
A. Corradini & H. Zantema (Eds.)
Computing with Terms and Graphs (TERMGRAPH 2016)
EPTCS 225, 2016, pp. 55–62, doi:10.4204/EPTCS.225.8

c© J. Waldmann
This work is licensed under the
Creative Commons Attribution License.

Efficient Completion of Weighted Automata

Johannes Waldmann
Hochschule für Technik, Wirtschaft und Kultur

Leipzig, Germany
johannes.waldmann@htwk-leipzig.de

We consider directed graphs with edge labels from a semiring. We present an algorithm that allows
efficient execution of queries for existence and weights of paths, and allows updates of the graph:
adding nodes and edges, and changing weights of existing edges.

We apply this method in the construction of matchbound certificates for automatically proving
termination of string rewriting. We re-implement the decomposition/completion algorithm of En-
drullis et al. (2006) in our framework, and achieve comparable performance.

1 Introduction

Our research is motivated by the efficient implementation of a completion algorithm on finite weighted
automata. Such an automaton is an edge-labelled directed graph, and the algorithm requires to apply rules
of the form “if some path does (not) exist, then add some nodes and edges” repeatedly. In particular, we
want to compute a matchbound certificate for termination of string rewriting.

We are interested in an incremental algorithm. First, it should allow to answer the question “what
is a cheapest path between these two nodes” quickly. From this information, the rules for completion
determine which nodes and edges to add, or weights to increase. Then, after additions are performed,
internal structures should be updated so that further queries can be processed quickly.

We use the concept of weighted relation. A S-weighted relation r from a set P to a set Q is a mapping
r : P×Q→ S. In a dense representation, r is a matrix that is indexed by P×Q with entries from S. In a
sparse representation, r is a directed bipartite graph (the partition has classes P and Q) with edge labels
from S\{0}, where a missing edge represents weight 0 ∈ S. If S is a semiring, then S-weighted relations
form a semiring as well. We will recall notation for semirings and relations in Section 2 and present
basic implementation choices in Section 3.

Section 4 presents the core of our approach: efficient (re-)computation of products of relations after
updates of edges. Section 5 introduces the application area of matchbound certificate construction. In
Section 6, we give an enhancement of the (max,min) semiring that allows to apply the general algorithm
for this application.

Algorithms are presented in a purely functional setting and indeed we have implemented them in
Haskell. We obtain concise code where correctness is easy to see, and should be straightforward to prove.
Performance that is comparable to an earlier purpose-built imperative implementation, see Section 7.

Acknowledgments. A preliminary version of this paper was presented at the TERMGRAPH 2016
workshop. I thank reviewers and participants for critical reading and interesting discussion.

2 Labelled Graphs for Weighted Relations and Automata

We present notation for standard concepts that will be used later on.

http://dx.doi.org/10.4204/EPTCS.225.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

56 Efficient Completion of Weighted Automata

A semiring (S,+S, ·S,0S,1S) is a set S with binary operations +S (addition) and ·S (multiplication)
such that (S,+S,0) is a commutative monoid, (S, ·,1S) is a monoid, 0 · x = 0 = x · 0, and addition dis-
tributes over multiplication from both sides. We omit index S if it can be inferred from context. The
natural numbers form a semiring (N,+, ·,0,1) with addition and multiplication in the standard sense.
A semiring is idempotent if x+ x = x. Examples for idempotent semirings are the Boolean semiring
B = ({0,1},∨,∧,0,1), and the fuzzy semiring F = ({−∞}∪Z∪{+∞},max,min,−∞,+∞). In our set-
ting, the Boolean semiring gives the usual (non-weighted) semantics for relations and automata. The
fuzzy semiring is used in the application area of matchbounds.

A S-weighted relation r from a set P to a set Q is a mapping r : P×Q→ S. Relations from Q to Q
form a semi-ring with addition (r1 + r2)(p,q) = r1(p,q)+S r2(p,q) and

(r1 · r2)(p,q) = ∑
S
{r1(p,m) ·S r2(m,q) | m ∈ Q}.

This corresponds to addition and multiplication of matrices over the semiring. A Boolean-weighted
relation is a relation in the usual sense, where the weight r(p,q) indicates whether (p,q) is in the relation
r or not.

A S-weighted automaton [1] over an alphabet Σ is a Σ-indexed collection of S-weighted relations
A : Σ→ (Q×Q→ S). This function is extended from words to strings by multiplication of relations,
giving A : Σ∗ → (Q×Q→ S). The weight of a path is the product of the weight of its edges, and
A(w)(p,q) is the sum of the weights of all w-labelled paths from p to q. Usually, the model also includes
projection functions (initial and final weights) but we do not need this. Our automata form a monoid w.r.t.
addition defined by (A1 +A2)(w) = A1(w)+A2(w). A Boolean-weighted automaton is an automaton in
the usual sense.

3 Representing Weighted Relations

For the relations in our main application area (matchbounds), we expect that most nodes will have low
degree, so we choose a sparse representation. We assume some efficient implementation of finite maps,
as given by Data.Map (balanced search tree) or Data.IntMap (Patricia tree) from the containers

package for Haskell http://hackage.haskell.org/package/containers. These provide fast in-
dividual queries, and also optimised bulk operations.

A weighted relation r : P×Q→ S could literally be represented as Map (p,q) s, with the provision
that the map only holds pairs with nonzero weight. This is inefficient since we often need to get all
(nonzero) successors of a point x ∈ P quickly. This suggests r :: Map p (Map q s). Then we can
find successors of x as keysSet (r M.! x). But now the implementation is biased: we cannot easily
find predecessors - which we do need, for efficient multiplication. So, we also keep the representation in
the opposite direction, and a relation is a pair of nested maps:

data Rel p q s = Rel { fore :: Map p (Map q s)

, back :: Map q (Map p s) }

A weighted automaton is simply represented as

data Aut q sigma s = Aut (Map sigma (Rel q q s))

This model will be enhanced in Section 4.
Our representation for weighted relations is similar to the representation of edge-labelled directed

graphs in the fgl library [3].

http://hackage.haskell.org/package/containers

J. Waldmann 57

type GraphRep a b = Map Int (Context’ a b)

type Context’ a b = (Map Int [b], a, Map Int [b])

Here, Int is the node type, a is the node label type, b is the edge label type. The similarity is that two
efficient maps are nested. One difference is that fgl graphs can have multiple edges between one pair of
nodes (see [b]), while we just need one. This difference is not essential. We do not need multiple edges
since we can add their weights in the semiring. Another difference is that fgl uses just one pair of maps,
while we have two. This allows fgl to express the idea of Context. We think that our representation
gives a better separation of concerns. The difference in performance should be small, but we have not
measured it.

We indicate how relations are multiplied. This feature is not present in fgl, presumably since it
requires a semiring structure on the edge labels, which is outside that library’s scope.

We use a type class to express the signature for semirings:

class Semiring s where

zero :: s ; one :: s

plus :: s -> s -> s ; times :: s -> s -> s

and derive an instance for relations:

instance Semiring s => Semiring (Rel q q s) where

plus = plusWith plus ; times = timesWith plus times

plusWith

:: (s -> s -> s) -> Rel p q s -> Rel p q s -> Rel p q s

plusWith f r s =

Rel { fore = M.unionWith (M.unionWith f) (fore r)(fore s)

, back = M.unionWith (M.unionWith f) (back r)(back s) }

timesWith

:: (u -> u -> u) -> (s -> t -> u) -> Rel p q s -> Rel q r t -> Rel p r u

timesWith f g = M.foldl (plusWith f) empty

$ M.intersectionWith (combine f g) (back r) (fore s)

combine

:: (c -> c -> c) -> (a -> b -> c) -> M.Map p a -> M.Map q b -> Rel p q c

combine f g qp qr =

Rel { fore = M.map (\ w1 -> M.map (\w2 -> f w1 w2) qr) qp

, back = M.map (\ w2 -> M.map (\w1 -> f w1 w2) qp) qr }

The performance critical part is the combination of maps with these library functions:

M.unionWith :: (a -> a -> a) -> Map q a -> Map q a -> Map q a

M.intersectionWith :: (a -> b -> c) -> Map q a -> Map q b -> Map q c

Their performance to combine maps m1,m2 is O(|m1|+ |m2|). We actually expect both functions to
work in in O(min(|m1|, |m2|) · logmax(|m1|, |m2|)) time, which is better when one of the maps is small.
Intuitively, this can be achieved by doing, for each element of the smaller map, a lookup (or insertion, or
deletion) in the larger map. The actual implementation [10] does something more clever that detects the
case when sub-trees have disjoint ranges. We could not prove the conjectured performance bound from
the library’s source code, but performance in examples confirms the conjecture.

58 Efficient Completion of Weighted Automata

4 Queries and Updates

Given a weighted automaton (a Σ-indexed collection of S-weighted relations over Q), we want to run
queries A(w)(p,q).

From the structure of our application, we know that w is an element of a fixed set of query strings W ,
and we will run the query for automata Ai, where A = A0 ⊆ A1 ⊆ . . . and in each step of that chain, just a
few edges have been added. We pre-process W in order to store helpful extra data with the automata.

A first idea is to compute the relation A(w) as the product of relations A(w1) · . . . ·A(wn). Given A(w),
each query A(w)(p,q) reduces to a look-up, which is fast.

A second idea is to use relations between members of W , to re-use sub-products computations. For
example, if Σ = {b,c} and W = {bbb,bbc}, we should compute an intermediate relation h = A(b) ·A(b),
and then A(bbb) = h ·A(b),A(bbc) = h ·A(c). This is generalized as follows.

Definition 1 A multiplication chain for a finite set W ⊆ Σ∗ is a finite set C ⊆ Σ+ with

• Σ⊆W (the chain contains all one-letter words),

• for each w ∈W with |w|> 1, there are w1,w2 ∈C with w = w1 ·w2,

• W ⊆C.

The cost of a chain C is the number of words of length > 1 in C (which is |C|− |Σ|).

The cost of C is the number of multiplications that are carried out when all elements of C are computed ac-
cording to the decomposition. For W = {bbb,bbc}, we have a multiplication chain C = {b,c,bb,bbb,bbc}
of cost 3. Finding an optimal multiplication chain for given W looks like a hard combinatorial prob-
lem [9]. As a fast approximation, we use the idea of the RePair algorithm [8] to repeatedly extract a most
frequent pair of letters. The pairings are modelled by

data Letter sigma = Unit sigma | Times (Letter sigma) (Letter sigma)

and the enhanced automaton then has type

data Aut q sigma s = Aut (Map (Letter sigma) (Rel q q s))

Having a good chain is essential for performance since the cost for multiplication of relations is high
once the graph gets large. It might pay to spend more preprocessing time to obtain a better chain.

The third idea for efficient implementation is related to the incremental nature of the application:
nodes and edges are added. So we have a chain of automata A0 ⊆ A1 ⊆ A2 ⊆ . . . Consider one element
A = Ai, and its successor Ai+1 = A′. We have A′ = A+∆, and the typical case is that A is large but ∆ is
small.

Consider some w from the multiplication chain, with decomposition w = w1 ·w2. Then A(w) =
A(w1) · A(w2), and A′(w) = (A(w1) + ∆(w1)) · (A(w2) + ∆(w2)), so A′(w) = A(w) + ∆(w1) · A(w2) +
A(w1) ·∆(w2)+∆(w1) ·∆(w2).

Algorithm 1 Doing this computation bottom-up along the multiplication chain (towards increasing
lengths), we can compute A′(w) for each w in the chain.

Note that in each multiplication, at least one of the arguments is ∆(·), that is, small. Then also the
product is small, implying that in each sum, one summand is small. This matches the discussion at end
of Section 3.

J. Waldmann 59

5 Matchbound Certificates

We now come to the application-specific part of the paper.
The matchbound method [4] proves termination of string rewriting (and recently, of cycle rewrit-

ing [12]). The method can be presented via automata with weights in the fuzzy semiring F [11].
An F-weighted automaton A is compatible with a string rewriting system R over Σ if for each (l,r) ∈

R, and p,q ∈ Q, we have that A(l)(p,q) <0 A(r)(p,q) where <0 denotes the relation on F defined by
x <0 y iff x < y∨ x = 0F = y.

An automaton that contains a Σ-flower (a state p with transitions p c:0→ p for each c ∈ Σ) and that is
compatible with R, is called a matchbound certificate for termination of R. This concept is extended to
RFC-matchbounds, but this is orthogonal to the present paper, so we do not discuss this extension.

For constructing matchbound certificates, one starts with the flower graph and adds paths whenever
compatibility is violated. There is a method [5] that uses heuristics to re-use nodes when adding paths,
but this may fail to terminate even if a certificate exists. There is a complete method [2] based on the
idea of extending the alphabet by formal left and right inverses of letters. We focus on that method.

We introduce epsilon transitions. In the graph model, these are unlabelled edges. In the automaton
model, we add a Q-by-Q matrix Aε where each entry is 0F (no edge) or 1F (epsilon edge). We denote
Aε(w) := AεA(w1)Aε · · · · ·AεA(wn)Aε . Rules given below will ensure that (ultimately) Aε is reflexively
and transitively closed.

We extend the alphabet. For each c ∈ Σ, we introduce fresh letters ←−c , and −→c . These will act as
formal right and left inverses. We define←−w =←−wn · · · · ·←−w1 and −→w =−→wn · · · · ·−→w1 .

Algorithm 2 To produce a matchbound certificate for a string rewriting system R over alphabet Σ, start
with the Σ-flower automaton A, and Aε as the identity relation, and repeatedly apply the following rules:

1. [TRANSITIVE] if there are p,q with (Aε ·Aε)(p,q) 6= 0F, add epsilon transition from p to q.

2. [INVERSE] if there are c, p, p′,q′,q with Aε(p′,q′) = 1F and
A(c)(p, p′)≥ A(←−c)(q′,q)> 0F or 0F < A(−→c)(p, p′)≤ A(c)(q′,q),
add epsilon transition from p to q.

3. [REWRITE] if there is (l,r)∈ R such that there is (p,q) such that Aε(l)(p,q) 6<0 Aε(r)(p,q), then:

• let p′ c:h→ q′ with c ∈ Σ,h ∈ F be a transition of minimal height on a maximal l-labelled (p,q)-
Path, such that l = sct for s, t ∈ Σ∗,
• then add a path from p′ to q′ over fresh states only that consists of a sequence of edges

labelled by −→s with height h, r with weight h+1,←−t with height h.

Rule [REWRITE] should only be applied if none of [TRANSITIVE] and [INVERSE] is applicable. The
algorithm stops when no rule applies.

Example 1 For the R = {aa→ aba} over Σ = {a,b},

1

2 3

4

5

6

7a : 0,b : 0

a : 1

b : 1

a : 1

−→a : 0,ε

a : 2

b : 2

a : 2

−→a : 1

ε
ε

60 Efficient Completion of Weighted Automata

Weights of ε edges are 1F. Reflexive ε edges (loops) are not shown. We start with the {a0,b0}-flower at

state 1. We apply rule [REWRITE] (for p = p′ = q′ = q = 1), producing the path 1 a:1→ 2 b:1→ 3 a:1→ 4
−→a :0→ 1,

then [INVERSE] (for p = 4, p′ = 1 = q′ = q, and for p = 4, p′ = 1 = q′,q = 2), producing 4 ε→ 1 and

4 ε→ 2, then [REWRITE] (for p = p′ = 3,q′ = 4,q = 2), producing the path 3 a:2→ 5 b:2→ 6 a:2→ 7
−→a :1→ 4, then

[INVERSE] (for p = 7, p′ = 4,q′ = 1,q = 2), producing 7 ε→ 2,

It has been shown that this construction terminates iff R is matchbounded. In the example, the
matchbound (the highest label) is 2. An efficient implementation had been given by Endrullis. It can
build matchbound certificates with tens of thousands of states in a few seconds. The implementation was
purpose-built, using an imperative programming style, in Java.

6 An Extension of the (max,min) Semiring

To realize matchbound certificate construction (Algorithm 2) in the general framework (Algorithm 1),
we enrich edge labels (weights) with extra information.

As a motivation, consider rule [REWRITE]. With weights from F, we can immediately check the
condition Aε(l)(p,q) <0 Aε(r)(p,q) by two lookups. For the case that we have to add a path, we need

a minimal edge p′ c:h→ q′. We do not want to compute that information on the spot, but have it available
already in the weight Aε(l)(p,q).

In the present section, we will handle
• for rule [TRANS]: ε transitions (their weights will be 1F),

• for rule [INVERSE]: formal left and right inverses (we introduce inverse elements for F),

• for rule [REWRITE]: the location of a minimal edge (we introduce position information).
The challenge is to do this in a way that still allows a semiring structure.

To model epsilon transitions, we extend the alphabet by a fresh letter: Σλ =Σ∪{λ}with the intention
that A(λ) is the ε transition relation. Is weights are 0F (no edge) and 1F (edge). Then, for a word w ∈ Σ∗

with letters w1w2 . . .wn we define wλ = λw1λw2λ . . .λwnλ ∈ Σ∗
λ

. The query set (see Section 4) contains
• {λλ} because of rule [TRANSITIVE],

• {−→c λc,cλ
←−c | c ∈ Σ} for [INVERSE],

• {lλ ,rλ | (l,r) ∈ R} for [REWRITE].
To realize rule [TRANSITIVE], we compare A(λλ) to A(λ) and add all edges that are present on

the left, but not on the right.
To realize rule [INVERSE], we want to compare A(−→c λc) (and A(cλ

←−c), respectively) to A(λ). We
need to realize the check for A(−→c)(p, p′)≤ A(c)(q′,q). To this end, we extend the semiring domain by
left and right inverted numbers

−→
f ,
←−
f for f ∈ N, with multiplication rules
−→
f ·g = if f ≤ g then 1F else 0F.

Then the product A(−→c λc) will contain only 0F and 1F.
The algorithm requires to add a path←−s r−→t under certain conditions. To find the start and end points

of this path, we need to find an edge of minimal weight, among all maximal l-paths from p to q. We
already have the weight of that edge — it is just the value in the matrix A(l) (interpretation of l) at
position (p,q). But we lost the information on where that minimal edge is located: we need both the
location in the automaton (start and end node of the edge) and the location in the string (number of letters
before that edge). So we carry along the following extra information

J. Waldmann 61

data I = I { weight :: F -- ^ the original information

, from :: Q, to :: Q -- ^ start and end of edge with that weight

, offset :: Int, total :: Int

}

and these semiring operations

plus i j = if weight i <= weight j then i else j -- ^ min operation

times i j = if weight i >= weight j -- ^ max operation, update offsets

then i { total = total i + total j }

else j { total = total i + total j , offset = total i + offset j }

where we use the Haskell notation of “record update” base { name = val } where components that
are not mentioned in braces, have their value from base. So, when we have A(l)(p,q) = i, and need to
find the decomposition into l = sct, where c has minimal weight, we determine s as the prefix of length
offset i, and the c edge is (from i, to i).

This construction satisfies semiring axioms only up to some equivalence relation because the choice
of result in case weight i == weight j is arbitrary.

7 Summary and Discussion

The contributions of this paper are

• a general method for efficient path queries under edge updates, see Section 4.

• a specific enhancement of the fuzzy semiring, to implement matchbound certificate construction
in this general setting, see Section 6,

These methods have been used in a recent re-implementation of Endrullis’ algorithm in the 2016 version
(https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox) of the Matchbox termina-
tion prover. It exclusively uses RFC matchbound for standard termination, and matchbounds for cycle
termination. Performance is in the same ballpark as the original implementation. An RFC matchbound
certificate for SRS/secret06/jambox1 (with 43495 states, for height 12 — this is the “killer example”
in [2]) is constructed in 8 seconds on a standard desktop computer.

While we update monotonically (add edges, or increase weight of edges), Algorithm 1 could as well
be used for deletions—if the weight domain is a ring, that is, provides subtraction as well.

For automatically proving termination, it would be interesting to apply our method for automata
completion in other semirings, e.g., for proving termination with matrix interpretations over the natural
or arctic numbers. Known implementations use small [7] or medium sized [6] graphs. Using our method,
larger graphs could be handled. Still, we do not know any completeness result for constructing matrix
interpretations over N or A by completion, and so far, there is no suitable notion of decomposition using
formal inverses.

For graph rewriting, we recommend matchbound certificate construction as a test case for implemen-
tations.

References
[1] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer Publishing

Company, Incorporated, 1st edition, 2009.

https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox

62 Efficient Completion of Weighted Automata

[2] Jörg Endrullis, Dieter Hofbauer, and Johannes Waldmann. Decomposing terminating rewrite relations. In
Workshop on Termination, pages 39–43, 2006.

[3] Martin Erwig. Inductive graphs and functional graph algorithms. J. Funct. Program., 11(5):467–492, 2001.
doi:10.1017/S0956796801004075.

[4] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded string rewriting systems. Appl.
Algebra Eng. Commun. Comput., 15(3-4):149–171, 2004. doi:10.1007/s00200-004-0162-8.

[5] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema. Finding finite automata that certify
termination of string rewriting systems. Int. J. Found. Comput. Sci., 16(3):471–486, 2005. doi:10.1142/

S0129054105003108.
[6] Dieter Hofbauer. Synthesizing matrix interpretations via backward completion. In 3rd Workshop on Proof

Theory and Rewriting, Kanazawa, 2013.
[7] Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix interpretations. In

Frank Pfenning, editor, Term Rewriting and Applications, 17th International Conference, RTA 2006, Seattle,
WA, USA, August 12-14, 2006, Proceedings, volume 4098 of Lecture Notes in Computer Science, pages
328–342. Springer, 2006. doi:10.1007/11805618_25.

[8] N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. In Data Compression Confer-
ence, DCC 1999, Snowbird, Utah, USA, March 29-31, 1999., pages 296–305. IEEE Computer Society, 1999.
doi:10.1109/DCC.1999.755679.

[9] Eric Lehman and Abhi Shelat. Approximation algorithms for grammar-based compression. In David Epp-
stein, editor, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
6-8, 2002, San Francisco, CA, USA., pages 205–212. ACM/SIAM, 2002. URL: http://dl.acm.org/
citation.cfm?id=545381.545407.

[10] Chris Okasaki and Andrew Gill. Fast mergeable integer maps. In In Workshop on ML, pages 77–86, 1998.
[11] Johannes Waldmann. Weighted automata for proving termination of string rewriting. Journal of Automata,

Languages and Combinatorics, 12(4):545–570, 2007.
[12] Hans Zantema, Barbara König, and H. J. Sander Bruggink. Termination of cycle rewriting. In Gilles Dowek,

editor, Rewriting and Typed Lambda Calculi - Joint International Conference, RTA-TLCA 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8560 of
Lecture Notes in Computer Science, pages 476–490. Springer, 2014. doi:10.1007/978-3-319-08918-8_
33.

http://dx.doi.org/10.1017/S0956796801004075
http://dx.doi.org/10.1007/s00200-004-0162-8
http://dx.doi.org/10.1142/S0129054105003108
http://dx.doi.org/10.1142/S0129054105003108
http://dx.doi.org/10.1007/11805618_25
http://dx.doi.org/10.1109/DCC.1999.755679
http://dl.acm.org/citation.cfm?id=545381.545407
http://dl.acm.org/citation.cfm?id=545381.545407
http://dx.doi.org/10.1007/978-3-319-08918-8_33
http://dx.doi.org/10.1007/978-3-319-08918-8_33

	1 Introduction
	2 Labelled Graphs for Weighted Relations and Automata
	3 Representing Weighted Relations
	4 Queries and Updates
	5 Matchbound Certificates
	6 An Extension of the (max,min) Semiring
	7 Summary and Discussion

