX.
The strategy language is left informal at this stage with full details to be provided in later technical

reports.

Reduction Calculus. The reduction calculus comprises four main parts: firstly populating a set of the
active pairs within a binet and also those (sub)nets that areconfigured in a way that permits inactive
rewriting. This collection of active pairs and nets is then prioritised according to a given reduction
strategy and, crucially, a collection of agents and nets that can safely be rewritten in parallel is identified.
Then, both active and inactive rewriting is performed and, lastly, a tidying stage is performed to eliminate
every explicitly written wire in the net.

Collect LetCA be the set of labels of principal ports involved in active pairs (these are easily computed:
scan the graph and identify each labell that appears twice as a principal port) andCI be the set of
binets that are isomorphic to the left hand side of inactive rewriting rules (computed using standard
subgraph matching algorithms that can be optimised due to occurrence of principal ports).
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Prioritise According to the reduction strategy implemented (weighted, stochastic, typed and so on) group all
safenets,Cs. A collection of safe nets is one where rewriting (either active or inactive) can occur
in parallel without conflict. The safety, or otherwise, of potential net rewriting is inferred by the
rules: any rule of the formαm〈−| − |X〉, . . . =⇒ β n〈−| − |X′〉 whereX 6= X′ cannot safely be
rewritten at the same time (or in the samepass) as any rule that rewrites withinX.

Rewrite For each active pair and agent withinCs, apply rule. For simple rules where rewriting does not
occur within agent borders and there are no internal edges:

αx〈u1, . . . ,um〉,β x〈v1, . . . ,vm〉=⇒Γw1
1 〈w2, . . . ,wp〉, . . . ,

Γwr
q 〈wr+1, . . . ,ws〉,

u1−wi, . . . ,um−wi′,

v1−wi′′, . . . ,vn−wi′′′

whereΓw are the (possibly empty) agents that are produced on rewriting andw are the intermediary
labels given to the wires of the produced net. Note that the size of w is potentially larger than
the number of ports to the left hand side of the rule. The casesfor rules whose agents have
internal ports and rewriting occurs across borders incorporates a richer programmatic syntax and
the resulting operational calculus is more complex.

Tidy If w is a label withinΓ and there existsu−w then substitutew by u within Γ (Γ[w/u]).

4 Conclusion

We have presented a new visual language generalising interaction nets to incorporate features from bi-
graphs. Domains of application include concurrent and reactive systems. Not only can binets model
these systems both graphically and textually, but they are also directly implementable. We are currently
working on the implementation of an abstract machine for binets, inspired by the interaction net machines
defined in [22].
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