
M. Fernández and I. Mackie (Eds.): TERMGRAPH 2018.
EPTCS 288, 2019, pp. 26–37, doi:10.4204/EPTCS.288.3

© Wolfram Kahl & Yuhang Zhao

Semantics-Preserving DPO-Based Term Graph Rewriting*

Wolfram Kahl
McMaster University, Hamilton, Ontario, Canada,

kahl@cas.mcmaster.ca

Yuhang Zhao
McMaster University, Hamilton, Ontario, Canada,

zhaoy36@mcmaster.ca

Term graph rewriting is important as “conceptual implementation” of the execution of functional programs,
and of data-flow optimisations in compilers. One way to define term graph transformation rule application is
via the well-established and intuitively accessible double-pushout (DPO) approach; we present a new result
proving semantics preservation for such DPO-based term graph rewriting.

1 Introduction and Related Work

Term graph rewriting goes back to Wadsworth [Wad71], who proposed it as an efficient implementa-
tion mechanism for the λ -calculus. This aspect has remained dominant in the term graph literature;
for example, Rose [Ros93] defines an operational semantics of a lazy functional programming language
via term graph rewriting; Ariola, Klop and Plump [AKP00] study confluence of term graph rewriting
using bisimilarity. When justifying term graph rewriting as a correct implementation technique (for, in
particular, functional programming), most of the literature approaches this from the relationship with
term rewriting. For example, when Plump [Plu02] writes about “Essentials of Term Graph Rewrit-
ing”, soundness and completeness are considered only with respect to term rewriting. Kennaway et al.
[KKSV93, KKSV94] define a notion of simulation to prove adequacy of term graph rewriting for finite
and rational term rewriting.

When attempting to employ traditional categorial approaches to graph rewriting, the so-called “alge-
braic approach”, to term graph rewriting, two main problems arise: First, categories of “standard” term
graph homomorphisms typically do not have all pushouts, since unification translates into pushouts, and
second, the interface graphs needed both for the double-pushout (DPO) approach and for the single-
pushout approach (to capture the domain of morphisms) are typically not term graphs, but some kind
of “term graphs with holes”. Term graph rewriting is therefore a niche of graph transformation that has
pioneered exploration of formalisms where pushout squares are generalised in some way, in particular
by using different morphisms in the horizontal and vertical directions of the standard DPO drawing.

For example, Banach [Ban93] defines “DACTL” term graph rewriting using a modified opfibration,
and Kahl [Kah96, Kah97] uses both fibrations and opfibrations to define rewriting of term graphs with
variable binding. A different approach to using separate classes of horizontal and vertical morphisms for
term graph rewriting has been proposed by Duval et al. [DEP09], who are using a specific rule concept
as morphisms in the horizontal direction in their “heterogeneous pushout approach”. More recently,
motivated by attributed graphs, which share some characteristics with term graphs, Habel and Plump
[HP12] propose “M,N -adhesive transformation systems” as one general framework to accommodate
different classes of morphisms in the horizontal and vertical directions of the double-pushout setting.

Corradini and Gadducci [CG99a, CG02] opened up a new way of investigating term graphs by
defining gs-monoidal categories as a variant of Lawvere theories [Law63]. Gs-monoidal categories are

*This research is supported by the National Science and Engineering Research Council of Canada, NSERC.

http://dx.doi.org/10.4204/EPTCS.288.3

Wolfram Kahl & Yuhang Zhao 27

an intermediate concept between symmetric monoidal categories and cartesian (monoidal) categories;
the only difference with the latter is that, the “duplicator” transformation ∇ producing diagonal maps
∇A ∶ A→ A⊗A and the “terminator” transformation ! with components !A ∶ A→ 1 are both not assumed
to be natural transformations (that is, for a morphism F ∶ A→ B , the equations F #∇B =∇A #(F⊗F) and
F #!B =!A do not necessarily hold.).

Corradini and Gadducci demonstrate in [CG99a] that taking natural numbers as objects and term
graphs with m inputs and n outputs as morphisms from object m to object n produces a free gs-
monoidal category, and thus they automatically obtain a functorial semantics for term graphs in ar-
bitrary gs-monoidal categories, which include all Cartesian categories, and so in particular also Set .
Continuing this line of work, Corradini and Gadducci obtain semantics preservation for a low-level def-
inition of “ranked dag rewriting” and involving “contexts” analogous to the contexts of term rewriting
[CG97, CG99b]. Finally, in [CG05] they show a quasi-adhesive category of term graphs, but empha-
sise that adhesive categorial rewriting in that category does not quite match term graph rewriting. They
mention in their conclusion that a possible alternative is to perform the DPO on a super-category of
hypergraphs; this is essentially the approach we are elaborating here. As an example consider Fig. 1,
showing the application of a rule corresponding to the term rule (x1+x2)−x2 Ð→ x1 to rewrite a term
graph corresponding to y1+((y2+y3)−y3)×y4 to y1+y2×y4 .

1

2 2 21

1 1 1

1 14 4 4

1 1

+

+

+ + +

× × ×

−

−

2

3 3 3

2 2

1 1 1

(L)

(A)

(G)

(H)

(R)

(B)

L

Φ�

1

2 2 21

1 1 1

1 14 4 4

1 1

+

+

+ + +

× × ×

−

−

2

3 3 3

2 2

1 1 1

(L)

(A)

(G)

(H)

(R)

(B)

G

Ψ -

1

2 2 21

1 1 1

1 14 4 4

1 1

+

+

+ + +

× × ×

−

−

2

3 3 3

2 2

1 1 1

(L)

(A)

(G)

(H)

(R)

(B)

R

M1

?

X
?

M2

?

1

2 2 21

1 1 1

1 14 4 4

1 1

+

+

+ + +

× × ×

−

−

2

3 3 3

2 2

1 1 1

(L)

(A)

(G)

(H)

(R)

(B)

A

Ξ�

1

2 2 21

1 1 1

1 14 4 4

1 1

+

+

+ + +

× × ×

−

−

2

3 3 3

2 2

1 1 1

(L)

(A)

(G)

(H)

(R)

(B)

H

Ω -

1

2 2 21

1 1 1

1 14 4 4

1 1

+

+

+ + +

× × ×

−

−

2

3 3 3

2 2

1 1 1

(L)

(A)

(G)

(H)

(R)

(B)

B

Figure 1: Example term graph rewriting step

28 Semantics-Preserving DPO-Based Term Graph Rewriting

In Sect. 2 we provide details about term graphs and how we draw them, and the definition of gs-
monoidal categories with explanations how term graphs populate that concept. In Sect. 3 we present
the adaptations we use to obtain a DPO-based definition of term graph transformation, and in Sect. 4 we
sketch the proof that such transformation steps are semantics-preserving if the rule sides are semantically
equivalent.

2 Background: Term Graphs and GS-Monoidal Categories

We are using the “jungle” view of term graphs, which goes back to Hoffmann and Plump [HP91] and
Corradini and Rossi [CR93], since this is the view used by the gs-monoidal semantics, where nodes
translate into objects and (hyper-)edges into morphisms.

We assume a set L of edge labels together with an function arity ∶L→N prescribing for each label
the number of inputs the corresponding edges take. We write Fink ∶= {i ∶N i < k} for the set containing
the first k natural numbers, and will use this in particular for the set of graph input nodes.

Definition 2.1. The set of directed hypergraph graphs with m inputs and n outputs will be denoted by
DHGm,n . An element of DHGm,n is a tuple (I,E ,eLabel,eOut,eIn,gOut) consisting of two sets,

• a set I of inner nodes, from which we construct the set N = Finm⊎I of nodes as disjoint union of the
set Finm of graph input nodes and the set I of inner nodes,

• a set E of (hyper-)edges,

and four functions,

• eLabel ∶ E →L assigning each edge a label,
• eOut ∶ E → I assigning each edge a single edge output node, which has to be an inner node,
• eIn ∶ E →N ∗ assigning each edge a sequence of edge input nodes, which needs to have as its length

the arity of the edge’s label, that is, ∀e ∶ E ● arity(eLabel(e)) = length(eIn(e)) , and
• gOut ∶ Finn→N assigning each output position a node.

A term graph is an acyclic directed hypergraph where eOut is bijective; we write TGm,n for the set of
term graphs with m inputs and n outputs.

When drawing such hypergraphs and term graphs, we start with the inputs on top and proceed down
to the outputs, drawing nodes as bullets, and (hyper-)edges as labelled boxes connected to nodes via (im-
plicitly ordered) input-tentacles and exactly one output-tentacle. (Although edges with multiple outputs
have uses for example in the code graphs of [KAC06, AK09], most of the literature, including all the
cited work by Corradini and Gadducci, only considers single-output operations (edges), so we also do
this here.) Graph input nodes are declared by attaching a triangle pointing to the input node — input
nodes are necessarily distinct, and cannot be output nodes of edges. Graph input nodes are frequently
called “variable nodes”, and translated into distinct variables for a term reading. Graph output nodes (in
the literature frequently referred to as “roots”) are declared by attaching a triangle pointing away from
them — any node can be used as a graph output any number of times.

A graph with multiple graph outputs is interpreted as standing for a tuple of terms: The left box in the
following drawing depicts a term graph (from TG2,1) corresponding to the term
“(x1 + x2)∗ x2 ”, while the term graph (from TG2,2) in the right box corresponds to the pair of terms
“((x1+x2)∗x2,(x1+x2)∗x2)” (or, if let-definitions are available, “let z = (x1+x2)∗x2 in (z,z)”):

Wolfram Kahl & Yuhang Zhao 29

+

*

1

21

+

*

1 2

21

Term graphs with sequential composition (#) and parallel composition (⊗) form a gs-monoidal category
according to Corradini and Gadducci [CG99a]: The objects are the natural numbers (interpreted as num-
bers of nodes in the graph input interface, respectively graph output interface), and term graphs with m
inputs and n outputs are morphisms from m to n .
Definition 2.2. For a category (Obj,Mor,src,trg,I,#) , we write f ∶ A → B instead of src(f) = A ∧
trg(f) = B ; composition of two morphisms f ∶ A→ B and g ∶ B → C is written “ f #g”, and the iden-
tity for object A is IA .

A symmetric strict monoidal category [ML71] (C0,⊗,1,X) consists of a category C0 , a strictly
associative monoidal bifunctor ⊗ with 1 as its strict unit, and a transformation X that associates with
every two objects A and B an arrow XA,B ∶A⊗B→ B⊗A with X1,1 = I1 and:
(F⊗G)#XC,D =XA,B #(G⊗F) , XA,B #XB,A = IA⊗ IB , XA⊗B,C = (IA⊗XB,C)#(XA,C⊗ IB) .

(C0,⊗,1,X,∇,!) is a strict gs-monoidal category iff (C0,⊗,1,X) is a symmetric strict monoidal cate-
gory, and
• ! associates with every object A of C0 an arrow !A ∶A→ 1 , and
• ∇ associates with every object A of C0 an arrow ∇A ∶A→A⊗A , such that:

∇A #(IA⊗∇A) =∇A #(∇A⊗ IA) ∇A #XA,A =∇A ∇A #(IA⊗!A) = IA
∇A⊗B #(IA⊗XB,A⊗ IB) =∇A⊗∇B !A⊗B =!A⊗!B I1 =!1 =∇1

For term graphs, the lack of naturality of the “terminator” transformation ! means that garbage (nodes
from which no output is reachable) makes a difference, such as between the two graphs to the left below,
and the lack of naturality of the “duplicator” transformation ∇ means that sharing (use of nodes in
more than one consumer rôle, that is, as inputs for edges or as graph outputs) makes a difference, such
as between the two graphs to the right below. (The words “garbage” and “sharing” motivate the name
“gs-monoidal”.)

F F

00

0

11

0

F

F : 1 → 1 !1 F ; !1 F ; ▽1 ▽1 ; (F ⨂ F)

0

0 0

F

0

F F F

00

0

11

0

F

F : 1 → 1 !1 F ; !1 F ; ▽1 ▽1 ; (F ⨂ F)

0

0 0

F

0

F F F

00

0

11

0

F

F : 1 → 1 !1 F ; !1 F ; ▽1 ▽1 ; (F ⨂ F)

0

0 0

F

0

F F F

00

0

11

0

F

F : 1 → 1 !1 F ; !1 F ; ▽1 ▽1 ; (F ⨂ F)

0

0 0

F

0

F F F

00

0

11

0

F

F : 1 → 1 !1 F ; !1 F ; ▽1 ▽1 ; (F ⨂ F)

0

0 0

F

0

F

!A F # !B F F # ∇B ∇A # (F⊗F)

30 Semantics-Preserving DPO-Based Term Graph Rewriting

Corradini and Gadducci [CG99a] show furthermore that the term graphs over a given signature are arrows
of the gs-monoidal category freely generated by that signature; therefore, there always exists a unique
functor from the gs-monoidal category of term graphs to any gs-monoidal category. This induces a func-
torial semantics for term graphs in any gs-monoidal category. (This will frequently be some (cartesian)
category of sets, with some set V chosen as set of values “at a node”; a term graph with m inputs and
n outputs then has a function of type Vm→ Vn as semantics. For code generation applications, one may
construct non-cartesian gs-monoidal semantics categories where morphisms contain information about
resource usage, such as number of instructions.)

3 Adapted DPO for Term Graph Rewriting

We will use the naming of graphs and morphisms used in Fig. 2 for double-square diagrams in the shape
of double pushouts.

L Φ� G Ψ- R

M1

?

X
? ?

M2

A Ξ� H Ω- B

Figure 2: Naming of objects and morphism in “DPO-shape” diagrams

The example term graph transformation step in our adapted DPO approach shown in Fig. 1 in the in-
troduction in effect closely corresponds to the more low-level definitions of term graph transformation
dominant in the literature: the “host graph” (or “context graph”) H can be thought of as obtained from
the “application graph” A by deleting all edges and inner nodes of A which have a pre-image in L , but no
pre-image (via Φ#M1) in G , and the “result graph” B is obtained from H by “gluing in” the right-hand
side R .

The gluing graph G and the host graph H are obviously not jungles, since they have nodes that are
neither graph input nodes nor edge output nodes, but they still are directed hypergraphs (DHGs) in the
sense of Def. 2.1.

Both for DHGs and for term graphs we distinguish matchings, which preserve edge labelling and
incidence structure, from homomorphisms, which in addition preserve also graph input and output struc-
ture:

Definition 3.1. A DHG matching Φ = (ΦN ,ΦE) from G1 ∶DHGm1,n1 to G2 ∶DHGm2,n2 consists of two
functions ΦN ∶N1→N2 and ΦE ∶ E1→ E2 satisfying:

eOut2 ○ΦE =ΦN ○eOut1 , eLabel2 ○ΦE = eLabel1 , and eIn2 ○ΦE =map ΦN ○eIn1 .

A DHG homomorphism Φ = (ΦI ,ΦE) from G1 ∶ DHGm,n to G2 ∶ DHGm,n consists of two functions
ΦI ∶ I1 → I2 and ΦE ∶ E1 → E2 such that defining ΦN ∶= IdFinm ⊎ΦI turns (ΦN ,ΦE) into a matching
from G1 to G2 and additionally satisfies gOut2 =ΦN ○gOut1 .

If G1 and G2 are term graphs, then a matching (respectively homomorphism) Φ from G1 to G2 is
called a term graph matching (respectively term graph homomorphism).

The diagram in Fig. 1 is then a double pushout in the category of DHG matchings, satisfying the
following additional requirements:

Wolfram Kahl & Yuhang Zhao 31

Definition 3.2. A DPO diagram in the category of DHG matchings of the shape of Fig. 2 is called a
TG-DPO iff:

• M1 and M2 are term graph matchings (which implies that L , R , A , and B all are term graphs),
• Φ , Ψ , Ξ , Ω are DHG homomorphisms.

Superficially, this arrangement looks similar to that of theM,N -adhesive categories of Habel and Plump
[HP12] — we would use DHG homomorphisms for M and term graph matchings for N . However,
several of the conditions of M,N -adhesive categories fail to hold for this setting.

The existence of a pushout complement in the category of DHG matchings is subject to the gluing
condition as usual — both dangling and identification conflicts can occur.

If the rule L Φ� G Ψ-R consists of DHG homomorphisms, both the pushout complement con-
struction for the left square and the pushout construction for the right square will yield DHG matchings
Ξ and Ω that also respect the graph interface, and therefore are DHG homomorphisms.

Χ

1

1

S F

M2

d

F

(G)

(H)

(R)

(B)

b

1

1

1

a

1

1

S

c

1

Ψ

Ω

G

Ψ -

Χ

1

1

S F

M2

d

F

(G)

(H)

(R)

(B)

b

1

1

1

a

1

1

S

c

1

Ψ

Ω

R

X
?

M2
?

Χ

1

1

S F

M2

d

F

(G)

(H)

(R)

(B)

b

1

1

1

a

1

1

S

c

1

Ψ

Ω

H

Ω -

Χ

1

1

S F

M2

d

F

(G)

(H)

(R)

(B)

b

1

1

1

a

1

1

S

c

1

Ψ

Ω

B

Figure 3: RHS edge conflict

Χ

1

1

2 3

1 2

1

2

1

1

2

X Y

1

2 3

1

1

2

X Y

1

2

1

1

2

M2

(G)

(H)

(R)

(B)

Ψ

Ω

G

Ψ -

Χ

1

1

2 3

1 2

1

2

1

1

2

X Y

1

2 3

1

1

2

X Y

1

2

1

1

2

M2

(G)

(H)

(R)

(B)

Ψ

Ω

R

X
?

M2
?

Χ

1

1

2 3

1 2

1

2

1

1

2

X Y

1

2 3

1

1

2

X Y

1

2

1

1

2

M2

(G)

(H)

(R)

(B)

Ψ

Ω

H

Ω -

Χ

1

1

2 3

1 2

1

2

1

1

2

X Y

1

2 3

1

1

2

X Y

1

2

1

1

2

M2

(G)

(H)

(R)

(B)

Ψ

Ω

B

Figure 4: Non-injective host matching

For the right square of the DPO diagram, we finally have to ensure that B is a term graph, which is not
trivial. First, the situation shown in Fig. 3 would lead to B not being a term graph — however, since
the Φ-image of node a in L has to be either an input node or the output of an edge, such a situation
cannot occur at least when the rule LHS Φ is injective. (If the image of a is an input node, then, with Φ

preserving the graph interface, it cannot be injective. If the image of a is the output node of an edge in
L , then the image in A of that edge needs to be also the image of the S-edge in H , which contradicts the
left-hand pushout.) Second, also the example DHG matching pushout in Fig. 4 fails to produce a term
graph B — this situation can be avoided by restricting the matching M1 to be injective. (In effect, both
constraints together correspond to the restriction to the “regular monos” of [CG05, Prop. 4.3].)

32 Semantics-Preserving DPO-Based Term Graph Rewriting

Since the right-hand side Ψ of the rule is a DHG homomorphism, it is automatically injective on
input nodes; non-injectivity of Ψ therefore can only force identifications that are also “permissible” for
the host graph, so we do not need to restrict Ψ to be injective, which would be highly unwelcome for
term graph rewriting.

Therefore, DPOs in the DHG matching category can be used to rewrite term graphs with rules with
injective left-hand sides, using only injective matchings (which takes care of the identification part of the
gluing condition):

Theorem 3.3. Given a term graph rewriting rule L Φ� G Ψ-R where L and R are term graphs and Φ

and Ψ are DHG homomorphisms, with Φ injective, and given further an injective term graph matching
L M1-A , then this setting can be completed to a TG-DPO if the dangling condition holds for M1 .

The fact that Φ is injective implies that the output nodes of L are disjoint from the input nodes; we
call such a term graph solid.

4 Semantics Preservation of DPO-Transformation of Term Graphs

While the fact that term graphs form a free gs-monoidal category gives us semantics of term graphs, it
does not give us semantics of DHGs such as the gluing and host graphs in most typical rewriting steps.
Rather than trying to artificially obtain some semantics for DHGs “with holes”, we will transfer the
necessary information “across the host graph H ” at the DHG level.

A starting point could be the decomposition of term graphs into gs-monoidal expressions as described
in [CG99a]. However, instead of extending this expression type into a type of contexts by including
“placeholders” as proposed in [CG02], we define contexts at the level of graphs:
Definition 4.1. An m,n-context (k,A1,A2) for an i, j-parameter consists of:
• an internal interface object k ,
• a top part term graph A1 ∶TGm,i+k , and
• a bottom part term graph A2 ∶TGj+k,n .

In the following, we continue to use “#” as sequential composition operator for term graphs, and “⊗” for
parallel composition. Furthermore, “Ik ” denotes the identity term graph with k inputs that are also its
outputs, in the same sequence. The empty DHG with i inputs, and with j distinct output nodes that are
disjoint from the input nodes is written “�i,j ”; for the sub-category of DHG homomorphisms restricted
to DHGs with i inputs and j outputs, �i,j is the initial object.
Definition 4.2. An m,n-context (k,A1,A2) for an i, j-parameter is called an image context for an injec-
tive term graph matching M1 ∶ L→ A starting from term graph L ∶ TGi,j iff A ≅ A1 #(L ⊗ Ik) # A2 and
the nodes and edges of L in that expression precisely constitute the image of M1 in A .

By ensuring that there is no “side entrance” from within the application graph A into the image of
the LHS L , the dangling condition is crucial for the following result:
Lemma 4.3. Assume a solid term graph L ∶TGi,j to be given, and let Φ ∶ �i,j→ L be the (necessarily-
injective) DHG homomorphism from �i,j to L . If A ∶ TGm,n is a term graph and M1 ∶ L→ A is an
injective term graph matching that together with Φ satisfies the dangling condition, then there is an
image context (k,A1,A2) for M1 .

Such a context can be calculated in several different ways from the reachability in A , for example by
collecting all edges into A1 that are reachable from the input nodes of A via paths that do not touch the
image of L under M1 . The difference (A−A1)−L would then induce A2 .

Wolfram Kahl & Yuhang Zhao 33

Sequential and parallel composition in the gs-monoidal category of term graphs (as morphisms) can
be obtained as colimits in the category of DHG matchings. In the following diagram we denote the
coproduct injections as ι and κ ; for a X ∶DHGm,n we use input ∶ Im→ X as the DHG matching mapping
Im identically to the input nodes of X , and analogously output ∶ In→ X .

The lower-left box below contains the diagram that has as its colimit the application graph A , factored
into the context (k,A1,A2) and an image of the left-hand side L as A ≅ A1 # (L ⊗ Ik) # A2 .

L Φ� �i,j Ψ - R

COLIMIT
66

COLIMIT
66

COLIMIT
66

Ii

input
?

L

output6

Ij

Φ
′

�

Ii

Ij

Ψ
′
-

Ii

input
?

R

output6

Ij

M′
1

?

X′

?

M′
2

?

A1

output6

Ii
ι - Ii+k

input
?

κ
6

L Ik

output6 κ

?
Ij

ι - Ij+k

input
?

A2

Ξ
′

�

A1

output6

Ii
ι - Ii+k

κ
6

Ik

κ

?
Ij

ι - Ij+k

input
?

A2

Ω
′
-

A1

output6

Ii
ι - Ii+k

input
?

κ
6

R Ik

output6 κ

?
Ij

ι - Ij+k

input
?

A2

COLIMIT

??

COLIMIT

??

COLIMIT

??

A Ξ� H Ω - B

The key observation is now that for a redex with � as gluing graph and injective rule LHS Φ and injective
matching M1 satisfying the gluing condition, the DPO derivation step in the category of DHG matchings

34 Semantics-Preserving DPO-Based Term Graph Rewriting

can be factored over a completely standard DPO diagram in a category of diagrams over the category of
DHG matchings, as indicated in the nested diagram above.

The double-square diagram in the middle there is a double pushout in the category of diagrams over
the category of DHG matchings with rigid diagram homomorphisms, which we define to be diagram
homomorphisms that have only identity morphisms as components, or, in other words, that are node- and
edge-label preserving graph homomorphisms between the underlying node- and edge-labelled graphs of
the diagrams.

A key ingredient for this factoring to work is the restriction of the gluing graph to a “pure interface”
�i,j , so that it does not need to occur “in the place of L”. It is crucial that this place is empty in the gluing
and host diagrams, since otherwise we would not have rigid diagram homomorphisms horizontally.

As a result, since the COLIMIT functor preserves pushouts, the context decomposition carries
over to the result B of the original DPO rewrite step, and we have:

B ≅ A1 # (R ⊗ Ik) # A2

All this together proves:

Theorem 4.4. Let a DHG homomorphism span L Φ� �i,j
Ψ-R be given where L and R are term

graphs. If A ∶TGm,n is a term graph, M1 ∶ L→ A is an injective term graph matching that together with
Φ satisfies the dangling condition, and (k,A1,A2) is an image context for M1 , then the result graph B of
the induced DPO in the category of DHG matchings is isomorphic to A1 # (R ⊗ Ik) # A2 , that is, the
same (k,A1,A2) is also an image context for the morphism M2 ∶ R→ B resulting from the DPO.

Note that this result is independent of the choice of image context for M1 . (Unlike for Theorem
3.3, we did not need to restrict Φ to be injective here. Injectivity of M1 however is needed for the
“image context for” statements according to Def. 4.2, and ultimately for making M′

1 a rigid diagram
homomorphism.)

Let us now assume a semantics to be chosen, that is, some gs-monoidal category (e.g., Set), and one
of its objects V as interpretation of 1. We will use “ .,” as sequential composition and “×” as parallel
(that is, monoidal) composition in the semantics category.

For a term graph J ∶TGm,n , we write JJKm,n for its semantics, which is a morphism from Vm to Vn .
In other words, we denote the morphism component of the semantics functor with J_K ; since this is a
gs-monoidal functor, we have in particular JJ1 # J2K = JJ1K ., JJ2K and JJ1 ⊗ J2K = JJ1K × JJ2K .

Under the assumption that the rule L� �i,j -R is semantics preserving, that is, JLKi,j = JRKi.j ,
we therefore easily obtain semantics preservation of the rewrite result:

JAKm,n = JA1 # (L ⊗ Ik) # A2Km,n

= JA1Km,i+k
., (JLKi,j × JIkKk,k) ., JA2Kj+k,n

= JA1Km,i+k
., (JRKi,j × JIkKk,k) ., JA2Kj+k,n

= JA1 # (R ⊗ Ik) # A2Km,n

= JBKm,n

For rules with �i,j as gluing graph, this, together with Theorem 4.4, allows us to extend Theorem 3.3
with semantics preservation:

Wolfram Kahl & Yuhang Zhao 35

Theorem 4.5. If a term graph rewrite rule formulated as a span L Φ� �i,j
Ψ-R of DHG homo-

morphisms with term graphs L, R ∶ TGi,j , and with injective Φ , is applied via an injective term graph
matching M1 to an application term graph A ∶ TGm,n , where M1 together with Φ satisfies the dangling
condition, then the diagram

L Φ� �i,j Ψ- R

M1

?

A

can be completed to a TG-DPO

L Φ� �i,j Ψ- R

M1

?

X
? ?

M2

A Ξ� H Ω- B

and for any gs-monoidal semantics functor J_K for which the rule is semantics-preserving, that is,
JLKi,j = JRKi.j , the resulting TG-DPO rewrite is also semantics-preserving, that is, JAKm,n = JBKm,n .

5 Conclusion and Outlook

By considering a straight-forward adaptation of the DPO approach to term graph rewriting, we obtained
an easily-understandable concept of rule application. By lifting this adapted DPO into a standard DPO
of diagrams, we have been able to transfer the context decomposition from the left-hand side to the right-
hand side, obviating the need to consider any semantics for general DHGs such as �i,j . As result, we
obtained a semantics preservation theorem that will be an important tool in the generation of verified code
optimisation tools employing rule-based transformation of data-flow graphs, as outlined for example in
[Kah14].

We originally started in [Kah11] to formalise term graphs essentially as defined in Sect. 2 in the
dependently-typed programming language and proof assistant Agda [Nor07]. The current status of this
project [Kah17, Zha18] includes term graph decomposition and a proof for its correctness, which essen-
tially constitutes a machine-checked proof of the result of Corradini and Gadducci [CG99a] that term
graphs form a free gs-monoidal category. As next steps, we plan to extend this development to cover
also the results of the current paper, that is, definedness and semantics preservation of TG-DPO rewriting
steps, and then to use this as a verified implementation of semantics-preserving term graph rewriting.

References

[AK09] C.K. Anand & W. Kahl (2009): An Optimized Cell BE Special Function Library Generated by Coconut.
IEEE Transactions on Computers 58(8), pp. 1126–1138, doi:10.1109/TC.2008.223.

[AKP00] Z.M. Ariola, J.W. Klop & D. Plump (2000): Bisimilarity in Term Graph Rewriting. Information and
Computation 156(1), pp. 2–24, doi:10.1006/inco.1999.2824.

http://dx.doi.org/10.1109/TC.2008.223
http://dx.doi.org/10.1006/inco.1999.2824

36 Semantics-Preserving DPO-Based Term Graph Rewriting

[Ban93] R. Banach (1993): A Fibration Semantics for Extended Term Graph Rewriting. In Sleep et al., editors:
Term Graph Rewriting: Theory and Practice [SPE93], chapter 7, pp. 91–100.

[CG97] A. Corradini & F. Gadducci (1997): A 2-categorical presentation of term graph rewriting. In E. Moggi
& G. Rosolini, editors: Category Theory and Computer Science, LNCS 1290, Springer, Berlin, Hei-
delberg, pp. 87–105, doi:10.1007/BFb0026983.

[CG99a] A. Corradini & F. Gadducci (1999): An Algebraic Presentation of Term Graphs, via GS-Monoidal
Categories. Applied Categorical Structures 7(4), pp. 299–331, doi:10.1023/A:1008647417502.

[CG99b] A. Corradini & F. Gadducci (1999): Rewriting on cyclic structures: Equivalence between the
operational and the categorical description. RAIRO Theor. Inform. Appl. 33, pp. 467–493,
doi:10.1051/ita:1999128.

[CG02] A. Corradini & F. Gadducci (2002): Categorical rewriting of term-like structures. ENTCS 51, pp.
108–121, doi:10.1016/S1571-0661(04)80195-6. GETGRATS Closing Workshop.

[CG05] A. Corradini & F. Gadducci (2005): On Term Graphs as an Adhesive Category. ENTCS 127(5), pp.
43–56, doi:10.1016/j.entcs.2005.02.014.

[CR93] A. Corradini & F. Rossi (1993): Hyperedge replacement jungle rewriting for term-rewriting systems
and logic programming. Theoret. Comput. Sci. 109(1–2), pp. 7–48, doi:10.1016/0304-3975(93)90063-
Y.

[DEP09] D. Duval, R. Echahed & F. Prost (2009): A Heterogeneous Pushout Approach to Term-Graph Trans-
formation. In R. Treinen, editor: Rewriting Techniques and Applications, Springer, Berlin, Heidelberg,
pp. 194–208, doi:10.1007/978-3-642-02348-4_14.

[HP91] B. Hoffmann & D. Plump (1991): Implementing Term Rewriting by Jungle Evaluation. Infor-
matique théorique et applications/Theoretical Informatics and Applications 25(5), pp. 445–472,
doi:10.1051/ita/1991250504451.

[HP12] A. Habel & D. Plump (2012): M,N -Adhesive Transformation Systems. In H. Ehrig et al., edi-
tors: Graph Transformation, ICGT 2012, LNCS 7562, Springer, pp. 218–233, doi:10.1007/978-3-
642-33654-6_15.

[KAC06] W. Kahl, C.K. Anand & J. Carette (2006): Control-Flow Semantics for Assembly-Level Data-
Flow Graphs. In W. McCaull, M. Winter & I. Düntsch, editors: 8th Intl. Seminar on Rela-
tional Methods in Computer Science, RelMiCS 8, Feb. 2005, LNCS 3929, Springer, pp. 147–160,
doi:10.1007/11734673_12.

[Kah96] W. Kahl (1996): Algebraische Termgraphersetzung mit gebundenen Variablen. Reihe Informatik, Her-
bert Utz Verlag Wissenschaft, München. ISBN 3-931327-60-4; also Doctoral Diss. at Univ. der Bun-
deswehr München, Fakultät für Informatik.

[Kah97] W. Kahl (1997): A Fibred Approach to Rewriting — How the Duality between Adding and Deleting
Cooperates with the Difference between Matching and Rewriting. Technical Report 9702, Fakultät für
Informatik, Universität der Bundeswehr München. Available at http://www.cas.mcmaster.ca/
~kahl/Publications/TR/Kahl-1997b.html.

[Kah11] W. Kahl (2011): Dependently-Typed Formalisation of Typed Term Graphs. In R. Echahed, editor:
Proc. of 6th International Workshop on Computing with Terms and Graphs, TERMGRAPH 2011,
EPTCS 48, pp. 38–53, doi:10.4204/EPTCS.48.6.

[Kah14] W. Kahl (2014): Towards “Mouldable Code” via Nested Code Graph Transformation. J. Logic and
Algebraic Programming 83(2), pp. 225–234, doi:10.1016/j.jlap.2014.02.010.

[Kah17] W. Kahl (2017): Relation-Algebraic Theories in Agda — RATH-Agda-2.2. Mechanically checked Agda
theories, with 580 pages literate document output. http://relmics.mcmaster.ca/RATH-Agda/. With
contributions by Musa Al-hassy and Yuhang Zhao.

[KKSV93] J.R. Kennaway, J.W. Klop, M.R. Sleep & F.J. de Vries (1993): The Adequacy of Term Graph Rewriting
for Simulating Term Rewriting. In Sleep et al., editors: Term Graph Rewriting: Theory and Practice
[SPE93], chapter 12, pp. 157–170.

http://dx.doi.org/10.1007/BFb0026983
http://dx.doi.org/10.1023/A:1008647417502
http://dx.doi.org/10.1051/ita:1999128
http://dx.doi.org/10.1016/S1571-0661(04)80195-6
http://dx.doi.org/10.1016/j.entcs.2005.02.014
http://dx.doi.org/10.1016/0304-3975(93)90063-Y
http://dx.doi.org/10.1016/0304-3975(93)90063-Y
http://dx.doi.org/10.1007/978-3-642-02348-4_14
http://dx.doi.org/10.1051/ita/1991250504451
http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.1007/11734673_12
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Kahl-1997b.html
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Kahl-1997b.html
http://dx.doi.org/10.4204/EPTCS.48.6
http://dx.doi.org/10.1016/j.jlap.2014.02.010
http://relmics.mcmaster.ca/RATH-Agda/

Wolfram Kahl & Yuhang Zhao 37

[KKSV94] J.R. Kennaway, J.W. Klop, M.R. Sleep & F.J. de Vries (1994): On the Adequacy of Graph Rewriting
for Simulating Term Rewriting. ACM Transactions on Programming Languages and Systems 16(3),
pp. 493–523, doi:10.1145/177492.177577.

[Law63] F.W. Lawvere (1963): Functorial Semantics of Algebraic Theories. Proc. Nat. Acad. Sci. USA 50, pp.
869–872, doi:10.2307/2272673.

[ML71] S. Mac Lane (1971): Categories for the Working Mathematician. Springer-Verlag, doi:10.1007/978-1-
4757-4721-8.

[Nor07] U. Norell (2007): Towards a Practical Programming Language Based on Dependent Type The-
ory. Ph.D. thesis, Dept. Comp. Sci. and Eng., Chalmers Univ. of Technology. See also
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[Plu02] D. Plump (2002): Essentials of Term Graph Rewriting. ENTCS 51, pp. 277–289, doi:10.1016/S1571-
0661(04)80210-X. GETGRATS Closing Workshop.

[Ros93] K.H. Rose (1993): Graph-based Operational Semantics of a Lazy Functional Language. In Sleep
et al., editors: Term Graph Rewriting: Theory and Practice [SPE93], chapter 22, pp. 303–316.

[SPE93] M.R. Sleep, M.J. Plasmeijer & M.C.J.D. van Eekelen, editors (1993): Term Graph Rewriting: Theory
and Practice. Wiley.

[Wad71] C.P. Wadsworth (1971): Semantics and Pragmatics of the Lambda Calculus. D.Phil. thesis, Oxford
University.

[Zha18] Y. Zhao (2018): Formalisation of Term Graph Rewriting in Agda — TGR1. Mechanically checked
Agda development, with 283 pages literate document output. http://relmics.mcmaster.ca/RATH-
Agda/TGR1/.

http://dx.doi.org/10.1145/177492.177577
http://dx.doi.org/10.2307/2272673
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://dx.doi.org/10.1016/S1571-0661(04)80210-X
http://dx.doi.org/10.1016/S1571-0661(04)80210-X
http://relmics.mcmaster.ca/RATH-Agda/TGR1/
http://relmics.mcmaster.ca/RATH-Agda/TGR1/

	1 Introduction and Related Work
	2 Background: Term Graphs and GS-Monoidal Categories
	3 Adapted DPO for Term Graph Rewriting
	4 Semantics Preservation of DPO-Transformation of Term Graphs
	5 Conclusion and Outlook

