
J. Caldwell, Ph.K.F. Hölzenspies, P. Achten:
Trends in Functional Programming in Education (TFPIE 2014)
EPTCS 170, 2014, pp. 1–18, doi:10.4204/EPTCS.170.1

c© Yuki Ishii & Kenichi Asai
This work is licensed under the
Creative Commons Attribution License.

Report on a User Test and Extension of a Type Debugger for
Novice Programmers

Yuki Ishii
Department of Information Science,

Ochanomizu University
Tokyo, Japan

ishii.yuki@is.ocha.ac.jp

Kenichi Asai
Department of Information Science,

Ochanomizu Univeristy
Tokyo, Japan

asai@is.ocha.ac.jp

A type debugger interactively detects the expressions thatcause type errors. It asks users whether
they intend the types of identifiers to be those that the compiler inferred. However, it seems that
novice programmers often get in trouble when they think about how to fix type errors by reading the
messages given by the type debugger. In this paper, we analyze the user tests of a type debugger
and report problems of the current type debugger. We then extend the type debugger to address these
problems. Specifically, we introduce expression-specific error messages and language levels. Finally,
we show type errors that we think are difficult to explain to novice programmers. The subjects of the
user tests were 40 novice students belonging to the department of information science at Ochanomizu
University.

1 Introduction

Strongly-typed languages, such as OCaml or Haskell, provide programmers with type safety via static
type checking at compile time. However, it is not always easyfor programmers, especially novices,
to write well-typed programs. In particular, the error messages provided by the compiler often do not
indicate the source of the type error. For example, the OCamlcompiler prints the following message,
when a programmer tries to define a function that calculates thex-th power of(x + 1):

fun x -> (x + 1) ^ x

Error: This expression has type int

but an expression was expected of type string

This error message says that the type ofx + 1 conflicts with the type of the first argument of^,
which concatenates two string values in OCaml. If the programmer blindly follows the error message
and changes the type ofx + 1 to string (e.g., by insertingstring_of_int), he or she will end up
with a different program than originally intended:

fun x -> (string_of_int x + 1) ^ (string_of_int x)

Since the compiler does not know the intention of the programmer, it is unable to show a single error
message that reflects that intention. The above error message simply reports the fact that the two types
are in conflict during type inference. To remedy this situation, Chitil [1] proposed an interactive type
debugger. Using algorithmic program debugging [13] on the compositional type inference tree, this sort
of debugger ascertains the programmer’s intention by asking questions and detecting the sources of the
type errors. Tsushima and Asai [16] followed up on this work by implementing a type debugger for full
OCaml by reusing its type inferencer.

In 2012, we used the OCaml type debugger in a “Functional Programming” course at Ochanomizu
University and collected logs showing how students interacted with the type debugger. In this paper, we

http://dx.doi.org/10.4204/EPTCS.170.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Report on a User Test and Extension of a Type Debugger for Novice Programmers

report on the results of analyzing the logs, describe problems of the type debugger, and extend the type
debugger accordingly to make it novice-friendly.

This paper is structured as follows. In Section 2, we review how our type debugger works. In Section
3, we analyze the logs of the type debugger and discuss the results in Section 4. We extend the type
debugger in Section 5 and evaluate it in Section 6. Its limitations are discussed in Section 7. Related
work is in Section 8, and we conclude the paper by outlining future work in Section 9.

2 Type debugger

Let us review how the type debugger works. The type debugger constructs the most general type tree
[1, 16] and uses algorithmic program debugging [13] to detect type errors.

2.1 Most General Type Tree

The type debugger uses the most general type tree (MGTT) to detect the source of a type error. Unlike
the standard type inference tree used in a compiler, an MGTT maintains the most general type for each
subexpression. For example, the MGTT for the previous program becomes as follows: (Here, we have
abbreviated the types of+ and^ asτ+

= int → int → int and τ∧
= string → string →

string, respectively.)

{x : a} A ⊢ x : a {} A ⊢ + : τ+ {} A ⊢ 1 : int

{x : int} B ⊢ (x + 1) : int {} ⊢ ^ : τ∧ {x : b} ⊢ x : b

{} ⊢ (x + 1) ^ x · · · type error

fun x → (x + 1) ^ x · · · type error

The MGTT is different from the standard type inference tree in that the information thatx has typeint
in box B does not propagate to boxesA. To type the three subexpressions,x, +, and1, independently,
we do not need to constrain the type ofx. The type ofx becomesint only when these subexpressions
are composed andx is passed as an argument to+. This kind of bottom-up type inference was used in
UAE [18] as well as in the Helium compiler [6] to remove the left-to-right bias of the type inference and
produce better error messages.

MGTT is compositional: the most general type of an expression is determined solely from the ex-
pression and does not depend on other expressions. By comparing the most general type with the pro-
grammer’s intended type, we can detect the source of a type error [1]. In this paper, we say that an
expression has awell-intended type if the type of the expression does not contradict the programmer’s
intention.

For example, suppose that a programmer intends the above function to have one of two types:

1. int -> string

2. int -> int

In the first case, the programmer’s intended program isfun x -> string_of_int (x + 1) ^

string_of_int x. While the type ofx in boxesA does not contradict the programmer’s intention, the
type ofx in box B does contradict them. In other words,x, +, and1 all have the well-intended types, but
(x + 1) does not. Thus, we conclude thatx + 1 is the source of the type error.

Yuki Ishii & Kenichi Asai 3

If we used the standard type inference tree instead, we coulddetect that the conflict first occurs
somewhere in boxesA or B. However, we cannot further identify the source of the type error, because
the type ofx propagates to the boxesA via unification and we have no information when the type ofx is
first forced toint.

On the other hand, suppose that the programmer intends the second type. In this case, the intended
program isfun x -> power (x + 1) x wherepower x y calculates the x-th power ofy. Since the
programmer intendŝ to beint -> int -> int, the actual type of̂ conflicts with the programmer’s
intention. Therefore, we can detect that^ is the source of the type error.

2.2 Algorithmic Programming Debugging

The type debugger detects the source of a type error by using algorithmic program debugging (APD) to
traverse the MGTT [13]. APD was originally devised by Shapiro to find an error in a Prolog program.
It can be used to detect errors in any tree structure. The algorithm starts from a node with an error and
proceeds as follows.

1. Check whether any of its child nodes has an error.

2. If no child node has an error, the current node is the sourceof the error.

3. If one of the child nodes has an error, apply APD to the childnode.

In the last step, if two or more child nodes have an error, one of the erroneous child nodes is chosen. The
final result depends on which one is chosen.

2.3 Detecting type errors

Our type debugger detects the source of a type error in two steps:

1. Find the node (expression) that has a type error, but all ofits child nodes are well-typed.

2. Find the node (expression) that does not have well-intended types, but all of its child nodes have
well-intended types.

In the first step, the type debugger uses the compiler’s type inferencer to judge whether a node has a
type error. In the second step, the type debugger asks the programmer whether the types inferred by the
compiler’s type inferencer match his/her intention. In particular, it asks whether the environments and
expressions are of the intended types.

In the MGTT in Section 2.1, for example, the type debugger starts from the bottom of the tree and
reaches node(x + 1) ^ x as a result of executing step 1, because all of its child nodesare well typed.
Starting from this node, the type debugger asks the programmer if each subexpression has the intended
type.

If the programmer answers that all the child nodes have intended types, the current expression is
identified as the source of the type error, because the type ofx + 1 does not match the type of the first
argument of̂ . In this case, the identified expression is ill-typed.

On the other hand, if the programmer answers that the type ofx should bestring (in box B), the
nodex + 1 is identified as the source of the type error, because the typeof x is first forced toint here.
In this case, the identified expression is well-typed, but not well intended.

4 Report on a User Test and Extension of a Type Debugger for Novice Programmers

expression %

Application 30.2
Match expression 13.5
Constructor 11.4
Conditional 4.3
Recursive function 3.7
Environment 18.7
Syntax misunderstood 18.2

Table 1: Classification by expression

3 Analysis

In the spring of 2012, we used the type debugger in a “Functional Programming” course offered at our
university. The course was taken by 40 CS-major students. Although they had one-year of experience
writing C programs, it was the first time for them to write programs in a strongly-typed language. During
the course, the students learned OCaml and wrote a solution to the shortest path problem for the Tokyo
metro network. We instructed students to use the type debugger when they encountered type errors.
When (and only when) they used the type debugger, we collected the erroneous programs and their
interactions with the type debugger.

We analyzed the type-error logs in two ways:

1. Which expression was detected as the source of the type error?

2. How did the students change their programs after reading the error message?

3.1 Expressions identified as sources of type errors

Table 1 shows a breakdown of expressions identified as sources of type errors by the type debugger. We
collected 704 logs and classified them manually. Among the seven categories, the identified expression
was ill-typed in the first five categories and well-typed in the last two categories.

In this section, we describe typical type errors from the logs and analyze them to see if the type
debugger worked effectively.

Application. 30.2% of the sources of type errors were located in the application. After an application
expression was identified, the type debugger determined which of the arguments caused the type error. It
passed an increasing number of arguments, starting from thefirst one, to the function. The first argument
that caused a type error was shown to the programmer as the conflicting argument.

For example, a typical type error is shown below. The box in the program shows the highlighted part.

fun x -> (x + 1) ^ x 1

Error:

The first argument of this application causes a type error. (highlight 1)

In the error message, “this application” refers to the application of thê operator and “the
first argument” refers tox + 1. However, since thê operator uses infix notation, most students
had trouble understanding which expression “this application” refers to.

Yuki Ishii & Kenichi Asai 5

Moreover, even after students understood what “this application” refers to, the error message
was still not very helpful:

(* f : int list -> int -> int list *)

(* g : int list -> int list *)

let test = f (g lst) = [a; very; large; list;...] 1

Error:

The second argument of this application causes a type error. (highlight 1)

Although this error message suggests that “[a; very; large; list; ...]” is the source of the type
error, it is actually not. What caused this type error is thatthe student passed only one argument to
function f, which required two. It resulted in the type of= being(int -> int list) -> (int ->

int list) -> bool.
Since the error message mentions only the second argument, the students tended to check only the

large list and rarely found they had forgotten an argument for f (g lst). Even if the student could
understand the error message, it seemed to be of little help in finding and fixing the source of the type
error.

Match expression. As the course progressed, the programs that the students wrote became more com-
plicated. One sort of the complex expressions that the students wrote is match expressions. Here is an
example where a student struggled to correct a type error more than ten times.

type station_t = {start : string; destination : string; distance : float;}
type tree_t = Empty | Node of tree_t * string * (string * float) list * tree_t

let rec insert_station station_tree station =

match station with 3

[] -> [] 1

|{start = st; destination = dest; distance = dist;} :: rest ->

match station_tree with 2

Empty -> Node (Empty, st, [(dest, dist)],Empty)

| Node (t1, name, station_list, t2) ->

if name < st then

Node (t1, name, station_list, insert_station t2 station)

else if name > st then

Node (insert_station t1 station, name, station_list, t2)

else insert_name station_tree rest

Error:

This match expression causes a type error. (highlight 3)

The type error occurred because the match expression (in highlight 3) returns an empty list in high-
light 1 but a tree in highlight 2. However, after asking various questions, the type debugger identified the
whole match expression (highlight 3) as the source of the type error and responded with an uninforma-
tive error message. Because a large area (highlight 3) was identified as the source of the type error, the
student had a hard time finding out which part of the highlightwas wrong.

The source of the type error was identified as the whole match expression, because the type debugger
works at the level of expressions. It first checks whether allthe subexpressions are well-typed: i.e., it

6 Report on a User Test and Extension of a Type Debugger for Novice Programmers

checks whether the expression to be matched (station) as well as all the branches of the match expres-
sion are well-typed. When the student answers that their types are as intended, the debugger concludes
that type constraints of this match expression are not satisfied. Working at the level of expressions has
the benefit that we can build a type debugger without adding any expression-specific type constraints. If
we had to consider all the type constraints for all the expressions, it would have been difficult to support
all the constructs in OCaml. However, the fact that the students had to struggle debugging the above
program shows that we should actually consider expression-specific type constraints for common cases
so that we can provide more informative error messages.

Conditional expression. The same problem applies to conditional expressions. Whenever a condi-
tional expression is identified as the source of a type error,the type debugger shows the same error
message. However, a conditional expression has its own typeconstraints: the predicate part has to have
typebool and the two branches must have the same type. In these cases, it would be more informative
to show them in the error message.

Another common mistake regarding conditional expressionshappens when students forget to write
theelse branch. In this case, thethen branch must have theunit type. Even if students could answer
the questions asked by the type debugger correctly, they might still be puzzled by the error message,
saying that thethen branch must have theunit type, because theunit type is introduced in a later
stage of the course; they would not know what aunit is at this point.

Constructor. When students define a new data type, the types of the arguments are often wrong. For
example, suppose we have a tree withchar andint information at each node:

type tree_t = Empty

| Node of tree_t * char * int * tree_t

If a student forgets to write one of its argument, e.g.,Node (left, n, right), the type debugger
identifies this expression to be the source of the type error:after confirming that the student intended
the tuple to have the typetree_t * int * tree_t, it reports that the number of arguments ofNode

is four. However, since the definition ofNode is usually placed far before its use, the students would not
immediately see why four arguments instead of three are required.

Because constructors are not functions and are handled differently from functions in OCaml, the
current implementation of the type debugger does not ask theintended type of constructors, but rather
assumes that the types are as intended. The above problem could have been avoided if the type debugger
asked the intended type of the constructor and jumped back toits definition when it was different from
the inferred type.

Recursive functions. In some cases, students try to use a recursive function of a different type from
its definition. In such case, the current error message showsthe two types of recursive function: the type
inferred from the outermost structure and the type of its use. For example, for the following function
where the second argument togcd is missing at the recursive call:

let rec gcd m n = if n = 0 then m else gcd n 1

the type debugger shows the following error message:

While this expression has ’a -> int -> ’a,

you tried to use it as type int -> ’a for recursive call. (highlight 1)

Yuki Ishii & Kenichi Asai 7

Effective
appropriate expression,

but ineffective unrelated expression No changes

Application 36.3 18.2 12.5 33.0
Match expression 38.0 10.3 17.2 34.5
Constructor 20.7 17.2 6.9 55.2
Conditional 0 50.0 0 50.0
Recursive function 7.7 7.7 23.1 61.5

Table 2: Analysis by reaction of students (%)

Well-typed but unintended expressions. If a student answered that the type shown in the MGTT is
different from his or her intention, the type debugger traverses the MGTT to the node whose expression
is well-typed. This case can be divided into two subcases.

One subcase is when the type of a variable in the environment is not the intended one. This situation
is listed in Table 1 as “Environment”. Here, the first node where the type of the variable is forced as such
is identified as the source of the type error. From that, students can understand why the variable’s type is
not as intended.

The other subcase is when students misunderstand (or mistakenly use) syntax. This situation is listed
in Table 1 as “Syntax misunderstood”. For example, if a student writes a floating point number 1.2 as
1,2, it is well-typed asint * int, but not asfloat. Another example is to write a list of numbers[1;
2] using a comma[1, 2]. The latter is a singleton list of a pair of integers. In thesecases, the type
debugger shows the type of the expression, which is enough for students to understand the cause of the
type error most of the time.

3.2 Students’ reactions

For the first five cases of Table 1, we classified how the students changed their program after they had
read an error message from the type debugger in four ways, following Marceau et al. [9]:

1. An effective change that fixes the type error and brings thestudent closer to a solution.

2. An ineffective change to the appropriate expression.

3. A change to an expression that is unrelated to the type error.

4. No changes, such as inserting indentation or spaces.

We can judge the effectiveness of changes, because we know what the student is aiming for: the solutions
to the assignments. In addition, we use the purpose statement the student writes to guess his intention. In
the course, students were advised to follow the design recipe [3] and write a purpose statement together
with its type for each function definition. When we classifiedthe students’ reactions, we used this
information to judge if the change was effective. However, the type they write in the purpose statement
is often wrong.

Table 2 shows the classification of the students’ reactions.We found that not many programs could
be corrected effectively. Although students could fix nearly 40% of the type errors in applications or
match expressions, they could not make any changes to a thirdof them. Furthermore, more than 60% of
the type errors located in recursive functions were left unchanged.

We analyzed the application, match expressions, and conditional expressions as follows.

8 Report on a User Test and Extension of a Type Debugger for Novice Programmers

Application. When an application is detected as the source of a type error,the type debugger prints the
argument that caused the type error. As a result, the students often changed that argument or swapped
the arguments. However, they seemed to get in trouble when the infix notation was used, or the argument
was unintentionally higher-order (such as we saw in Section3.1).

Match expression. Students tended to change the wrong expression when the highlight covered a wide
area of the program. Since match expressions often include complicated data types, students sometimes
changed those complicated expressions to simpler ones without type errors and the students could iden-
tify where to fix them. This accounted for 38%, a relatively high percentage, of the effective changes.

Conditional expression. As we saw in Section 3.1, students tended to get in trouble when they forgot
to write else statements. In this case, they often changed thethen statement into something else and
rarely noticed that what they needed to do was add anelse statement.

4 Discussion

The analysis in Section 3 shows that there is plenty of room for improvement when it comes to helping
novice programmers use the type debugger effectively. Our main goal here is to help students understand
type errors and learn how to program in typed languages in general, by reading error messages of the
type debugger. In this section, we discuss the problems of the current type debugger as regards this goal.

The first problem is that the type debugger does not show enough information for programmers to
understand why the type errors occurred. As the second program of application in Section 3.1 shows,
students could not find the actual source of the type error in the first argument, because the type debug-
ger said the second argument caused the type error. Thus, rather than simply showing the first type-
conflicting argument, we should show more information, suchas the types of other arguments, so that
students can consider what went wrong.

The second problem is that the detected expressions are sometimes too large for students to find the
source of the type error. If the detected expression is ill-typed and violates a type constraint, the type
debugger should show it so that students can see immediatelywhat constraint is violated.

In light of these results and considerations, we decided to extend the type debugger in three ways.

1. Smaller highlights:
When ill-typed conditional or match expressions are detected as the source of the type error, we
use expression-specific type constraints to narrow the highlighted part. This also leads to novice-
friendly error messages.

2. Novice-friendly error messages:
In addition to expression-specific type error messages, we provide detailed information why the
type error occurred, in particular for applications.

3. Introduction of language levels [2] (as in Racket1):
To provide appropriate error messages, we prohibit the use of advanced language features that
students are not supposed to use.

We describe these extensions in the next section.

1http://racket-lang.org/

Yuki Ishii & Kenichi Asai 9

5 Extensions

5.1 Expression-specific error messages

As we saw in Section 2, the first step of type debugging detectsa node in a tree that is ill-typed but whose
child nodes are all well typed. If types of all its subexpressions are as intended, the type debugger reports
the current expression as the source of the type error. When the detected expression itself is ill-typed,
however, we want to have a detailed explanation as to why it isill-typed.

To provide programmers with more informative error messages, we introduce expression-specific
error messages for conditional expressions, match expressions, and applications. The basic idea is to add
annotations to the subexpressions of the ill-typed expression and see if they satisfy the type constraints
imposed by the expression.

5.1.1 Conditional expressions

The type constraints for conditional expressions are:

1. The predicate part must be of typebool.

2. When theelse branch is missing, thethen branch must be of typeunit.

3. When theelse branch is present, thethen andelse branches must have the same type.

To examine if these constraints are satisfied, the type debugger is extended to perform the following
checks:

1. The type debugger extracts the predicate part of the conditional expression and annotates it as
bool. It then passes the annotated predicate to the compiler’s type inferencer. If it reports a type
error, the type debugger identifies the predicate part as thesource of the type error.

2. When theelse branch is missing, the type debugger extracts thethen branch and annotates it as
unit. It then checks if the annotated branch type checks as in 1. Ifit does not, the type debugger
identifies thethen branch as the source of the type error.

3. When theelse branch is present, the type debugger constructs a list of thethen and else

branches and checks if it type checks. If it does not, the typedebugger identifies that the type
error occurred because the two branches had different types.

With this extension, the type debugger can provide better error messages for conditional expressions. For
example, before the extension, in all the following cases taken from the logs, the type debugger reported
the same error message, saying only that the conditional expression was the source of the type error. The
newly generated messages look as follows.

1. Predicate:

... if (try kekka_ kyori with Not_ found -> infinity) 1 then ...

Error:

The type of predicate statement is float, but it should be bool. (highlight 1)

2. Withoutelse statement:

... if (a + 1) < c then a + 1 1

Error:

The type of then statement is int but it should be unit. (highlight 1)

10 Report on a User Test and Extension of a Type Debugger for Novice Programmers

3. With else statement:

... if (a + 1) < c then a + 1 else print_int c 1

Error:

The type of then statement is int and else statement is unit,

but these should be the same type. (highlight 1)

In the error messages, the type debugger prints the types of related subprograms and how the program-
mers need to change it. Also, in the first two examples, the debugger uses smaller highlights, where only
detected subprograms are colored.

5.1.2 Match expressions

The type constraints for match expressions are:

1. The expression to be matched and all the patterns must havethe same type.

2. All the branches must have the same type.

We extended the type debugger to examine these constraints,as well as the conditional expressions.

1. The type debugger replaces all the branches with a dummy value (such as()) and checks if the
resulting match expression is well-typed. If it is not well-typed, the type debugger identifies the
first pattern that causes a type error by repeatedly removingthe last pattern-expression pair from
the list. If the first pattern already causes a type error, it means that the expression to be matched
and the first pattern do not have the same type.

2. If all the patterns have the same type as the expression to be matched, the type debugger performs
the same things for the original match expression: it repeatedly removes the last pattern-expression
pair from the list to identify the first expression that causes a type error.

We used an incremental algorithm for match expressions rather than putting all the branches into a list (as
we did for conditional expressions), because we want to check not only whether there is a type conflict
but also which one is in conflict. The above algorithm identifies the first conflicting branch in the given
match expression.

Using the extended type debugger, the error message of the example in Section 3.1 (match expres-
sion) becomes as follows:

Error:

The highlighted expression has type tree_t and

the previous expression has type ’a list,

but these should be the same type. (highlight 2)

In addition to printing the type of the detected subprogram in the error message, the type debugger
also prints other types (such as’a list in the example) to help programmers easily decide which one
to fix.

5.1.3 Applications

Since the type debugger already shows which argument causesthe type error in the error message, we did
not change its basic behavior. Instead, we changed the errormessage to print the types of the function,
all the arguments, and the required type for the detected expression.

For example, for the program in Section 1 where the programmer intends its type to beint ->

string, we have the following error message:

Yuki Ishii & Kenichi Asai 11

level 1 2 3 4

partial application
X X X

if withoutelse, unit, side effects
X X

Confusing operators (==, !=, or, &)
X

Table 3: Language levels

fun x -> (x + 1) ^ x 1

Error:

The first argument of this application causes a type error. (highlight 1)
The types of the function, its arguments, and the required type for the first

argument are:

Function (^): string -> string -> string

First argument: int

Second argument: ’a

Required for the first argument: string

The type of the second argument is’a, because our type debugger is compositional: the second argument
x does not impose any constraints on the type ofx.

5.2 Introduction of language levels

One of the observations gleaned from the logs is that many students forgot to write some of the necessary
arguments. Since OCaml is a higher-order language, passingfewer arguments does not necessarily mean
a type error. However, it often results in a complicated error message later, which mentions higher-order
types. To provide informative error messages in such cases,we extended the type debugger so that it
would have language levels [2], following Racket (See Table3).

Level 1. The Level 1 language is for beginners who do not know first-class functions. At this level,
whenever an application is identified as the source of a type error, the type debugger checks the type of
its arguments. If any of the arguments have higher-order types, it prints out the higher-order argument
with its type and suggests that some arguments might be missing. This way, the type debugger can point
out unintentional first-class function values. Such an error message can only be provided, because we
assume that students do not use partial applications at thisstage.

At language level 1, the error message for the example from Section 3.1 (application) becomes as
follows:

(* f : int list -> int -> int list *)

(* g : int list -> int list *)

let test = f (g lst) = [a; very; large; list; ...] 1

Error:

The second argument of this application causes a type error. (highlight 1)
Function (=): ’a -> ’a -> bool

First argument: int -> int list

Second argument: int list

12 Report on a User Test and Extension of a Type Debugger for Novice Programmers

Conditional Match Application

Subprograms % Subprograms % Subprograms %

Predicate 3.1 pattern 0 Argument 98.4
then notunit 78.1 exp andpattern 4.9 Difficult to explain 1.6
then andelse 9.4 expression 80.4
Difficult to explain 9.4 Difficult to explain 14.7

Table 4: Simulation of 2012 course

Conditional Match Application

Subprograms Level % Subprograms Level % Subprograms Level %

No else 1-2 1.5 pattern 1-3 4.9 Partial application 1-2 6.6
Predicate 1-3 0 exp andpattern 1-3 3.2 Argument 1-3 75.6
then notunit 3 4.5 expression 1-3 66.1 Non-function application 1-3 17.2
then andelse 1-3 73.1 Difficult to explain 1-3 25.8 Difficult to explain 1-3 0.6
Difficult to explain 1-3 20.9

Table 5: Preliminary analysis of 2014 course

The following arguments have the function type.

First argument: int -> int list

(some argument might be missing.)

At language levels higher than 1, the type debugger prints the types of the function and arguments. At
language level 1, the type debugger additionally prints thetypes of the higher-order arguments.

Level 2. Level 2 language is for students who know first-class functions but do not use side effects.
Side effects are introduced only near the end of the course. Until then, students are not allowed to use
side effects and do not know theunit type.

We have modified the OCaml parser to prohibit expressions related to side effects and theunit type:
if without else, for, while, assignments, and sequential execution. At language level(1 and) 2, we
can explicitly point out thatelse is missing and suggest to add it:

fun x -> if true then x + 1 1

Error:

The else statement is missing. (highlight 1)

Levels 3 and 4. We created one more level (level 3) before the full OCaml language (level 4). Language
level 3 prohibits the use of confusing operators,== and!=. These pointer equality operators are not used
in the course and are simply prohibited. Students are directed to use= and<>, respectively. Students are
also directed to use|| and&&, instead of deprecated operators,or and&, respectively.

Yuki Ishii & Kenichi Asai 13

6 Evaluation

We evaluated how much better the extended type debugger is incomparison with the previous one. First
we simulated what would have happened if we used the extendedtype debugger for the 2012 course. We
then did a preliminary analysis of the extended type debugger in the 2014 “Functional Programming”
course. We examined the difficult cases that we encountered in Section 7.1.

6.1 Simulation of 2012 course

Assuming that students answer the same as in the logs, we manually simulated what would have hap-
pened if we had the extended type debugger for the 2012 logs (Table 4). The columns Conditional and
Match in Table 4 summarize the results for the cases where thedetected expressions are ill-typed con-
ditional and match expressions, respectively. In both cases, we observe that the extended type debugger
can provide more specific error messages most of the time. We describe the “Difficult to explain” cases
in detail in Section 7.1.

For the cases where the detected expressions are ill-typed applications, we observed that in 98.4%
of all cases, the type debugger could show enough information from which students should be able to
understand the source of the type error. The remaining cases, 1.6% of all cases, are classified as difficult
(see Section 7.1).

6.2 Preliminary analysis of 2014 course

We used the extended type debugger in the 2014 “Functional Programming” course. This year,all the
user interactions, regardless of whether type errors occur, are logged, so that we can analyze students
behavior more accurately. To ease the classification efforts, we numbered the error messages to indicate
what the source of the type error is. Table 5 presents the initial results, showing the number of times the
classified errors occurred.

Most of the type errors in conditional expressions come fromtype conflicts betweenthen andelse
branches. There are only 1.5% of missing-else type error at language level 1. Similarly, the sources
of type errors for match expressions are mostly from conflicting expressions. In both cases, the type
debugger can provide specific error messages (except for “Difficult to explain” cases which are explained
in the next section).

For applications, “Partial application” means that some ofthe arguments are higher order. Since
partial applications are not used at level 1, this means thatstudents did not pass enough arguments. The
table shows that students often pass fewer arguments than necessary. The “Argument” means that all the
arguments are first order. In this case, the type debugger displays all the type information of the function
and its arguments.

Interestingly, not a few type application errors come from application of non-functions. Typically,
this happens when students forget “;” in a list (e.g.,[2; 1; 4 5] instead of[2; 1; 4; 5]) or when
students forget an infix operator (e.g.,"hello" "world" instead of"hello" ^ "world"). These
cases are handled by the type debugger without any problems.We separated these cases in order to give
a slightly better error messages, saying that the expression is parsed as an application but a function is
missing.

Overall, compared with the original type debugger, the extended version detects smaller expressions
as sources of type errors and gives more precise and informative error messages. We have found that
more students are trying to use the type debugger compared with two years ago.

14 Report on a User Test and Extension of a Type Debugger for Novice Programmers

7 Limitations

Overall, our type debugger detects and expresses where the sources of the type errors are, but we nonethe-
less found that it has some limitations.

7.1 Difficult cases

As we classify the logs, we encounter difficult cases where all the subexpressions are well-typed and
satisfy the necessary type constraints, but the whole expression does not type check. In all the cases, they
have a variable with conflicting types. Even though all the subexpressions are well-typed independently,
the same variable has one type in one subexpression and another type in other subexpressions. For
example, consider the following expression:

fun p -> fun q -> if p and (q = 1) then p else

After identifying the conditional expression as the sourceof the type error, the extended type debugger
checks whether subexpressions satisfy the type constraints as follows:

1. Annotate the predicatep and (q = 1) asbool and pass it to the compiler’s type inferencer. It
type checks with the environment{p : bool, q : int}.

2. Construct a list of branches[p; q] and pass it to the compiler’s type inferencer. It type checks
with the environment{p : ’a, q : ’a}.

Thus, each subexpression of the conditional satisfies the required type constraints independently. How-
ever, the two environments conflict with each other and are not unifiable.

It is not clear what informative error messages we can provide for such cases. Currently, our type
debugger prints out that some variable is used at two different types. If we were to implement a dedicated
type inferencer, we could say more specifically what had happened in this case. However, this is to the
disadvantage of our type debugger, where the compiler’s type inferencer is reused, thereby making it
easy to build a type debugger that is consistent with the compiler’s type inferencer. It is not clear either if
a dedicated type inferencer could actually give a better error message. In the future, we will investigate
how serious this case is for novice programmers and considerwhat we can do about it.

7.2 Type variables

In compositional type inference, since a variable does not impose any constraints on its type, the type
of a variable always exists: a type variable. Although the compositional type inference helps to identify
where the type of a variable is first forced to a specific type, showing type variables in the error message
can sometimes confuse students. For example, the followingprogram is taken from the 2012 logs:

let rec search tree name = match tree with

Empty -> Empty

| Node (t1, st, n, t2) -> if (st = name) then n

else search search t2 name 1

Error:

The first argument of this application causes a type

error. (highlight1)
The types of the function, its arguments, and the required type

for the first argument are:

Yuki Ishii & Kenichi Asai 15

Function: ’a

First argument: ’b

Second argument: ’c

Third argument: ’d

Required for the first argument: ’e

The type debugger reports (without asking any questions) that the last application is the source of the type
error. It does not ask any questions, because the application does not type check but all its subexpressions
trivially type check. (Remember a variable always type checks.) As a result, the extended type debugger
lists all the arguments whose types are all type variables.

One might think that we can at least say that the type of function and the type of the first argument
are the same type variable. To do so, however, one is probablyrequired to implement a dedicated type
inferencer. Even if we could implement it, it is not at all clear how to explain why the type error occurs.

7.3 Users’ input

Our type debugger requires users’ input. This can be both an advantage and a disadvantage. Without
asking questions, it is impossible in general to locate a single source of a type error that reflects the
users’ intentions. By asking questions, our type debugger exactly locates the source of a type error. On
the other hand, it means that the result depends on the users’answer. If a student inputs a wrong answer
for some reason, e.g., as a result of misunderstanding the questions, or a lack of knowledge on types, the
type debugger would identify a different place as the sourceof the type error. From our experience so
far, we feel that questions raised by the type debugger make students think about types of expressions
more seriously, which is nice from the pedagogic point of view. However, we need more experience to
draw a definite conclusion.

8 Related work

To produce understandable and appropriate error messages,Heeren, Hage, and Swierstra [6] divided
type inference in the Helium compiler for Haskell into two phases: generation of type constraints and
solving of type constraints. When unsolvable type constraints are found during the constraint satisfaction
phase, they are output as type error messages. By controlling which type constraint to remove from the
unsolvable ones, we gain control over which expression to blame. By registering a specific error message
to each type constraint, we can not only tailor type error messages [7], but also show possible fixes for
typical error cases, such as proposing similar ‘sibling’ operators. As such, Helium has been successfully
used in a classroom setting with many expression-specific error messages [5].

We share with Helium’s authors the goal of producing better error messages. To ascertain the pro-
grammers’ intentions, we employ an interactive approach where the debugger asks questions on the
types of expressions. Once the source of a type error is identified, the technique used in Helium will be
valuable to enhance error messages.

Interactive type debugging was proposed by Chitil [1] for a small subset of Haskell. This was fol-
lowed by Tsushima and Asai [16] for full OCaml. A similar approach was taken by Stuckey, Sulzmann,
and Wazny [15], who implemented an interactive type debugger for Haskell (including various advanced
features). As in Helium, they produce type constraints and find the minimal conflicting set to narrow
down the possible cause of type errors. By adding type constraints interactively, the programmer can
express his intention and be led to the sources of the type errors.

16 Report on a User Test and Extension of a Type Debugger for Novice Programmers

A conflicting set of type constraints is called atypeerrorslice [4]. Among the type error slices, the
minimal one is useful for type debugging because it containsthe smallest set of type constraints that lead
to a type error. The minimal type error slice can be automatically obtained without any inputs on the
programmer’s intention. Rahli, Wells, and Kamareddine implemented a type error slicer for the full set
of SML [11].

Writing a dedicated type error slicer is not an easy task. Schilling [12] designed a type error
slicer without implementing a dedicated type inferencer but by reusing the compiler’s type inferencer.
Tsushima and Asai followed this approach [17]. Lerner, Grossman, and Chambers used the compiler’s
type inferencer to propose a possible fix to a type error. Theyenumerated possible changes to an ill-
typed program and check whether the modified programs type check using compiler’s type inferencer as
a black box. If they type checked, they are shown as possible fixes of the type error.

The compositional type inference used in our type debugger is based on the one proposed by Chitil
[1]. Compositional type inference can identify where the type of a variable is first fixed locally without
being affected by the surrounding expressions. A similar approach is used in theUAE system by Yang
[18], which can report which parts of a program have type conflicts. Note that theUAE system is in
accord with most of the manifesto for good error messages [19].

There are also many studies and user tests about the reactions of novice programmers while they
are programming. Marceau et al. reported on novice programmers using Racket [8, 9]. They analyzed
the effectiveness of each error message of the Racket language. We basically followed their advice in
designing the error messages of our type debugger. There is areport [10] that classified and discussed the
efficiency of debugging methods for Java programs (e.g., inserting printf, use of JavaDoc or debuggers,
and narrowing erroneous programs by commenting out). Whilethey focused on the methods of debug-
ging, our user tests focused more on the reactions of programmers. Spohrer and Soloway analyzed bugs
in Pascal code written by novice programmers [14]. They classified bugs not only by expressions but also
by the users’ intention (“plan”). They categorized bugs into “correct plan but wrong implementation”
and “wrong plan and implementation”. This paper also focused on the intentions of users in order to
detect the sources of type errors.

The idea of pedagogical language levels is attributed to Felleisen, Findler, Flatt, and Krishnamurthi
[2]. They proposed an alternative role for functional programming for novices. The idea of dividing
a language into levels is widely used in the Racket language.It has many useful language levels from
beginners to experts. The Racket language levels are used not only for providing better error messages
but also for avoiding unnecessary advanced syntax, among others. We imported this idea to improve the
error messages of the type debugger. The Helium compiler employs simple language levels via a flag.
When the flag is off, overloading is turned off and error messages no longer mention type classes.

9 Conclusion and future work

In this paper, we analyzed the logs of our interactive type debugger from the 2012 functional language
course in our university. Although the type debugger workedwell for some cases, the analysis showed
that expression-specific and more informative error messages are desired. According to these observa-
tions, we extended the type debugger to provide expression-specific error messages for conditional and
match We evaluated the resulting type debugger with logs from 2012 and showed a preliminary analysis
of the logs from the 2014 course. In both cases, we showed thatthe type debugger provides more infor-
mative error messages in most of the cases. We also showed difficult cases where a variable was used in
conflicting types.

Yuki Ishii & Kenichi Asai 17

Although a thorough evaluation of the type debugger requires a full analysis of the logs from the
2014 course, we have the impression that the type debugger deals with most of the common type errors
properly.

We plan to further pursue the following directions in the future. First, we want to analyze the new
logs from the 2014 course and see if there are cases the current type debugger cannot handle well. We
already found some cases where expression-specific handling is required, such astry with blocks.
Supporting them is essential to making the type debugger robust. On a related note, an automatic log
analysis could be an interesting topic. The amount of logs isbecoming large and it is simply unrealistic
to manually analyze them.

Once the type debugger covers most of the common errors, we want to build a taxonomy of common
type errors of novice programmers. We could then create a document describing typical errors, which
novices can study. In particular, we found type errors that can be identified by the type debugger but
more information in the error message would be useful. For example, not a few students write only an
exception (e.g.,Not_found) without raising it. Another example is to forget writing a dereference (!)
before a reference. In such cases, the type debugger could show typical related mistakes.

We also plan to use the type debugger in the upper level courseto see if it is useful for medium-level
programmers. In that case, the programs to be debugged are large and the number of questions will
increase. To reduce the number of questions, we could introduce type-error slices. The type debugger is
not only for novice programmers: it is also for experts to use.

10 Acknowledgement

We appreciate the valuable feedback and constructive comments by the reviewers.

References

[1] O. Chitil. (2001): Compositional Explanation of Types and Algorithmic Debugging of Type Errors. In:
ICFP ’01 Proceedings of 6th ACM SIGPLAN International Conference on Functional Programming, pp.
193–204, doi:10.1145/507656.507659. Available athttp://dl.acm.org/citation.cfm?id=507659.

[2] M. Felleisen, R.B. Findler, M. Flatt & S. Krishnamurthi (2004): The Structure and Interpretation of
the Computer Science Curriculum. In:Journal of Functional Programming, pp. 365–378, doi:10.1017/
S0956796804005076. Available athttp://journals.cambridge.org/action/displayAbstract?
fromPage=online&aid=227683&fileId=S0956796804005076.

[3] M. Felleisen, R.B. Findler, M. Flatt & S. Krishnamurthi (2014):How to Design Programs, 2nd edition. Cam-
bridge: MIT Press.

[4] C. Haack & J.B. Wells (2004):Type Error Slicing in Implicitly Typed Higher-Order Languages. In:Science
of Computer Programming, the 12th European symposium on programming (ESOP’03), 50, pp. 189–224,
doi:10.1016/j.scico.2004.01.004.

[5] J. Hage & B. Heeren (2007):Heuristics for Type Error Discovery and Recovery. In:Implementation and
Application of Functional Languages (IFL’06), 4449, pp. 199–216, doi:10.1007/978-3-540-74130-5_
12.

[6] B. Heeren, J. Hage & S.D. Swierstra (2003):Constraint Based Type Inferencing in Helium. In:Workshop
Proceedings of Immediate Applications of Constraint Programming, pp. 59–80.

[7] B. Heeren, J. Hage & S.D. Swierstra (2003):Scripting the Type Inference Process. In:the 8th ACM SIG-
PLAN international conference on Functional programming (ICFP’03), pp. 3–13, doi:10.1145/944705.
944707. Available athttp://dl.acm.org/citation.cfm?doid=944705.944707.

http://dx.doi.org/10.1145/507656.507659
http://dl.acm.org/citation.cfm?id=507659
http://dx.doi.org/10.1017/S0956796804005076
http://dx.doi.org/10.1017/S0956796804005076
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=227683&fileId=S0956796804005076
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=227683&fileId=S0956796804005076
http://dx.doi.org/10.1016/j.scico.2004.01.004
http://dx.doi.org/10.1007/978-3-540-74130-5_12
http://dx.doi.org/10.1007/978-3-540-74130-5_12
http://dx.doi.org/10.1145/944705.944707
http://dx.doi.org/10.1145/944705.944707
http://dl.acm.org/citation.cfm?doid=944705.944707

18 Report on a User Test and Extension of a Type Debugger for Novice Programmers

[8] G. Marceau, K. Fisler & S. Krishnamurthi (2011):Measuring the Effectiveness of Error Messages
Designed for Novice Programmers. In:SIGCSE ’11 Proceedings of the 42nd ACM technical symposium
on Computer science education, pp. 499–504, doi:10.1145/1953163.1953308. Available athttp://dl.
acm.org/citation.cfm?id=1953163.1953308.

[9] G. Marceau, K. Fisler & S. Krishnamurthi (2011):Mind Your Language: On Novices’ Interactions
with Error Messages. In:ONWARD ’11 Proceedings of the 10th SIGPLAN symposium on New ideas,
new paradigms, and reflections on programming and software, pp. 3–18, doi:10.1145/2048237.2048241.
Available athttp://dl.acm.org/citation.cfm?id=2048241.

[10] L. Murphy & et al. (2008): Debugging: The Good, the Bad, and the Quirky – a Qualitative Analysis of
Novices’ Strategies. In:SIGCSE ’08 Proceedings of the 39th SIGCSE technical symposium on Com-
puter science education, pp. 163–167, doi:10.1145/1352135.1352191. Available athttp://dl.acm.
org/citation.cfm?id=1352191.

[11] V. Rahli, J.B. Wells & F. Kamareddine (2010):A constraint system for a SML type error slicer. Technical
Report, Technical Report HW-MACS-TR-0079, Heriot-Watt university.

[12] T. Schilling (2012): Constraint Free Type Error Slicing. In:the 12th international conference on Trends
in Functional Programming (TFP’ 11), pp. 1–16, doi:10.1007/978-3-642-32037-8_1. Available at
http://link.springer.com/chapter/10.1007%2F978-3-642-32037-8_1.

[13] E.Y. Shapiro (1983):Algorithmic Program Debugging. Ph.D. thesis, Yale. Available athttp://dl.acm.
org/citation.cfm?id=538679.

[14] J.C. Spohrer & E. Soloway (1986):Novice Mistakes: Are The Folk Wisdoms Correct?Communications of
the ACM29, pp. 624–632, doi:10.1145/6138.6145. Available athttp://dl.acm.org/citation.cfm?
id=6145.

[15] P.J. Stuckey, M. Sulzmann & J. Wazny (2003):Interactive Type Debugging in Haskell. In:The 2003 ACM
SIGPLAN workshop on Haskell, pp. 72–83, doi:10.1145/871895.871903. Available athttp://dl.acm.
org/citation.cfm?doid=871895.871903.

[16] K. Tsushima & K. Asai (2012):An Embedded Type Debugger. In:Implementation and Application of
Functional Languages (IFL’ 12), 8241, pp. 190–206, doi:10.1007/978-3-642-41582-1_12. Available at
http://link.springer.com/chapter/10.1007/978-3-642-41582-1_12.

[17] K. Tsushima & K. Asai (2013):A Weighted Type Error Slicer. In:Implementation and Application of Func-
tional Languages, Lecture Notes in Computer Science 8241 (IFL’ 13), pp. 190–206.

[18] J. Yang (2010):Explaining Type Errors by Finding the Source of a Type Conflict. In: Trends in Functional
Programming, pp. 58–66. Available athttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.21.8146.

[19] J. Yang, G. Michaelson, P. Trinder, & J.B. Wells (2000):Improved Type Error Reporting. In:[Draft] Proc.
12th Int’l Workshop on Implementation of Functional Languages, Aachen, Germany, pp. 4–7. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.6846.

http://dx.doi.org/10.1145/1953163.1953308
http://dl.acm.org/citation.cfm?id=1953163.1953308
http://dl.acm.org/citation.cfm?id=1953163.1953308
http://dx.doi.org/10.1145/2048237.2048241
http://dl.acm.org/citation.cfm?id=2048241
http://dx.doi.org/10.1145/1352135.1352191
http://dl.acm.org/citation.cfm?id=1352191
http://dl.acm.org/citation.cfm?id=1352191
http://dx.doi.org/10.1007/978-3-642-32037-8_1
http://link.springer.com/chapter/10.1007%2F978-3-642-32037-8_1
http://dl.acm.org/citation.cfm?id=538679
http://dl.acm.org/citation.cfm?id=538679
http://dx.doi.org/10.1145/6138.6145
http://dl.acm.org/citation.cfm?id=6145
http://dl.acm.org/citation.cfm?id=6145
http://dx.doi.org/10.1145/871895.871903
http://dl.acm.org/citation.cfm?doid=871895.871903
http://dl.acm.org/citation.cfm?doid=871895.871903
http://dx.doi.org/10.1007/978-3-642-41582-1_12
http://link.springer.com/chapter/10.1007/978-3-642-41582-1_12
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8146
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8146
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.6846

	1 Introduction
	2 Type debugger
	2.1 Most General Type Tree
	2.2 Algorithmic Programming Debugging
	2.3 Detecting type errors

	3 Analysis
	3.1 Expressions identified as sources of type errors
	3.2 Students' reactions

	4 Discussion
	5 Extensions
	5.1 Expression-specific error messages
	5.1.1 Conditional expressions
	5.1.2 Match expressions
	5.1.3 Applications

	5.2 Introduction of language levels

	6 Evaluation
	6.1 Simulation of 2012 course
	6.2 Preliminary analysis of 2014 course

	7 Limitations
	7.1 Difficult cases
	7.2 Type variables
	7.3 Users' input

	8 Related work
	9 Conclusion and future work
	10 Acknowledgement

