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We report on work in progress on ‘nested term graphs’ for formalizing higher-order terms (e.g. finite or
infinite λ -terms), including those expressing recursion (e.g. terms in the λ -calculus with letrec). The
idea is to represent the nested scope structure of a higher-order term by a nested structure of term graphs.
Based on a signature that is partitioned into atomic and nested function symbols, we define nested
term graphs both in a functional representation, as tree-like recursive graph specifications that associate
nested symbols with usual term graphs, and in a structural representation, as enriched term graph
structures. These definitions induce corresponding notions of bisimulation between nested term graphs.
Our main result states that nested term graphs can be implemented faithfully by first-order term graphs.

1 Introduction

As an instance of the general question of how to faithfully represent structures enriched with a notion of
scope using the same structures without it, we study the question how to faithfully represent higher-order
term graphs using first-order term graphs.

To set the stage, we first informally recapitulate how to faithfully represent first-order terms using
strings, and how to faithfully represent higher-order terms using first-order terms. The guiding intuition is
that the notion of scope corresponds to a notion of context-freeness.

First-order terms can be represented using recursive string specifications (context-free grammars) such
as {S ∶∶= T ×U ∣ T ∶∶= 2,U ∶∶=V +W,V ∶∶= 3,W ∶∶= 1}. The string 2×3+1 obtained from the specification by
repeated substitution for variables1 is not a faithful representation of the first-order term though, as the
nesting structure is lost; the same string is obtained from the different first-order term {S ∶∶= T +U ∣ T ∶∶=
V ×W,V ∶∶= 2,W ∶∶= 3,U ∶∶= 1}. A nameless (anonymous) alternative to recursive string specifications is to
introduce a box (scope) construct in the language of strings, which indeed allows to faithfully represent the

first-order terms: 2 × 3 + 1 vs 2 × 3 + 1 or after unboxing values 2× 3+1 vs 2×3 +1 .

However, having the box construct makes this representation go beyond a string representation proper (apart
from the representation quickly becoming unwieldy, on paper). A standard way to overcome this is to split
the box ◻ into2 symbols [ and ] that are adjoined to the alphabet yielding the proper strings [2× [3+1]]
vs [[2×3]+1]. This is the common faithful representation of first-order terms as strings. Note that not
just any string represents a first-order term. In particular, left and right brackets must be matching, the
context-freeness aspect mentioned above, e.g. it would not do to substitute the string 3]+[1 for X in [2×X].

1Variables can be thought of as named subterms.
2For obvious visual reasons we use square brackets here instead of the usual parentheses. Parentheses are not needed at all

when the symbols in the alphabet are enriched with arities. As shown by (Reverse) Polish Notation, arities are sufficient to capture
context-freeness.

http://dx.doi.org/10.4204/EPTCS.183.4
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Higher-order terms can be represented by using recursive first-order term specifications.3 To illus-
trate this we make use of an example in functional programming (Lisp) taken from [11] concerning
the unhygienic expansion of the macro (or⟨exp⟩1⟨exp⟩2) ∶∶= (letv[]⟨exp⟩1(if vv[]⟨exp⟩2)). Expanding this
or-macro in (ornilv) yields (letvnil(if vvv)) which always yields nil due to the inadvertent capturing
of v. A representation of the example by means of a recursive first-order term specification would be
{S(v) ∶∶= or(nil,v) ∣ or(x,y) ∶∶= let(x,T(y)),T(z) ∶∶= if(v,v,z)}. This representation leaves the binding effect
of v in the in-part of the let implicit, by it not occurring among the arguments to T ; too implicit, as repeated
substitution yields let(nil, if(v,v,v)). A nameless alternative to recursive first-order term specifications is to
introduce a box (scope) construct in the language of first-order terms, the idea being that for every first-order
term t over a vector x⃗ of n variables4 and one additional variable, t x⃗ is an n-ary function symbol again,

e.g. if(v,v,z)
z

allowing to faithfully represent the higher-order term as let(nil, if(v,v,z)
z
(z)). However,

having the box construct makes this representation go beyond a first-order term representation proper. A
standard way to overcome this is to split the box ◻ into5 unary symbols ⊓ and ⊔ (for opening and closing)
and a nullary symbol ● (for using the bound variable) that are adjoined to the alphabet yielding the proper
first-order term let(nil,⊓(if(●,●,⊔(z)). This is the common faithful representation of higher-order terms
as first-order terms, known for the special case of λ -terms as the (extended) De Bruijn representation [3].
Note that not just any first-order term represents a higher-order term. In particular, open and close brackets
must be matching, the context-freeness aspect mentioned above.

In this paper we are concerned with the same phenomenon for ‘nested term graphs’ in relation to their
interpretations as first-order term graphs. We describe an interpretation that is faithful with regard to the
respective notions of behavioral (bisimulation) semantics. As a running example we use the gletrec-ex-
pression left in Figure 2 that expresses a cyclic λ -term, and thereby a regular infinite λ -term, by means of
the Combinatory Reduction System (CRS) inspired gletrec-notation. This expression corresponds to the
pretty printed ‘recursive graph specification’ on the left in Figure 1 (the graph with scopes indicated by
dotted lines). Our main result entails that the behavioral semantics of this specification is the same as that
of the first-order term graph obtained from it, displayed on the right in Figure 1. Note that in this first-order
term graph artefacts, additional vertices, and edges between them have been inserted to delimit scopes
appropriately; they play the same rôle as the brackets in the string and term examples.

It is interesting to observe that edges connecting a bound variable to its binder seem to be forced upon
us in this interpretation in order to preserve the behavorial equivalence of scopes (and their integrity; partial
sharing is prevented). Interesting, as this allows for a rational reconstruction of sorts of using such edges
to represent binding (instead of using variables for that purpose) as introduced in [16, 5] and common
nowadays in the implementation of λ -terms.

The example in Figure 1 belongs to a particularly well-behaved subclass of recursive graph specifications
that we call nested term graphs, for which the dependency between the nested symbols (n, f1, f2, g in the
example) is tree-like. The first-order term graph is nearly a ‘λ -term graph’ [7], and it is closely related to
a higher-order term graph [4]. For defining nested term graphs we will also consider specifications with
arbitrary dependencies, allowing for both sharing and cyclicity, such as the specification left in Figure 4,
which corresponds to the gletrec-expression right in Figure 2, and represents the infinite λ -term in Figure 4.

Overview. In Section 2 we define nested term graphs as such recursive term graph specifications in which

3In functional programming recursive first-order term specifications are known as supercombinators and the transformation of
λ -terms into supercombinators is known as lambda-lifting [9].

4Linearity of t in x⃗ may additionally be imposed.
5For obvious visual reasons we use these symbols instead of the usual λ , S and 0. Decomposing a box ‘vertically’ into brackets

here instead of ‘horizontally’ as before, corresponds to the matching of the brackets here being ‘vertically’ (along paths in the
first-order term tree) whereas before it was ‘horizontally’ (within the string).
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Figure 1: Pretty-printed nested term graph representing the gletrec-expression left in Figure 2, and its
interpretation as a first-order term graph (back-links from i- and ir-labeled vertices are, typically, hinted).

gletrec n() ∶∶= λx.f1(x)f2(x,g())
f1(X1) ∶∶= λy.letrecα = X1yα inα

f2(X1,X2) ∶∶= λ z.letrecβ = X1z(X2zβ) inβ

g() ∶∶= λw.w
in n()

gletrec f() ∶∶= λx.g(x)
g(X1) ∶∶= λy.g(y)X1

in f()

Figure 2: Two CRS-inspired gletrec-expressions that represent infinite λ -terms.

the dependency ‘is directly used in the definition of’ between occurrences of defined (nested) symbols in the
specification forms a tree. We also define structural representations of nested term graphs as integral graph
structures with additional reference links, and an ancestor function that records the nesting of symbols. In
Section 3 we define adequate notions of homomorphism and bisimilarity between nested term graphs in
two forms: a version with a ‘big-step semantics’ condition for dealing with vertices labeled with defined
symbols, and a ‘nested’ version that is based on purely local progression conditions and the use of stacks to
record the nesting history. Finally in Section 4 we explain how nested term graphs can be interpreted by
first-order term graphs in such a way that homomorphism and bisimilarity are preserved and reflected.

Contribution. In its present stage, our contribution is primarily a conceptual one. Inspired by Blom’s
higher-order term graphs [4], and by the faithful interpretation of ‘λ -higher-order-term-graphs’ as first-
order ‘λ -term-graphs’ described by the first author and Rochel in [7] (which facilitates a maximal-sharing
algorithm for the Lambda Calculus with letrec [8]), we set out to formalize objects with nested attributes
(e.g. λ -terms with nested ‘extended scopes’) as enriched, and as plain, term graphs. In more detail our
contribution is threefold: furnishing term graphs with a concept of nesting, developing adequate notions
of behavioral semantics (homorphism, bisimulation) for nested term graphs, and describing a natural
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interpretation as first-order term graphs. We think that the possibility to implement higher-order features in a
behavioral-semantics preserving and reflecting manner by first-order means can potentially be very fruitful.

While for the purpose of this preliminary exploration we deliberately kept to the framework of term
graphs due to its simplicity, we intend to adapt the results obtained for nested term graphs also to other graph
formalisms like hypergraphs, jungles, bigraphs, interaction nets, or port graphs. Also, we want to compare
the concepts developed with well-known formalisms for expressing nested structures and reasoning with
them, for example: bigraphs, proofnets, and Fitch-style natural-deduction proofs in predicate logic.

Preliminaries on term graphs. By N we denote the natural numbers including zero. For a set Σ, Σ
∗ stands

for the set of words over alphabet Σ. We denote the empty word by ε , and write u ⋅v for the concatenation
of words u and v. For a word w and i ∈N, we denote by w(i) its (i+1)-th letter, and ∣w∣ for the length of w.

Let Σ be a (first-order) signature for function symbols with arity function ar ∶ Σ→N. For a function
symbol f ∈ Σ, we indicate by f /i that f has arity i. A term graph over Σ (a Σ-term-graph) is a tuple
⟨V, lab,args,root⟩ where V is a set of vertices, lab ∶V → Σ the (vertex) label function, args ∶V →V∗ the
argument function that maps every vertex v to the word args(v) consisting of the ar(lab(v)) successor
vertices of v (hence it holds ∣args(v)∣ = ar(lab(v))), and root ∈V is the root of the term graph. A term graph
is called root-connected if every vertex is reachable from the root by a path that arises by repeatedly going
from a vertex to one of its successors. By TG(Σ) we denote the class of all root-connected term graphs
over Σ. By a ‘term graph’ we will mean by default a ‘root-connected term graph’.

For a Σ-term-graph G and a vertex v of G we denote by G∣v the sub-term-graph of G at v, that is, the
(root-connected) term graph with root v that consists of all vertices that are reachable from v in G. As a
useful notation for referring to edges in a term graph G, we will write v↣i w to indicate that the (i+1)-th
outgoing edge from vertex v leads to vertex w (that is, args(v)(i) =w with args the argument function of G).

A rooted ARS is the extension of an abstract rewriting system (ARS)→ by specifying one of its objects
as designated root. A rooted ARS → with objects A and root a is called a tree if → is acyclic (there is no
x ∈ A such that x→+ x), co-deterministic (for every x ∈ A there is at most one step of→ with target x), and
root-connected (every element x ∈ A is reachable from a via a sequence of steps of →, i.e. a→∗ x).

2 Nested term graphs

We will use the words ‘nested’ and ‘nesting’ here in a meaning derived from that of the verb ‘nest’, which a
dictionary6 explains as ‘to fit compactly together or within one another’, and as ‘to form a hierarchy, series,
or sequence of with each member, element, or set contained in or containing the next ⟨nested subroutines⟩’.

A signature for nested term graphs (an ntg-signature) is a signature Σ for term graphs that is partitioned
into a part Σat for atomic symbols, and a part Σne for nested symbols (cf. the terminals and non-terminals
of a context-free string grammar.), that is, Σ = Σat∪Σne and Σat∩Σne =∅. In addition to a given signature
Σ for nested term graphs we always assume additional interface symbols from the set OI = O∪ I, where
O = {o} consists of a single unary output symbol (symbolizing an edge that can pass on produced output
from the root of the term graph definition of a nested symbol), and I = {i1, i2, i3, . . .} is a countably infinite
set of input symbols with arity zero (symbolizing edges to which input can be supplied to leaves of the term
graph definition of a nested symbol).

Definition 1 (recursive specifications for nested term graphs). Let Σ be a signature for nested term graphs.
A recursive (nested term) graph specification (an rgs) over Σ is a tuple ⟨rec, r⟩, where:

6Merriam-Webster (http://www.merriam-webster.com/dictionary/nest), visited on March 29, 2015.

http://www.merriam-webster.com/dictionary/nest
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Figure 3: Definitions of a recursive graph specificationR0 (Ex. 2), and a nested term graph N (Ex. 4).

– rec ∶ Σne→ TG(Σ∪OI) is the specification function that maps a nested function symbol f ∈ Σne with
ar( f ) =m to a term graph rec( f ) = F ∈ TG(Σ∪{o, i1, . . . , im}) that has precisely one vertex labeled
by o, the root, and that contains precisely one vertex labeled by i j, for each j ∈ {1, . . . ,m};

– r ∈ Σne, a nullary symbol (that is, ar(r) = 0), is the root symbol.

For such an rgsR = ⟨rec, r⟩ over Σ, the rooted dependency ARS⟜ ofR has as objects the nested symbols
in Σne, it has root r, and the following steps: for all f ,g ∈ Σne such that a vertex labeled by g occurs in
the term graph rec( f ) at position p there is a step p ∶ f ⟜ g. We say that an rgs R is root-connected if
every nested symbol is reachable from the root symbol of R via steps of the dependency ARS ⟜ of R.
Analogously as for term graphs, by an ‘rgs’ we will by default mean a ‘root-connected ARS’.

Example 2. We choose a signature part Σat = {λ/1, @/2, v/0} for expressing λ -terms as term graphs.

(i) Let Σ0,ne = {r0/0, f2/2, g/0}. Then R0 = ⟨rec0, r0⟩, where rec0 ∶ Σ0,ne → TG(Σ∪OI) is defined by
r0↦ R0, f2↦ F2, and g↦G as shown in Figure 3 (starting from r0 on the left), is an rgs.

(ii) Let Σne = {n/0, f1/1, f2/2, g/0}. Then ⟨rec,n⟩, where rec ∶ Σne → TG(Σ∪OI) is defined by n↦ N,
f1 ↦ F1, f2 ↦ F2, and g↦ G as shown in Figure 3 (starting from n on the right), is an rgs. It is an
rgs-representation of the gletrec-expression left in Figure 2.

(iii) Let Σ1,ne = {f/0,g/1}. Then R1 = ⟨rec1, f⟩, where rec1 ∶ Σ1,ne → TG(Σ∪OI) is defined by f ↦ F ,
g↦G as shown left in Figure 4 is an rgs. It represents the gletrec-expression right in Figure 2.

(iv) Let Σ2,ne = {f}∪{gi/1 ∣ i ∈N, i ≥ 1}. Then ⟨rec2, f⟩, where rec2 ∶ Σ1,ne → TG(Σ∪OI) is defined by
f ↦ F , g1↦G1, g2↦G2, g3↦G3, . . . as shown right in Figure 4 is an rgs. It represents the infinite
λ -term to the left of it in Figure 4.

Definition 3 (nested term graphs). Let Σ be an ntg-signature. A nested term graph (an ntg) over Σ is an
rgs N = ⟨rec, r⟩ such that the rooted dependency ARS⟜ is a tree. By NG(Σ) we denote the class of all
nested term graphs over Σ.

Example 4. We first consider the rgsR0 = ⟨rec0, r0⟩ from Example 2, (i). Its rooted dependency ARS⟜
is not a tree, because there are two steps that witness r0 ⟜ f2, namely those that are induced by the two
occurrences of f2 in the term graph R0 = rec0(r0). As a consequence,R0 is not a nested term graph.

Similarly, the rgsR1 from Example 2, (iii), is not a nested term graph, because its dependency ARS⟜
contains the cycle g⟜ g, and hence is not a tree.

But for the rgs N = ⟨rec,n⟩ from Example 2, (ii), we find that the rooted dependency ARS⟜ is a tree
with root n. Hence N is a nested term graph. For a ‘pretty print’ of N , see the left graph in Figure 50.
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Figure 4: Illustrations of a recursive graph specificationR1 (left, see Example 2, (iii)) with cyclic depen-
dency ARS, and a nested term graph N1 (right, see Example 2, (iv)) with infinite dependency ARS. Both
represent the infinite λ -term (in between them) with infinite nesting of extended scopes.

Also for the rgs N2 = ⟨rec2, f⟩ from Example 2, (iv), we find that the rooted dependency ARS⟜ is a
tree with root f, since it is of the form: f⟜ g1 ⟜ g2 ⟜ g3 ⟜ . . . . Hence N2 is a nested term graph with
infinitely deep nesting. It represents the infinite λ -term with infinitely deep nesting of its ‘extended scopes’
(minimal extensions of bound variable scopes in order to obtain nestedness) to the left of it in Figure 4,
which has the gletrec-representation on the right in Figure 2.

Next to nested term graphs as functional representations, we also introduce corresponding representa-
tions of ntgs as enrichments of ordinary term graphs. The reason is threefold. We obtain a characterization
of nested term graphs as integral graph structures with functional dependencies represented by explicit links
(see Proposition 7). Furthermore, such structural representations directly induce a behavioral semantics
via the associated notions of homomorphism and bisimulation (see Section 3). And finally, they will be
instrumental in defining the interpretation of nested term graphs as first-order term graphs (in Section 4).

In ‘structural representations’ of nested term graphs as defined below, the device of the ‘ancestor
function’ records, and—due to appropriate conditions on it—guarantees, the nesting structure of vertices by
assigning to every vertex v the word anc(v) = v1⋯vn made up of the vertices in which v is nested.

Definition 5 (nested term graphs, as structures). Let Σ be a signature for nested term graphs. A structural
representation of a nested term graph (an sntg) over Σ is a tuple ⟨V, lab,args,call,return,anc,root⟩, where
G0 = ⟨V, lab,args,root⟩ is a (typically not root-connected) term graph over Σ∪OI, and additionally:

– call ∶V ⇀V is the call (or step-into) partial function that assigns to every vertex v labeled with a
nested symbol the root of the term graph nested into v (this root is an output vertex);

– return ∶V ⇀V is the return (or step-out) partial function that to every input vertex v labeled by i j
assigns the j-th successor of the vertex into which the term graph containing v is nested;

– anc ∶V →V∗ is the ancestor function that to every vertex v assigns the word anc(v) = v1⋯vn made
up of the vertices in which v is nested: v is nested in vn, vn is nested in vn−1, . . . , v2 is nested in v1;

that satisfy, more precisely, the following conditions, for all i,k ∈N, and all w,wi,v1, . . . ,vk ∈V :

(root)lab,anc lab(root) ∈ Σne ∧ anc(root) = ε

(nested)anc anc(w) = v1⋯vn Ô⇒ v1, . . . , vn, and w are distinct
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Figure 5: Illustration of a structural representation of the nested term graph N from Ex. 4, with names for
vertices with nested symbols (right of such vertices), and the ancestor function values indicated in brackets.

(arguments)anc w↣i wi Ô⇒ anc(wi) = anc(w)
(defined)call,return (call(w)↓ ⇐⇒ lab(w) ∈ Σne ) ∧ (return(w)↓ ⇐⇒ lab(w) ∈ I )

(step-into)call lab(w) ∈ Σne Ô⇒
⎧⎪⎪⎨⎪⎪⎩

lab(call(w)) = o ∈O ∧ anc(call(w)) = anc(w) ⋅w
∧ call(w) is the single vertex with label o in the

sub-term-graph G0∣call(w) of G0 at vertex call(w)

(step-out)return lab(w) ∈ Σne Ô⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

for all j ∈ {1, . . . ,ar(lab(w))}, G0∣call(w) contains precisely
one vertex w′

j with label i j ∈ I, and it holds: w↣ j return(w′
j);

G0∣call(w) has no other vertices with labels in I

Example 6. An sntg that corresponds to the nested term graph N in Example 4 is depicted in Figure 5.
Proposition 7. Every nested term graph has a structural representation. And for every structural represen-
tation G of a nested term graph there is a nested term graph for which G is the structural representation.

3 Bisimulation and nested bisimulation

In order to motivate appropriate definitions of behavioral semantics for nested term graphs and recursive
graph specifications, we start with the rather clear behavioral semantics for sntg’s. Then we adapt these
definitions to nested term graphs, and yield corresponding concepts. Subsequently we develop a definition
of homomorphism and bisimilarity that also applies to recursive graph specifications, and is based on purely
local progression rules together with stacks that record the nesting history. We call these further concepts
‘nested homomorphism’ and ‘nested bisimilarity’. Finally we gather statements that relate bisimilarity and
nested bisimilarity.

Homomorphisms and bisimulations between sntg’s. Since structural representations of nested term
graphs can be viewed as coalgebras, they carry clear associated notions of homomorphism and bisimilarity.
To see this, let G1 and G2 be sntg’s over signatures Σ1 and Σ2 with the same part Σat for atomic symbols. A
homomorphism from G1 to G2 (indicated by G1 → G2) is a function φ ∶V1 →V2 between their vertex sets
that preserves the property of being root, preserves atomic, nested, and interface labels, commutes with the
partial functions call and return, commutes with the (individual) argument function on vertices with atomic
labels, and preserves the ancestor function. A bisimulation between sntg’s G1 and G2 can then be defined as
an sntg G with the property G1← G → G2.
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map the root of the definition F1 of f1 to the root of the definition F2 of f2; and if φ maps the input vertex ii
of F1 to an input vertex i j of F2, then φ must also map the i-th successor of w to the j-th successor of φ(w).

Definition 8 (homomorphism, bisimulation between sntg’s). Let Σ1 = Σat ∪Σ1,ne and Σ2 = Σat ∪Σ2,ne be
ntg-signatures with the same signature Σat for atomic symbols. Furthermore, let for each of i ∈ {1,2},
Gi = ⟨Vi, labi,argsi,anci,calli,returni,rooti⟩ be an sntg over signature Σ.

A homomorphism (functional bisimulation) between G1 and G2 is a ⟨Σne,Σat,O, I⟩-respecting morphism
φ ∶V1→V2 between the structures G1 and G2, that is, for all w ∈V1 the following conditions hold:

Ô⇒ φ(root1) = root2 ∧ φ
∗(anc1(w)) = anc2(φ(w)) (root, anc)

lab1(w) ∈ Σat Ô⇒ lab2(φ(w)) = lab1(w) ∈ Σat ∧ φ
∗(args1(w)) = args2(φ(w)) (lab, args)Σat

lab1(w) ∈ Σ1,ne Ô⇒ lab2(φ(w)) ∈ Σ2,ne ∧ φ(call1(w)) = call2(φ(w)) (lab, call)Σne

lab1(w) ∈O Ô⇒ lab2(φ(w)) ∈O (lab)O

lab1(w) ∈ I Ô⇒ lab2(φ(w)) ∈ I ∧ φ(return1(w)) = return2(φ(w)) (lab, return)I

where φ
∗ is the homomorphic extension of φ to a function from V∗

1 to V∗
2 . If there is a homomorphism φ

from G1 to G2, we write G1→φ G2 and G2←φ G1, or, dropping φ as subscript, G1→ G2 and G2← G1.
A bisimulation between G1 and G2 is an sntg G = ⟨B, lab,args,call,return,anc,root⟩ where B ⊆V1×V2

and root = ⟨root1, root2⟩ such that G1←π1 G→π2 G2 where π1 and π2 are projection functions that are defined,
for i ∈ {1,2}, by πi ∶V1×V2→Vi, ⟨v1, v2⟩↦ vi. If there exists a bisimulation B between G1 and G2, then we
write G1↔ G2, and say that G1 is bisimilar to G2.

Homomorphisms and bisimulations between nested term graphs. The definitions for sntg’s above can
motivate similar definitions for ntgs. Let N1 = ⟨rec1, r1⟩ and N2 = ⟨rec2, r2⟩ be ntgs over signatures with
the same atomic symbols. A homomorphism between N1 and N2 will be defined as a function φ ∶V1→V2
between the vertex sets of the disjoint unions of the term graphs in the image of rec1 and rec2, respectively;
on vertices labeled with atomic, or interface labels, φ behaves like an ordinary term graph homomorphism;
and on vertices labeled with nested symbols an ‘interface’ clause applies. This condition, illustrated in
Figure 6, demands that via φ related vertices v and w with nested symbols entail, following call-links
of the corresponding sntg’s, that the roots of the symbol definition are related via φ , and, following the
return-links of the corresponding sntg’s, that respective successors of v and w are related via φ .
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Definition 9 (homomorphism, bisimulation between ntgs). Let Σ1 = Σat ∪Σ1,ne and Σ2 = Σat ∪Σ2,ne be
ntg-signatures with the same signature Σat for atomic symbols. Let N1 = ⟨rec2, r1⟩ and N2 = ⟨rec2, r2⟩
be nested term graphs over Σ1 and Σ2, respectively. Let Gi = ⟨Vi, labi,argsi,rti, insi⟩ for i ∈ {1,2} be the
enriched (not necessarily root-connected) term graphs that arise as the disjoint union of the term graphs
reci( f ) for f ∈ Σi,ne together with functions rti ∶ Σi,ne→Vi and insi ∶ Σi,ne→ ℘(Vi) that map a nested function
symbol f to the root rti( f ), and to the set insi( f ) of input vertices, of the definition of f in Gi, respectively.

A homomorphism between N1 and N2 is a function φ ∶ V1 → V2 such that for all w ∈ V1 it holds (a
condition in brackets [. . .] has been added for clarity, but is redundant, see Remark 10):

φ(rt1(r1)) = rt2(r2) (roots of rgs’s)
lab1(w) ∈ Σat Ô⇒ lab2(φ(w)) = lab1(w) ∈ Σat ∧ φ

∗(args1(w)) = args2(φ(w)) (lab, args)Σat

lab1(w) ∈O Ô⇒ lab2(φ(w)) ∈O (lab)O

lab1(w) ∈ I Ô⇒ lab2(φ(w)) ∈ I (lab)I

lab1(w) ∈ Σ1,ne Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lab2(φ(w)) ∈ Σ2,ne ∧ φ(rt1(lab1(w))) = rt2(lab2(φ(w)))
[ ∧ ∀u ∈ ins1(lab1(w)). φ(u) ∈ ins2(lab2(φ(w)))]
∧ ∀u ∈ ins1(lab1(w)).∀i, j ∈N.∀x ∈V1.∀y ∈V2.

lab1(u) = ii ∧ lab2(φ(u)) = i j ∧ w↣i x ∧ φ(w)↣ j y
⇒ φ(x) = y

(lab, args)Σne

hold, where φ
∗ is the homomorphic extension of φ to a function from V∗

1 to V∗
2 . See Figure 6 for an

illustration of the ‘interface clause’ (lab, args)Σne . If there is a homomorphism φ from N1 to N2, we write
N1→φ N2 and N2←φ N1, or, dropping φ as subscript, N1→N2 and N2←N1.

A bisimulation between N1 and N2 is an ntg N over signature Σ = Σat ∪Σne with Σne ⊆ Σ1,ne ×Σ2,ne
such that N1 ←⟨π1,φ⟩ N →⟨π2,φ⟩ N2 where π1 and π2 are projection functions, defined, for i ∈ {1,2}, by
πi ∶ Σ1,ne×Σ2,ne→ Σi,ne, ⟨ f1, f2⟩↦ fi.

Remark 10. In condition (lab, args)Σne for a homomorphism between nested term graphs in Definition 9
the part ∀u ∈ ins1(lab1(w)). φ(u) ∈ ins2(lab2(φ(w))) is redundant. It expresses that if a homomorphism φ

maps the root rt1(f1) in G1 of the definition a nested function symbol f1 to the root rt2(f2) in G2 of the
definition of a nested function symbol f2 (by Definition 1, rt1(f1) and rt2(f2) must be output vertices), then
φ maps input vertices of the definition of f1 in G1 to input vertices of the definition of f2 in G2. This, and
additionally also the fact that ∀x ∈ ins2(lab2(φ(w)))∃u ∈ ins1(lab1(w)). φ(u) = x holds, follow from the
other conditions since a homomorphism is a function, and importantly, since definitions of nested symbols
are term graphs that were assumed to be root-connected by default. By the latter, input vertices of the
definition of a nested symbol are always reachable from the output vertex at the root of the definition, which
facilitates a proof of these properties using induction on the length of paths from output to input vertices.

Example 11. See Figure 7 for four nested term graphs that are related by homomorphisms, and hence are
bisimilar. Note that homomorphisms can map a nested symbol to one of smaller arity (here from arity 2 to
arity 1). For the nested term graphs N and N (R) in Figure 8 (the notation N (R) will become clear later
in Definition 15) it holds thatN (R)→N , and hence that they are bisimilar; but there is no homomorphism
from N to N (R), and hence N /→N (R).

Proposition 12. The notions of homomorphism and bisimilarity for ntgs correspond to the notions of
homomorphism and bisimilarity for sntg’s, via the mappings between these concepts stated in Proposition 7.

Nested bisimulation and nested homomorphism between rgs’s and ntgs. A ‘nested bisimulation’ com-
pares ntgs, or for that matter also rgs’s, by keeping track, along any chosen path, of the nesting history by
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Figure 7: Four simple nested term graphs that are related by converse functional bisimilarity ← (and hence
also by bisimilarity↔) via homorphisms that are indicated as dotted assignments.

means of stacks of nested vertices. It is defined between prefixed expressions (v1⋯vk)v and (w1⋯wk)w
that describe a visit of the vertices v and w in the context of histories of visits to vertices vi and wi as
recorded by the stacks v1⋯vk and w1⋯wk of the nested vertices in the nesting hierarchy above v and w,
respectively. These stacks facilitate the definition of nested bisimulation by purely local progression rules,
since the immediate nesting ancestor of a vertex can always be found on top of the stack.

Definition 13 (nested bisimulation and nested homomorphism between rgs’s and ntgs). Let Σ1 = Σat∪Σ1,ne
and Σ2 = Σat∪Σ2,ne be ntg-signatures with the same signature Σat for atomic symbols. LetR1 = ⟨rec2, r1⟩
andR2 = ⟨rec2, r2⟩ be rgs’s over Σ1 and Σ2, respectively. Let Gi = ⟨Vi, labi,argsi,rooti,rti⟩ for i ∈ {1,2} be
the enriched (typically not root-connected) term graph that arises as the disjoint union of the term graphs
reci( f ) for f ∈ Σi,ne such that its root rooti ∈Vi is the root of reci(ri), and with as enrichment the function
rti ∶ Σi,ne→Vi that maps a nested function symbol f ∈ Σi,ne to its root rti( f ) in Gi (hence rooti = rti(ri)).

A nested bisimulation between R1 and R2 is a relation Bne ⊆ V∗
1 ×V1 ×V∗

2 ×V2, for which we will
indicate elements ⟨v1⋯vk,v,w1⋯wk,w⟩ ∈ Bne as (v1⋯vk)v Bne (w1⋯wk)w, with the following properties,
for all i, j,k ∈N, v,v1, . . . ,vk,v′i ∈V1, w,w1, . . . ,wk,w′

i ,w
′
j ∈V2 , f ∈ Σat, f1 ∈ Σ1,ne, and f2 ∈ Σ2,ne:

(root)ne ()root1 Bne ()root2 (equivalently: ()rt1(r1) Bne ()rt2(r2))
(lab)ne (v1⋯vk)v Bne (w1⋯wk)w Ô⇒ ( lab(v) = lab(w) ∈ Σat ) ∨ ( lab(v) ∈ Σ1,ne ∧ lab(w) ∈ Σ2,ne )

∨ ( lab(v) = lab(w) = o ∈O) ∨ ( lab(v) ∈ I ∧ lab(w) ∈ I )
(args)ne

Σat
(v1⋯vk)v Bne (w1⋯wk)w ∧ lab1(v) = lab2(w) = f ∈ Σat ∧ v↣i v′i ∧ w↣i w′

i

Ô⇒ (v1⋯vk)v′i Bne (w1⋯wk)w′
i

(args)ne
Σne

(v1⋯vk)v Bne (w1⋯wk)w ∧ lab1(v) = f1 ∈ Σ1,ne ∧ lab2(w) = f2 ∈ Σ2,ne

Ô⇒ (v1⋯vkv)rt1( f1) Bne (w1⋯wkw)rt2( f2)
(args)ne

O (v1⋯vk)v Bne (w1⋯wk)w ∧ lab1(v) = lab2(w) = o ∈O ∧ v↣0 v′0 ∧ w↣0 w′
0

Ô⇒ (v1⋯vk)v′0 Bne (w1⋯wk)w′
0

(args)ne
I (v1⋯vk)v Bne (w1⋯wk)w ∧ lab1(v) = ii ∈ I ∧ lab2(w) = i j ∈ I

Ô⇒ ∃v′i ∈V1.∃w′
j ∈V2.(vk ↣i v′i ∧ wk ↣ j w′

j ∧ (v1⋯vk−1)v′i Bne (w1⋯wk−1)w′
j )

If there is a nested bisimulation Bne betweenR1 andR2, then we writeR1↔ne
Bne
R2, or justR1↔neR2.

A nested homomorphism fromR1 toR2 is a partial function φne ∶V∗
1 ×V1⇀V∗

2 ×V2 such that the rela-
tion {⟨v1⋯vn,v,w1⋯wn,w⟩ ∈V∗

1 ×V1×V∗
2 ×V2 ∣ φne(⟨v1⋯vn, v⟩)↓ = ⟨w1⋯wn,w⟩} is a nested bisimulation

betweenR1 andR2. If there is such a function φne, we writeR1→ne
φne
R2, or justR1→neR2.
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Figure 8: Example of a recursive graph specificationsR (middle), the nested term graphN (R) specified by
R (left), and a bisimilar nested term graph N (right) that are related by→ne and↔ne (i.p.,R→ne

Bne
N (R)).

Example 14. The set Bne defined in Figure 8 is a nested homomorphism from the rgsR to the nested term
graph N (R) (the notation N (R) is explained in Definition 15 below). Hence it witnessesR→ne

Bne
N (R).

Note that its converse also is a nested homomorphism, and hence that N (R)→neR holds, too. There is
also an obvious nested homomorphism from N (R) to the nested term graph N in Figure 8 right, but not
the other way round, that is, N →neN (R) does not hold.

In the example concerning the four nested term graphs in Figure 7, the indicated homomorphisms
induce obvious corresponding nested homomorphisms.

Every nested bisimulation Bne between rgs’s gives rise to an rgsRBne in a straightforward manner by
forming, for every pair ⟨(v1 . . .vn)v, (w1 . . .wn)w⟩ a nested function symbol fv1...vn,w1...wn , and by letting
the pair be a vertex with label lab1(v) = lab2(w) in the term graph specifying fv1...vn,w1...wn . As nesting
is recorded in Bne, the rgs RBne turns out to be a nested term graph. Of particular interest are nested
self-bisimulations on an rgs, that is, bisimulations between an rgs and itself.

Definition 15 (nested term graph specified by an rgs). LetR be an rgs over ntg-signature Σ, and Bne the
minimal nested bisimulation betweenR and itself. Together withR, Bne specifies an rgsRBne with a tree
as dependency ARS, and hence an ntg. This is the nested term graph specified byR, denoted by N (R).

Example 16. In Figure 8, the nested term graph N (R) on the left is specified by the rgsR in the middle.
In Figure 4, the rgsR1 on the left specifies the nested term graph N1 on the right, that is, N1 =N (R1).

Proposition 17. For every rgsR it holds: N (R)→neR andR→neN (R).

Relationships between homomorphism/bisimilarity, and nested homomorphism/nested bisimilarity.
We conclude this section with two statements that relate→ and↔ with→ne and↔ne on nested term graphs,
and nested bisimilarity of rgs’s with bisimilarity of the specified nested term graphs.
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Theorem 18. For nested term graphs, functional bisimilarity→ coincides with nested functional bisimilarity
→ne, and bisimilarity↔ coincides with nested bisimilarity↔ne.

The intuition behind this statement is as follows. In building up a bisimulation B between two bisimilar
nested term graphs N1 and N2, the tree structure of the dependency ARSs⟜ together with the interface
clause for bisimulation guarantees that a vertex v with nesting ancestors v1 . . .vk1 is only related to a vertex w
with nesting ancestors w1 . . .wk2 if k1 = k2. And furthermore, that by adding the nesting ancestors of vertices
as prefixes the bisimulation B gives rise to a nested bisimulation Bne between N1 and N2. Vice versa, again
due to tree structure of the dependency ARSs⟜, the contextual information in a nested bisimulation can be
ignored to obtain a bisimulation. Formally, Theorem 18 and Theorem 19 below, can be proved by using
induction on the length of ‘access paths’ (acyclic paths from the root to a vertex).

Theorem 19. Two recursive graph specificationsR1 andR2 are nested bisimilar (i.e.R1↔neR2) if and
only if the nested term graphs specified byR1 andR2, respectively, are bisimilar (i.e. N (R1)↔N (R2)).

4 Interpretation as first-order term graphs

Nested term graphs can be interpreted in a faithful, and rather natural way as first-order term graphs. By
‘faithful’ we mean that the interpretation mapping is a retraction that preserves and reflects homomorphisms,
and by ‘natural’ that it can be defined inductively on the nesting structure. The basic idea is analogous to
the interpretation of λ -higher-order-term-graphs as first-order λ -term-graphs developed in [7, 8].

For a nested term graph N = ⟨rec, r⟩ we define the first-order term graph interpretation I(N ) of N by a
stepwise procedure that starts on an sntg representation of N as input. The example of the ntg N and the
resulting interpretation I(N ) in Figure 1 may help to provide some guiding intuition.

Definition 20. LetN be a nested term graph over Σ = Σat∪Σne, and G = ⟨V, lab,args,call,return,anc,root⟩
be an sntg representation of N . With Σat = Σat,const ⊎Σat,fun a partitioning of Σat into constant and non-
constant symbols, let Σat,const′ = {c′/1 ∣ c ∈ Σat,const} (that is, the constants in Σat are turned into corresponding
unary symbols in Σat,const′), and let Σ

′ = Σat,const′ ∪Σat,fun∪{o/1, i/2, or/1, ir/1}. The first-order term graph
interpretation I(N ) of N is a term graph over Σ

′ that is obtained from G by the following steps:

(i) Remove every vertex v with a nested symbol, redirect incoming edges at v to the vertex call(v) .
(ii) Relabel every input vertex w with nullary label ik by the binary label i (thereby dropping the index k),

directing the first edge (which becomes a back-link) from w to return(w), and the second edge from
w to the vertex call(vn), where anc(w) = v1 . . .vn (note that call(vn) has label o).

(iii) Relabel the output vertex (with label o) at the root by the special unary symbol or .
(iv) Change every vertex with a nullary symbol c into a vertex labeled with a corresponding unary symbol c′

whose outgoing edge targets a chain of new binary input vertices whose back-links target respective
output vertices of the nesting structure; the outermost input vertex gets label ir and a backlink to or .

Example 21. See Appendix A on pages 64–65 for an application of this procedure on the sntg in Example 4.

The statements that show that this interpretation is indeed faithful are closely analogous to the statements
that establish this fact for the interpretation of λ -higher-order-term-graphs by the first-order ‘λ -term-graphs’
introduced in [7]. Here we only describe the most important steps and their underlying intuition.

The first step is as follows. In analogy with the class λ -term-graphs in [7], those first-order term graphs
that arise as interpretations of nested term graphs belong to a class of term graphs that can be defined via
the existence of an ancestor function with appropriate properties, see the definition below. The name of this
class already anticipates the fact that all of its members do indeed represent nested term graphs.
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Definition 22 (term graphs that represent nested term graphs). Let Σ be an ntg-signature, and let Σ
′ be

defined as in Definition 20. Let G = ⟨V, lab,args,root⟩ be a term graph, and anc ∶V →V∗ be a function. We
say that G is correct with respect to ancestor function anc if for all w,w0,w1 ∈V and all i ∈N the following
conditions hold (conditions in brackets [. . .] have been added for readability, but are redundant):

⇒ lab(root) = or ∧ anc(root) = ε

lab(w) ∈ Σat,const′ ∧w↣0 w0 ⇒ anc(w0) = anc(w) ∧ ∃n ∈N.∃w1, . . . ,wn ∈V.
(w0↣0 w1↣0 . . .↣0 wn

∧ lab(w0) = . . . = lab(wn−1) = i ∧ lab(wn) = ir )
lab(w) ∈ Σat,fun ∧w↣i wi ⇒ anc(wi) = anc(w)

lab(w) ∈ {or,o} ∧w↣0 w0 ⇒ anc(w0) = anc(w) ⋅w
lab(w) = ir ∧w↣0 w0 ⇒ [root =w0 =] anc(w0) ⋅w0 = anc(w) [∧ lab(w0) = or ]
lab(w) = i ∧w↣0 w0 ⇒ anc(w0) ⋅v = anc(w) for some v ∈V

lab(w) = i ∧w↣1 w1 ⇒ anc(w1) ⋅w1 = anc(w) [∧ lab(w1) = o]

By RG(Σ
′) we denote the class of term graphs over Σ

′ that are correct with respect to some ancestor
function. We call RG(Σ

′) the class of term graphs that represent nested term graphs.

Proposition 23. The transformation I as introduced in Definition 20 gives rise to a well-defined function
I ∶NG(Σ)→RG(Σ

′), N ↦ I(N ) from NG(Σ) into RG(Σ
′), which preserves→ne as →, and↔ne as↔.

This can be proved by keeping the ancestor function of the sntg G on which the procedure starts, and by
extending it appropriately for the vertices in chains of added input vertices below vertices with constant
symbols in G. In this way an ancestor function is obtained with respect to which the resulting term graph is
correct. Preservation of→ne as → along I can be established by arguments using induction on the length of
‘access paths’ (acyclic paths from the root to a node) in G and in I(N ), respectively.

We note that the image of I is not all of RG(Σ
′): e.g. the term graph that results from the term graph in

Figure 1 right by a homomorphism that identifies all vertices labeled by ir is still correct with respect to an
ancestor function (compare Lemma 25), but it does not arise as the interpretation of a nested term graph.

As the occurrences of matching output and input vertices in the example of the term graph I(N ) in
Figure 1 indicate, the nesting structure of a nested term graph is preserved in its term graph interpretation.
More importantly, the matching of output and input vertices is guaranteed by the ancestor function of
term graphs in RG(Σ

′). This facilitates the definition of a representation function R from RG(Σ
′) back to

NG(Σ) that is the inverse of I. Similar as for I, also preservation of→ and↔ along R can be shown.

Theorem 24. Let Σ be an ntg-signature, and let Σ
′ be defined as in Definition 20. There is a representation

function R ∶ RG(Σ
′)→NG(Σ) such that R ○ I = idNG(Σ) holds (that is, R is a retraction of I, and I is a

section of R). Furthermore, both of the mappings I and R are efficiently computable. Along I, →ne and↔ne

are preserved as→ and↔ , respectively; and along R,→ and↔ are preserved as→ne and↔ne.

This correspondence opens up the possibility to transfer various well-known results for term graphs
to nested term graphs, such as the fact that bisimulation equivalence classes are, modulo isomorphism,
complete lattices with respect to homomorphism. Another example is the existence of unique nested term
graph collapses, a result whose transfer from RG(Σ

′) to NG(Σ) depends on the following lemma.

Lemma 25. The class RG(Σ
′) of ntgs-representing term graphs is closed under homorphism. That is, if

G1→G2 holds for G1,G2 ∈ TG(Σ
′), then G1 ∈RG(Σ

′) implies G2 ∈RG(Σ
′).
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This proof of this lemma exploits the fact that the term graphs in RG(Σ
′) are ‘fully back-linked’ in the

following sense: for every vertex w and every output vertex v that in the nesting structure resides above w,
there is a path (in forward direction) from w to v. (Since in particular the root output vertex is reachable,
this entails that in fact all other vertices are reachable by paths from w.) It follows that if a homomorphism
φ from an ntg-representing term graph G1 ∈RG(Σ

′) to a term graph G2 ∈ TG(Σ
′) identifies two vertices w1

and w2, then, due to the local progression clauses of the homomorphism and due the ancestor function on
G1, φ also identifies all corresponding output vertices in the nesting hierarchy above w1 and w2, respectively.
This fact makes it possible to define an ancestor function on G2 for which G2 is correct. Hence G2 ∈RG(Σ

′).

Theorem 26. Every nested term graph N has, up to isomorphism, a unique nested term graph collapse.

5 Further aims

We are interested in, and have started to investigate, the following further topics:

Context-free graph grammars We want to view rgs’s as context-free graph grammars in order to recognize
rgs-generated nested term graphs as context-free graphs. We expect to find a close connection.

Proofnets Formulas containing existential or universal quantifiers, mathematical expressions containing
integrals or derivatives, and more generally any language with binding constructs, can be represented
as λ -terms over a simply typed signature. Since proofnets refine the latter, it follows that such
languages can be represented as proofnets over a signature typed with (MELL) formulas from linear
logic. Such a representation should tie in with the boxed representations for first- and higher-order
terms of the introduction, but now for nested term graphs. On the one hand, we expect that the
development of nested term graphs can profit, via this route, from the detailed studies of the fine
structure of proofnets, e.g. various notions of explicit substitution, that have been carried out in the
literature (for example, see Accattoli and Guerrini [1]). On the other hand, it is conceivable that the
theory of proofnets could benefit from work on nested term graphs for what concerns the natural
formalization of infinite nesting, the concepts of bisimilarity and nested bisimilarity, and the faithful
representation of nested term graphs as first-order term graphs.

Boxes Extending the previous item, we want to investigate the connection between nested term graphs and
the way how boxes that symbolize scopes are employed in various settings. Apart from the box of
linear logic proofnets, we are thinking of monads in category theory. These have been introduced
and studied to express nested first-order signatures by Lüth [13], and Lüth and Ghani [14], leading to
categorical proofs of modularity results in term rewriting.
We would like to obtain a categorical semantics via algebras and coalgebras by viewing nested term
graphs as monads over some signature, analogous to how this has been done for first-order term
graphs by Ghani, Lüth and de Marchi [6]. Moreover, we would like to understand whether, and if
so how, the respective monadic views can be related via our representation of nested term graphs
as first-order term graphs. In this respect, the decomposition of boxes into the opening and closing
‘brackets’ that are used in optimal graph reduction techniques for the λ -calculus, as studied from a
categorical perspective by Asperti [2], should be relevant.

Rewrite theory In the above we have only addressed the static aspects, how to represent structures with
a notion of scope. Ultimately, our interest is in dynamic aspects, in rewriting systems for such
structures. In particular, since higher-order terms have a natural interpretation as nested term graphs,
it is desirable to investigate implementations of higher-order rewriting by nested term graph rewriting,
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and eventually, via the correspondence explained in Section 4, by first-order term graph rewriting.
Several preliminary investigations into this have been carried out, but from different perspectives
(corresponding to the different perspectives on boxes as in the previous item): Lafont presents
proofnet reduction as reduction on ‘nested interaction nets’ in [12], Van Raamsdonk defined rewriting
modulo proofnets in [17], and Lüth and Ghani defined and studied monadic rewriting in their cited
papers. We first want to develop a notion of rewriting on nested terms graphs that is adequate with
respect to higher-order term rewriting (HRSs see e.g. [19]), analogous to the adequacy of first-order
term graph rewriting for first-order term rewriting [10]. To that end, a notion of equivalence on
nested term graphs has to be developed that represents αβη-equivalence on HRS-terms.7 This
also gives rise to other questions, cf. [18], such as how to recognize (efficiently) whether a given
(first-order representation of a) nested term graph represents a higher-order term. Next, nested term
graph rewriting should facilitate a sensible meta-theory. Here we may think of suitable notions of
orthogonality, or termination techniques such as recursive path orders, similar to what has been done
for first-order term graph rewriting (see work by Plump [15]).
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Appendix A: Interpretation of nested term graphs by first-order term graphs

We showcase the transformation process according to Definition 20 of a nested term graph N into its
first-order term graph interpretation I(N ) for the example of the nested term graph defined in Example 4
and Figure 3. We start from the sntg-representation G of N as illustrated in Figure 5:

o o n o o

λ λ λ λ

@ @ v @

@ f1 f2 @ @

v v v g v @

i1 v

i1 i2

v0(ε)(v0)
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call

call

call

call

return
return

return

By (i) removing every vertex v with a nested symbol, redirecting incoming edges at v to the vertex call(v),
and (ii) relabeling every input vertex w with the nullary label ik by the binary label i, thereby directing the
first edge from w to return(w) (the second edge will be dealt with later), we obtain:

o o n o o

λ λ λ λ

@ @ v @

@ f1 f2 @ @

v v v g v @

i v

i i

call

call

call

call

return
return

return

Then by (ii)′ directing the second edge from an input vertex w to become a backlink from w to the
corresponding output vertex, that is, the vertex vn where anc(w) = v1 . . .vn (then vn is guaranteed to be an
output vertex, i.e. it is labeled by o), we obtain the term graph:

o o o o

λ λ λ λ

@ @ v @

@ @ @

v v v v @

i v

i i
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o o o o

λ λ λ λ

@ @ v @

@ @ @

v v v v @

i v

i i

(The downscaled term graph above repeats the last one from the previous page.) Finally, (iii) by relabeling
the output vertex at the root with the special symbol or, (iv) by changing the arity of variable vertices
(labeled by v) from zero to one (labeled by v′), and letting the outgoing edges target a chain of new binary
input vertices through the nesting structure (again the ancestor function can be used for this purpose)
towards outermost input vertices that get label ir and backlinks to or, we obtain:

or

o o o

λ λ λ λ

@ @ v′ @

@ @ @

v′ v′ v′ v′ @

i v′

i i i

ir ir ir ir ir ir

This term graph is the result of the transformation process of N into its first-order term graph interpreta-
tion I(N ). It is isomorphic to the term graph below right, and also right in Figure 1. In order to facilitate a
quick structural comparison with the nested term graph N on which the input G of this procedure is based,
we also show again, below left, the ‘pretty print’ of the nested term graph N (from Figure 1 left).
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