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We present the approach underlying a cours®omain-Specific Languages of Mathemafit§],
currently being developed at Chalmers in response to difégsufaced by third-year students in
learning and applying classical mathematics (mainly redl @@mplex analysis). The main idea is
to encourage the students to approach mathematical dofnainsa functional programming per-
spective: to identify the main functions and types involeadi, when necessary, to introduce new
abstractions; to give calculational proofs; to pay atmmto the syntax of the mathematical expres-
sions; and, finally, to organise the resulting functions types in domain-specific languages.

1 Introduction

In an article published in 2000 [20], de Moor and Gibbonstdigrpresenting an exam question for a
first-year course on algorithm design. The question was a®y, dout it also did not seem patrticularly
difficult. Still:

In the exam itself, however, no one got the answer right, paugmtly this kind of question
is too hard. That is discouraging, especially in view of thghly sophisticated problems that
the same students can solve in mathematics exams. Why isaprogng so much harder?

Fifteen year later, we are confronted at Chalmers with th@sjpe problem: many third-year stu-
dents are having unusual difficulties in courses involvilagsical mathematics (especially analysis, real
and complex) and its applications, while they seem quitalsiEpof dealing with “highly sophisticated
problems” in computer science and software engineeringy MMmathematics so much harder?

One of the reasons for that is, we suspect, that by the thadthese students have grown very famil-
iar with what could be called “the computer science persgectFor example, computer science places
strong emphasis on syntax and introduces conceptual tmotetcribing it and resolving potential am-
biguities. In contrast to this, mathematical notation iefambiguous and context-dependent, and there
is no attempt to even make this ambiguity explicit (Sussmah\Wisdom talk about “variables whose
meaning depends upon and changes with context, as well asithaf impressionistic mathematics that
goes along with the use of such variables”, seé [25]).

Further, proofs in computer science tend to be more forni@naising an equational logic format
with explicit mention of the rules that justify a given steghereas mathematical proofs are presented in
natural language, with many steps being justified by an dppdatuition and to the semantical content,
leaving a more precise justification to the reader. Unfately, the task of providing such a justification
requires a certain amount of expertise, and can be disdogr&ythe beginner.

Mathematics requires (and rewards) active study. Halnmog ook that cannot be strongly enough
recommended, phrases it as follows ([13], page 69):

J. Jeuring and J. McCarthy (Eds.): Trends in
Functional Programming in Education (TFPIE)
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It's been said before and often, but it cannot be overempédsistudy actively. Don't just
read it; fight it!

but, as in the case of proofs, following this advice requamse expertise, otherwise it risks being taken
in too physical a sense.

In this paper, we present the approach underlying a cour&opamin-Specific Languages of Math-
ematicg[16], which is currently being developed at Chalmers tovédlie these problems. The main idea
is to show the students that they are, in fact, well-equippeidke an active approach to mathematics:
they need only apply the software engineering and compuience tools they have acquired in the rest
of their studies. The students should approach a matheahdtain in the same way they would any
other domain they are supposed to model as a software system.

In particular, we are referring to the approach that a fumeti programmer would take. Functional
programming deals with Modelling in terms of types and pungctions, and this seems to be ideal for
a domain where functions are natural objects of study, aridhwi possibly the only one where we can
be certain that data is immutable.

Additionally, functional programming has, from the vengbming, been connected to the notion of
mathematical proof. For example, the influential languadewds originally developed in the 70s to be
“a medium in which proofs . ..can be expressed, as well asstieualgorithms for finding those proofs”
(12, page 205).

Explicitly introducing functions and their types, ofteritlenplicit in mathematical texts, is an easy
way to begin an active approach to study. Moreover, it seagea way of relating new concepts to
familiar ones: even in continuous mathematics, many fonstiturn out to be variants of the standard
Haskell ones (not surprising, considering that the formemwften the inspiration for the latter). Finally,
the explicit elements we introduce can be reasoned aboueaddo proofs in a more calculational style.
Sectior 2 presents these elements in detail.

Section B deals with the higher-level question of the oggtion of our types and functions. We
emphasiselomain-specific languagébSLs, [9]), since they are a good fit for the mathematical diorn
which can itself be seen as a collection of specialised laggs. Moreover, building DSLs is increasingly
becoming a standard industry practicé [8]. Empirical stadihow that DSLs can lead to fundamental
increases in productivity, above alternative modellingrapches such as UML[27]. The course we are
developing will exercise and develop new skills in desigrmd implementing DSLs. The students will
not simply use previously acquired software engineeringegise, but also extend it, which can be an
important motivating aspect.

Both sections contain simple examples to illustrate our@gagh to an active reading of mathematical
texts. The text we are reading is the standard textbook us€tamers in the analysis course for first
year students (Adams and EsséX, [1]), though we shall aatalby cite a few other texts as well. At this
stage, it is important that we prevent a potentially graveumderstanding of our intentions. We do not
present the results of the active reading as an ideal peggEnbf the mathematical concepts involved!
That a presentation which is too explicit and complete céntihe readers of a precious opportunity to
exercise themselves is known to mathematicians at least SiescartesGeometryf6]:

But I shall not stop to explain this in more detail, becaudelsd deprive you of the pleasure
of mastering it yourself, as well as of the advantage of ingityour mind by working over
it, which is in my opinion the principal benefit to be derivedrh this science.

On the other hand, th@eometrywas considered too obscure to be read and didn’t gain in papul
until van Schooten’s explanatory edition, so perhaps tieereom for compromise. In any case, both
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mathematicians[([29, 17]) and computer scientists! ([12hd}e argued that the computer science per-
spective could bring a valuable contribution to mathenahiclucation: we see our work as a step in this
direction.

We have been referring to the computer science studentsadn@is since they are our main target
audience, but we hope we can also attract some of the matiesrsaitdents. Indeed, for the latter the
course can serve as an introduction to functional programrand to DSLs by means of examples with
which they are familiar. Thus, ideally, the course would ioye the mathematical education of computer
scientists and the computer science education of mathearai

A word of warning. We assume familiarity with Haskell (thdugot with calculus), and we will take
certain notational and semantic liberties with it. For eplanmwe will use : for the typing relation, instead
of ::, and we will assume the existence of the set-theoletiatatypes and operations used in classical
analysis, even though they are not implementable. For ebearme assume we have at our disposal a
powerset operatio?, (classical) real numbef®, choice operations, and so on. We shall also use the
standard notation for intervals, which can lead to an oeelileg of the Haskell list notatiorjd, b] may
denote a closed interval or a two-element list, dependinthercontext).

This paper, some associated source code and the DSLsofBlatsecmaterial is being collected on
GitHub: https://github.com/DSLsofMath. Contributions are welcome!

2 Functions and types

One of the most useful actions of the student of a mathenhatixtis to identify and type the functions
involved. If the notation she uses is inadequate for thippse, then her ability will be severely impaired.
This is one of the main reasons for using functional prograrmgnas the basis of our “requirements
engineering” in a mathematical domain.

Many important mathematical objects are functions. Ardyahe basic objects of study in under-
graduate analysis are sequences of one type or anotherer®eguare usually defined as functions of
positive integers (for example in Rudin_|24]); for the fuoaal programmer it is perhaps more natural
to model them as functions of natural numbers, usingN — X where a mathematician would write
{an} or similar. For brevity, we shall us¢ to denote & or C, as is common in undergraduate analysis,
but in a classroom setting this could also be an opportuaigxplain type classes suchldam

The notion oflimit is first defined for sequences. The operation of taking thi lgran example of
a higher-order function:

lim: (N - X) - X

Higher-order functions are ubiquitous in mathematicalysis, hence the importance of using a notation
that supports them in a simple way. In fact, although we vatluse it in this paper, it is often necessary
to account fordependent typedntervals can, for instance, be represented as depengmy, tand all
interval operations are naturally dependently-typed. uchscases, we would prefer to use the notation
of Agda [22]14] or Idris[[5].

Convergent sequences can be used to represent real nuimlidh® use of sequences is much more
diverse. We can think of the sequence of coefficients as asyhat can be given multiple interpreta-
tions:

e the sequence represents the coefficients of a series. loabés the semantics is usually given in
terms of the limit (if it exists) of the sequence of partiahsi
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2 (N=>X) =X
>f = lims where sn= sum(mapf[0 .. nJ)

¢ the sequence represents the coefficients of a power semnidisis Icase, the semantics is that of a
function, whose values are defined in terms of the evaluati@nseries:

Powers : (N — X) —» (X — X)
Powers ax= Xf where fn = anxx"

Power series are perhafte fundamental concept of undergraduate analysis and itscapiphs:

they lead to elementary and analytic functions, they arestheling point for the Fourier and

Laplace transformations, interval analysis, etc. Theggfthe student might find it puzzling that

in most textbooks they do not have a symbolic representatidineir own, outside the somewhat

unwieldy 5 anX".

n=0
The absence of explicit types in mathematical texts can Soras lead to confusing formulations.

For example, a standard text on differential equations bydtds, Penney and Calvis| [7] contains at
page 266 the following remark:

The differentiation operatdd can be viewed as a transformation which, when applied to the
functionf (t), yields the new functio® {f (t)} = f’ (t). The Laplace transformatio’
involves the operation of integration and yields the newcfiom . {f (t)} = F (s) of a
new independent variabke

This is meant to introduce a distinction between “operdtosach as differentiation, which take
functions to functions of the same type, and “transformsithsas the Laplace transform, which take
functions to functions of a new type. To the logician or thenpaiter scientist, the way of phrasing this
difference in the quoted text sounds strange: surelypémeeof the independent variable does not matter:
the Laplace transformation could very well return a functid the “old” variablet. We can understand
that the name of the variable is used to carry semantic mgabout its type (this is also common in
functional programming, for example with the conventionsé ofasto denote a list ohs). Moreover,
by using this (implicit!) convention, it is easier to dealtlvcases such as that of the Hartley transform,
which does not change the type of the input function, buteratheinterpretationof that type. We prefer
to always give explicit typings rather than relying on sytitzal conventions, and to use type synonyms
for the case in which we have different interpretations ef$hme type. In the example of the Laplace
transformation, this leads to

typeT=R
type S= C
Z: (T—>C) — (S— Q)

In the following subsection, we present two simple examplietclose reading” a mathematical text,
trying to identify and type the functions involved, and ttate them to the familiar elements of functional
programming.

2.1 Two examples

Consider the following statement of the completeness ptpper R ([1], page 4):
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The completenesproperty of the real number system is more subtle and difftoulinder-
stand. One way to state it is as follows:Afis any set of real numbers having at least one
number in it, and if there exists a real numlavith the property that < yfor everyx € A
(such a numbey is called arupper bound for A), then there exists a smallest such number,
called theleast upper boundor supremum of A, and denotedup(A). Roughly speaking,
this says that there can be no holes or gaps on the real liner-pwint corresponds to a
real number.

The functional programmer trying to make sense of this ‘ieudnd difficult to understand” property
will start by making explicit the functions involved:

sup: TR - R

supis defined only for those subsetsRfwhich are bounded from above; for these it returns the least
upper bound.

Functional programmers are acquainted with a large nunfletandard functions. Among these are
minimumandmaximumwhich return the smallest and the largest element of a diven-empty) list. It
is easy enough to specify set versions of these functiongx@mmple:

min : TR - R
mnNnA=Xx < (xe€ A) A (Vae A x< a)

min on sets enjoys similar properties to its list counterparti some are easier to prove in this context,
since the structure is simpler (no duplicates, no orderfrgjeaments). For example, we have

If y<minA theny ¢ A.

Exploring the relationship between the “new” functismpand the familiamin andmaxcan dispel
some of the difficulties involved in the completeness priypéror examplesup Ais similar tomax A if
the latter is defined, then so is the former, and they are eGuékup Ais also the smallest element of a
set, which suggests a connectiom. To see this, introduce the function

ubs : ZR — ZR
ubs A= {x | x € R, x upper bound of A
={x|xeR VaecA a<x}

which returns the set of upper boundsfofThe completeness axiom can be stated as
Assume arA : &t R with an upper bound € ubs A
Thens = sup A= min (ubs A exists.

where

sup: TR - R
sup = min o ubs

So, now we know that for any bounded setve have a supremusy: R, butsneed not be iA — could
there be a “gap”? (An example set couldde= {7 —1/n | n € NT}withs = supA=7 ¢ A)If
we by “gap” mean “arg-neighbourhood betweehands’ we can prove there is in fact no “gap”.
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The explicit introduction of functions such absallows us to give calculational proofs in the style
introduced by Wim Feijen and used in many computer sciendedeoks, especially in functional pro-
gramming (such proofs are more amenable to automatic \aitfic see for example the algebra of
programming library implemented in Agda [21]). For examjifies = sup A

O<e

= {arithmetic }
S—€<S

= { s = min(ubs A, property ofminfrom above }
S—¢& ¢ ubsA

=  {set membership }
-Yae Aa<s—¢

= {quantifier negation }
Jae A s—eg<a

= { definition of upper bound }
dJaec A s—eg<a<s

= {subtracts, use0 < ¢}
Jae A —eg<a—s<e¢

= {absolute value }
JdJae A (Jla—g<¢)

= {introduce the neighbourhood functioh: X — R.o — & X}
Jae A ae Vse

This simple proof shows that we can always find an elemeAtasf near tesup Aas we want, which
explains perhaps the above statement “Roughly speakimg cfimpleteness axiom] says that there can
be no holes or gaps on the real line—every point correspandsdal number.”

As another example of work on the text, consider the follgndefinition ([1], page A-23):

Limit of a sequence

We say thatim x, = L if for every positive numbet there exists a positive numbiir =
N (&) such thaix, — L| < € holds wheneven > N.

There are many opportunities for functional programmeiapialy their craft here, such as

e giving an explicit typinglim : (N — X) — X and writinglim x in order to avoid the impression
that the result depends on some particular vajjie

e giving an explicit typing for the absolute value functipr : X — Rxo;

e introducing explicitly the functiolN : R.g — N;

e introducing a neighbourhood functidh: X — R.g — & X with

Vxe ={X | X € X, X —x <€}
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These are all just changes in the notation of elements gingas$ent in the text (theeighbourhood
function V is introduced in Adams, but first on page 567, long after theptdr on sequences and con-
vergence, page 495). Many real analysis textbooks adofacinthe one or the other of these changes.
However, functional programmers will probably observet tie expressiom, ... whenever n> N
refers to theNth tail of the sequence, i.e., to the elements remaining tfeefirstN elements have been
dropped. This recalls the familiar Haskell functidrop : Int — [a] — [a], which can be recast to suit
the new context:

drop: N - (N - X) - (N — X)
dopnf=A(G(:N) - f(n+1i
Drop: N —- (N —» X) - #X
Drop nf = range(drop nf)
={filieNn<i}

The functionDrop has many properties, for example:
e anti-monotone in the first argument
m< n= Dropnf C Dropmf

in particularDrop nf C Drop Of for all n;
e if f isincreasing, then, for anypandn

ubs(Drop mf) = ubs(Drop nf)
and therefore, iDrop O f is bounded

sup(Drop mf) = sup(Drop n f)

e if f isincreasing, then

Dropnf C [f n, )

Using Drop, we have that

limf =L
=
AN :R.o - N. Ve € Roo. Drop(Ng)f C ViLe

This formulation has the advantage of eliminating one ofttiree quantifiers in the definition of
limit. In general, introducing functions and operations fanctions leads to fewer quantifiers. For
example, we could lift inclusion of sets to the function lever f, g : A — £ B define

fCg<«<= VacA facCga
and we could eliminate the quantification®ébove:

dN:R.o -+ N. Ve € R.o. Drop(Ng)f C VLe
=
AN :R.o — N. (fipDropf o N) C VL
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The application offlip is necessary to bring the arguments in the correct order. hisseixample
shows, sometimes the price of eliminating quantifiers catobéigh.

We can show that increasing sequences which are boundedafsowe are convergent. LEtbe a
sequence bounded from above (i.e., with= Drop O f there is somal € ubs A, and lets = sup A
Then, we know from our previous example thha € A. a € V s¢ for any €. Or equivalently,
Ve € Ry Ji € N. fi € V se. Finally by swapping quantifier order and introducing thene& for
the function that determinedrom € we obtaind N : R.o — N. f (N¢g) € V se.

If f is increasing, we have

Drop (N ¢) f
C {fincreasing}
[f (N€), sup(Drop (N ¢€)f)]
= { fincreasing= sup(Dropnf) = sup(Drop 0f) = s}
[f (N¢), 5]
C {f(Ng) e Vse}
V se

As before, the introduction of a new function has helped latirey familiar elements (the standard
Haskell functiondrop) to new ones (the concept of limit) and to formulate proofa galculational style.

3 Domain-specific languages

There is no clear-cut line between libraries and DSLs, andtions differ. For example, in Chapter 8 of
Thinking Functionally with Haske([3]), Richard Bird presents a language for pretty-prigtifocuments
based on Wadler’s chapter Tihe Fun of Programmin{8], but refers to it as a library, only mentioning
DSLs in the chapter notes.

Both libraries and DSLs are collections of types and fumgioneant to represent concepts from
a domain at a high level of abstraction. What separates a B&h & library is, in our opinion, the
deliberate separation of syntax from semantics, which satufe of all programming languages (and,
arguably, of languages in general).

As we have seen above, in mathematics the syntactical eteraem sometimes conflated with the
semantical onesf(t) versusf(s), for example), and disentangling the two aspects can be poartemt
aid in coming to terms with a mathematical text. Hence, ouplegsis on DSLs rather than libraries.

The distinction between syntax and semantics is, in fadte gommon in mathematics, often hiding
behind the keyword “formal”’. For examplgrmal power seriegre an attempt to present the theory of
power series restricted to their syntactic aspects, imbig# of their semantic interpretations in terms
of convergence (in the various domains of real numbers, mpumbers, intervals of reals, etc.).
The “formalist” texts of Bourbaki present various domaifismathematics by emphasising their formal
properties &xiomatic structurg then relating those in terms of “lower levels”, with thewviest levels
expressed in terms of set theory (so, for example, groupsndialy introduced axiomatically, then
various interpretations are discussed, such as “groupsiéformations”, which in turn are interpreted
in terms of endo-functions, which are ultimately repreedras sets of ordered pairs). Currently, however,
even the most “formalist” mathematical texts offer to thenpoiter scientist many opportunities for active
reading.
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3.1 A case study: complex numbers

To illustrate the above, we present an analytic reading efiitroduction of complex numbers in/[1].
The simplicity of the domain is meant to allow the reader togamtrate on the essential elements of
our approach without the distraction of potentially unféanimathematical concepts. Because of the
exemplary character of this section, we bracket our previmowledge and approach the text as we
would a completely new domain, even if that leads to a someesaggerated attention to detail.

Adams and Essex introduce complex numbers in Appendix 1. s€bgonDefinition of Complex
Numbersbegins with:

We begin by defining the symbalcalledthe imaginary unit, to have the property
2= -1

Thus, we could also callithe square root of 1 and denote it/—1. Of coursej is not a real
number; no real number has a negative square.

At this stage, it is not clear what the typeia$ meant to be, we only know thiis not a real number.
Moreover, we do not know what operations are possiblé @mly thati? is another name for1 (but
it is not obvious that, say i is related in any way witfi?, since the operations of multiplication and
squaring have only been introduced so far for numericalygueh a¥N or R, and not for symbols).

For the moment, we introduce a type for the vailuand, since we know nothing about other values,
we make the only member of this type:

datal = i

(We have taken the liberty of introducing a lowercase cowstr, which would cause a syntax error in
Haskell.)
Next, we have the following definition:

Definition: A complex numberis an expression of the form
a+ bi or a-+ib,

wherea andb are real numbers, ands the imaginary unit.

This definition clearly points to the introduction of a synt@otice the keyword “form”). This
is underlined by the presentation wfo forms, which can suggest that the operation of juxtaposing
(multiplication?) is not commutative.

A profitable way of dealing with such concrete syntax in fum@al programming is to introduce an
abstract representation of it in the form of a datatype:

data Complex= Pluss RR |
| PlugzRIR

We can give the translation from the abstract syntax to tinerete syntax as a functi@how

show . Complex— String
show(Plus; xyi) = show x+ " + " 4+ showy4+ "i"
show(Plug xiy) = show x4+ " + " 4+ "i" + showy

The text continues with examples:
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Forexample3+ 2i, 5 — 3i,im = 0+im,and—3 = —3+ 0i are all complex numbers.
The last of these examples shows that every real number caegbeded as a complex
number.

The second example is somewhat problematic: it does not sebmof the forma + bi. Given that
the last two examples seem to introduce shorthand for vagomplex numbers, let us assume that this
one does as well, and that- bi can be understood as an abbreviatiom ef (—b) i.

With this provision, in our notation the examples are wnt#sPlus; 3 21, Plus; % (— %) i,Plus0im,
Plus; (—3) 0i. We interpret the sentence “The last of these examples .o.fhéan that there is an
embedding of the real numbers@omplex which we introduce explicitly:

toComplex: R — Complex
toComplex x= Plus; x0i

Again, at this stage there are many open questions. For ézame can assume tht stands for the
complex numbePlus, 0 1, but what about by itself? If juxtaposition is meant to denote some sort of
multiplication, then perhapkcan be considered as a unit, in which case we would have dbatreviates
i1 and thereforé’lus, 0i 1. But what about, say, i? Abbreviations with have only been introduced for
theib form, and not for thédi one!

The text then continues with a parenthetical remark whidhshes dispel these doubits:

(We will normally usea + bi unlessb is a complicated expression, in which case we will
write a + ib instead. Either form is acceptable.)

This remark suggests strongly that the two syntactic forresx@eant to denote the same elements,
since otherwise it would be strange to say “either form iseptable”. After all, they are acceptable by
definition.

Given thata + ib is only “syntactic sugar” fola + bi, we can simplify our representation for the
abstract syntax, eliminating one of the constructors:

data Complex= PlusR R |

In fact, since it doesn’t look as though the tybwill receive more elements, we can dispense with it
altogether:

data Complex= PlusIR R

(The renaming of the constructor frdatusto Plusl serves as a guard against the case we have suppressed
potentially semantically relevant syntax.)
We read further:

It is often convenient to represent a complex number by desietier;w andzare frequently
used for this purpose. H, b, x, andy are real numbers, andl = a + bi andz = x + i,

then we can refer to the complex numberandz. Note thatw = zif and only ifa = x

andb = vy.

First, let us notice that we are given an important semantarmation: Plusl is not just syntactically
injective (as all constructors are), but also semanticdllye equality on complex numbers is what we
would obtain in Haskell by usinderiving Eq
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This shows that complex numbers are, in fact, isomorphib pétirs of real numbers, a point which
we can make explicit by re-formulating the definition in terof a type synonym:

newtype Complex= C (R, R)

The point of the somewhat confusing discussion of usingetst to stand for complex numbers is to
introduce a substitute fgrattern matchingas in the following definition:

Definition: If z = x + yi is a complex number (whepeandy are real), we calk thereal
part of zand denote iRe(z). We cally theimaginary part of zand denote itm (2):

Re(z) = Re(x+vyi) =

X
Im(z) = Im(xX+vyi) =y

This is rather similar to Haskell'as-patterns

Re: Complex — R
Rez®(C (x, y)) = X

Im: Complex — R
Imz@(C(x y) =y

a potential source of confusion being that the syn#iatroduced by the as-pattern is not actually used

on the right-hand side of the equations.
The use of as-patterns such as £ x + yi” is repeated throughout the text, for example in the

definition of the algebraic operations on complex numbers:

The sum and difference of complex numbers
If w = a+ biandz = x+ vyi, wherea, b, x, andy are real numbers, then

w+z= (a+x)+ (b+y)i
w—z=(a—x)+(b—y)i

With the introduction of algebraic operations, the languad complex numbers becomes much
richer. We can describe these operations ishallow embeddingn terms of the concrete datatype
Complexfor example:

(+) : Complex— Complex— Complex
(C(ab)+(Cxy) =C(@t+x),(b+y)

or we can build a datatype of “syntactic” Complex numbersnfithe algebraic operations to arrive at a
deep embedding

data ComplexSyntax= i

| ToComplex®

| Plus ComplexSyntax ComplexSyntax
| Times ComplexSyntax ComplexSyntax
|



12 DSLs of Mathematics

The typeComplexSyntagan then be turned into an abstract datatype, by hiding fvesentation and
providing corresponding operations like) = Plus etc. Deep embedding offers a cleaner separation
between syntax and semantics, making it possible to congpatéactor out the common parts of various
languages. For the computer science students, this is a fagypooaching structural algebra; for the
mathematics students, this is a way to learn the ideas ababslatatypes, type classes, folds, by relating
them to the familiar notions of mathematical structures laochomorphisms (see [110] for a discussion
of the relationships between deep and shallow embeddingj$cdats). We want to show the students
both the shallow and the deep approach and help them una@rstaen more or less focus on syntax is
helpful.

Adams and Essex then proceed to introduce the geometripiiatation of complex numbers, i.e.,
the isomorphism between complex numbers and points in tlebdean plane as pairs of coordinates.
The isomorphism is not given a name, but we can use the cotwt defined above. They then define
the polar representation of complex humbers, in terms ofulusdand argument:

The distance from the origin to the poif#, b) corresponding to the complex numher=
a -+ biis called themodulus of w and is denoted bjw| or |a + bil:

lw| = |a+ bi| = vaz+b?

If the line from the origin to(a, b) makes angleéd with the positive direction of the real
axis (with positive angles measured counterclockwisen tle call@ anargument of the
complex numbew = a+ bi and denote it byrg (w) or arg (a + bi).

Here, the constant repetitions of“= a + bi” and “f (w) or f (a+ bi)” are caused not just by the
unavailability of pattern-matching, but also by the abseoicthe explicit isomorphisrit. We need only
use|C (a, b)| = va2+b?, making clear that the modulus and arguments are actudilyedeby pattern
matching.

Once the principal argument has been defined as the uniqumaryg in the interva(— m, 1, the
way is opened to a different interpretation of complex nuraljasually called th@olar representation
of complex numbers):

newtype Complek = C' (Rxq, (— 1, 1)

C’ constructs a “geometric” complex number from a non-negatiodulus and a principal argument; the
(non-implementable) constraints on the types ensure gniggs of representation.

The importance of this alternative representation is thebperations on its elements have a different
natural interpretation, namely as geometrical operatidfer example, multiplication witlC’ (m, 6)
represents a re-scaling of the Euclidean plane with a fantaroupled with a rotation with anglé.
Thus, multiplication withi (which isC’ (1, 7) in polar representation) results in a counterclockwise
rotation of the plane by 90 This interpretation of seems independent of the originally proposed
arithmetical one (“the square root of -1"), and the polarrespntation of complex numbers leads to
a different, geometrical language.

It can be an interesting exercise to develop this languaggcédings, rotations, etc.) “from scratch”,
without reference to complex numbers. In a deep embeddirggeisult is a datatype representing a syn-
tax that is quite different from the one suggested by thelalije operations. The fact that this language
can also be given semantics in terms of complex numbers ¢baldbe seen as somewhat surprising,
and certainly in need of proof. This would introduce in a dengetting the fact that many fundamental
theorems in mathematics establish that two languages ifgraht syntaxes have, in fact, the same
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semantics. A more elaborate example is that of the identitheolanguage of matrix manipulations as
implemented in Matlab and that of linear transformationsth& undergraduate level, the most striking
example is perhaps that of the identity of holomorphic fiomg (the language of complex derivatives)
and (regular) analytic functions (the language of complexqr series).

4 Conclusions and future work

We have presented the basic ingredients of an approachdéatfunctional programming as a way of
helping students deal with classical mathematics and fiBcagtions:

e make functions and the types explicit
e use types as carriers of semantic information, not justiseginames

e introduce functions and types for implicit operations sashthe power series interpretation of a
seqguence

e use a calculational style for proofs

e organise the types and functions in DSLs

Given the main course objective, enabling the students tterbiackle mathematical domains by
applying the computing science perspective, we intend tasome how well the students do in ulterior
courses that require mathematical competence. For examplsvill measure the percentage of stu-
dents who, having taken DSLsofMath, pass the third-yearsesransforms, signals and systeisnrsd
Control Theory (Reglerteknikyvhich are current major stumbling blocks. Since the cowileat least
initially, be an elective one, we will also have the poséipibf comparing the results with those of a
control group (students who have not taken the course).

The lessons in this course will be organised around theeart®ding of mathematical texts (suitably
prepared in advance). In the opening lessons, we will detid domains of mathematics which are
relatively close to functional programming, such as eleagncategory theory, in order to have the
chance to introduce newcomers to functional programmind the students in general to our approach.

After that, the selection of the subjects will mostly be dietd by the requirements of the engineering
curriculum. They will contain:

basic properties of complex numbers

the exponential function

elementary functions

holomorphic functions

the Laplace transform

We shall take advantage of the fact that some parts of thesestbave been treated before from a
functional programming perspective [18, 19] 23].

One of the important course elements we have left out of thpepis that of using the modelling
effort performed in the course for the production of actuakmematical software. One of the reasons
for this omission is that we wanted to concentrate on the moneeptual part that corresponds to the
specification of that software, and as such is a prerequiie The development of implementations on
the basis of these specifications will be the topic of moshefeaxercise sessions we will organise. That
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the computational representation of mathematical cosaspt greatly help with their understanding was
conclusively shown by Sussman and Wisdom in their recerk boalifferential geometry [26].

On the other hand, classical mathematical theorems oftehtenon-implementable specifications
(for example, there is no algorithm for finding the minima amaxima of arbitrary continuous functions
on a closed interval, although we have an easy classicaf pfotheir existence). There are many
possibilities of dealing with such cases, and we shall egptmme of them in the exercises sessions.
For instance, in scientific programming, one is often irder@ in correctness “up to implication”: the
program would work as expected, say, if one would use realbeusninstead of floating-point values.
Such counterfactuals are impossible to test but they candmled as types and proven[15].

We believe that this approach can offer an introduction tmmater science for the mathematics
students. We plan to actively involve the mathematics fgcatl Chalmers, via guest lectures and reg-
ular meetings, in order to find the suitable middle ground Wedad to in the introduction: between a
presentation that is too explicit, turning the student iatspectator of endless details, and one that is
too implicit and leaves so much for the students to do that #nie overwhelmed. Ideally, some of the
features of our approach would be worked into the earlieheragtical courses.

The computer science perspective has been quite succiessfillliencing the presentation of discrete
mathematics. For example, the classical textbook of GndsszhneiderA Logical Approach to Discrete
Math [11]], has been well-received by both computer scientists rmathematicians. When it comes
to continuous mathematics, however, there is no such irdau¢m be felt. The work presented here
represents the starting point of an attempt to change thie sf affairs.
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