
J. Jeuring and J. McCarthy (Eds.): Trends in
Functional Programming in Education (TFPIE)
EPTCS 230, 2016, pp. 31–46, doi:10.4204/EPTCS.230.3

Learn Quantum Mechanics with Haskell

Scott N. Walck
Department of Physics
Lebanon Valley College

Annville, Pennsylvania, USA

walck@lvc.edu

To learn quantum mechanics, one must become adept in the use of various mathematical structures
that make up the theory; one must also become familiar with some basic laboratory experiments that
the theory is designed to explain. The laboratory ideas are naturally expressed in one language, and
the theoretical ideas in another. We present a method for learning quantum mechanics that begins
with a laboratory language for the description and simulation of simple but essential laboratory ex-
periments, so that students can gain some intuition about the phenomena that a theory of quantum
mechanics needs to explain. Then, in parallel with the introduction of the mathematical framework
on which quantum mechanics is based, we introduce a calculational language for describing impor-
tant mathematical objects and operations, allowing students to do calculations in quantum mechanics,
including calculations that cannot be done by hand. Finally, we ask students to use the calculational
language to implement a simplified version of the laboratorylanguage, bringing together the theoret-
ical and laboratory ideas.

1 Introduction

The theories of twentieth-century physics employ mathematical objects that are quite removed from our
everyday experience of the world and surprisingly removed from the description of the experiments that
led to or provided evidence for those theories. Certainly theoretical concepts have motivated and guided
experiments—experimental design is awash in theory—but ifwe consider the simplest description of an
experiment, as a chef might write a recipe for a lay cook, the language would not include references to
the abstract objects that structure the theorist’s calculations.

We focus in this paper on the theory of quantum mechanics, andin particular on the behavior of
spin-1/2 particles, some of the very simplest quantum systems which nevertheless contain the essential
features of quantum mechanics. We present a Haskell-based method for learning quantum mechanics
that takes place within a senior-level quantum mechanics course. Students in the course may have no
experience with Haskell or programming at all. We take the attitude of Papert[4] and others[8, 9, 1,
12] that students are aided in their learning by having building blocks with which to create interesting
structures, that such creative activity is a motivating andeffective way to learn, and that the feedback
provided by computer-language-based building blocks can expose our confusions and produce delight in
our achievements.

The paper is organized as follows. In section 2, we introducea laboratory language for the description
of experiments with spin-1/2 particles. In section 3, we describe a calculational language for working
with kets and operators, the abstract objects used to do calculations. In section 4, we describe a simplified
laboratory language that students are asked to implement using the calculational language.

http://dx.doi.org/10.4204/EPTCS.230.3


32 Learn Quantum Mechanics with Haskell

Oven
Ag

Inhomogeneous
magnetic field

Figure 1: The Stern-Gerlach experiment.

2 Laboratory Language

The Stern-Gerlach experiment was performed by Otto Stern and Walther Gerlach in 1922, a time when
the theory of quantum mechanics was being developed. The experiment demonstrates the quantiza-
tion of angular momentum, which we now know comes in integer and half-integer multiples of̄h,
Planck’s constant. Several modern quantum mechanics textbooks begin the subject with the Stern-
Gerlach experiment.[7, 10, 6] The Feynman Lectures also introduce the Stern-Gerlach experiment early
in the volume on quantum mechanics.[2]

A schematic of the Stern-Gerlach experiment is shown in Figure 1. Silver (Ag) atoms are heated in
an oven and made into a beam by passing through small holes. Stern and Gerlach chose silver because,
with a single electron in its outer shell, it mimics the magnetic behavior of an electron. The electron and
the silver atom each possess amagnetic dipole moment, that is, they behave like tiny bar magnets in the
presence of a magnetic field. Such a magnetic dipole moment will feel a torque, an urge to rotate, in
the presence of a magnetic field, and will moreover feel a force if the magnetic field isinhomogeneous,
changing from one position in space to another.

The Stern-Gerlach experiment aims to produce a force on the silver atoms with an inhomogeneous
magnetic field oriented in a particular direction, say thez direction. The silver atoms in the beam are
then expected to deflect upward or downward in thez direction, depending on the extent to which their
magnetic dipole moments (vectors oriented along the imagined tiny bar magnets) point in the negative or
positivez direction. Classical (pre-quantum) physics predicts thatthe random distribution of magnetic
dipole moments coming from the oven should produce a continuous spectrum of deflection of the silver
atom beam.

Instead, what is seen in the experiment is that the beam splits into two beams, and produces two
spots on a detecting screen. Gerlach called this “directional quantization”[10], and, since magnetic
dipole moment is proportional to angular momentum, we now think of this as quantization of angular
momentum. The electron and the silver atom are called spin-1/2 particles because thez-component of
angular momentum for particles in one of the two beams is(1/2)h̄, and that in other beam is−(1/2)h̄.
Spin-1/2 particles are particles that have two outcomes in aStern-Gerlach experiment (as such, they are
examples of quantum bits, or qubits). Although we won’t talkabout them in this paper, it may be helpful
to know that spin-1 particles have three outcomes in a Stern-Gerlach type experiment, spin-3/2 particles
have four outcomes, and so on.

Our aim is to use Stern-Gerlach technology to split beams, recombine beams, and act on single beams
with uniform magnetic fields. For this purpose, we now introduce the central data type in the laboratory



Scott N. Walck 33

data BeamStack

randomBeam :: BeamStack

dropBeam :: BeamStack -> BeamStack

flipBeams :: BeamStack -> BeamStack

Figure 2: TheBeamStack data type is a collection of beams organized into a stack. Thestack consisting
of a single beam coming out of an oven is calledrandomBeam. The functiondropBeam removes the top
beam from the stack. The functionflipBeams interchanges the order of the top two beams on the stack.

language, theBeamStack. As in an RPN (reverse Polish notation) calculator, the datatype maintains a
stack of beams to be acted on in various ways. Figure 2 showsBeamStack as an opaque data type. Since
the primary pedagogical purpose of the laboratory languageis to use it to explore what can happen in
experimental setups that the user can design, the focus is not on the implementation of theBeamStack
data type. Also shown in Figure 2 is an initialBeamStack, calledrandomBeam, for the single beam
coming out of the oven, and a couple of utility functions to manipulate the stack. These functions and the
rest of the laboratory language are available in the modulePhysics.Learn.BeamStack in the learn-
physicspackage[11].

We can learn quite a bit more from the Stern-Gerlach experiment if we can do sequential Stern-
Gerlach measurements, that is if we can take one of the outcoming beams from the inhomogeneous
magnetic field and send it into another Stern-Gerlach device. For this purpose it is helpful to have a
Stern-Gerlach splitter that creates two parallel beams. Such a device is shown in Figure 3(a). The key to
making the beams parallel is to put an oppositely directed inhomogeneous magnetic field immediately
after the first field to deflect the beams back to parallel.

A schematic view of the SG (Stern-Gerlach) beam splitter is shown in Figure 3(b), which is labeled
with the laboratory language functionsplitZ. ThesplitZ function takes aBeamStack as input, pops
the top beam off of the stack, and replaces it with two new beams. The lower beam on the right side of
the splitter (thespin-downbeam) is placed on the top of the stack. Figure 3(c) lists functions for beam
splitters in various directions.

The quantum mechanics book by Townsend[10] gives a sequenceof SG experiments that help to
show what a theory of quantum mechanics needs to explain, or at least predict. Townsend’s Experiment 1
is designed to show that although there is randomness in the measurement of spin-1/2 particles, there is
not complete randomness in every measurement. In Experiment 1, shown in Figure 4, thez-spin-up
beam of the first SG splitter goes into a second SG splitter oriented in the same direction. The results
show that when a beam ofz-spin-up particles enter az-splitter, the entire beam comes out withz-spin-up.
The intensity of 0.0 in thez-spin-down beam coming out of the second splitter represents a beam of no
particles, or no beam at all. Part (b) of Figure 4 shows the useof the laboratory language in GHCi to carry
out Experiment 1. The stack is shown so that the top beam on thestack is printed last, or at the bottom of
the printed list. We use thedropBeam function because we have no further use for thez-spin-down beam
exiting the first splitter. It is not necessary to drop the beam; we could have flipped the beams instead to
act with the second splitter on the beam we want while continuing to include all beams in the stack.

In Experiment 1, a combination of splitting and dropping occurs that is calledfiltering. The first
splitter is used to filter the beam for particles that have spin-up in thez direction. The filtering operation
happens often enough that it is useful to name it. Figure 5 shows several filtering functions that we will
use in upcoming experiments.

In Townsend’s Experiment 2, shown in Figure 6, the secondz-splitter of Experiment 1 is replaced



34 Learn Quantum Mechanics with Haskell

Inhomogeneous
magnetic field

Opposite
magnetic field

z

(a)

splitZ

(b)

splitX :: BeamStack -> BeamStack

splitY :: BeamStack -> BeamStack

splitZ :: BeamStack -> BeamStack

split :: Radians -> Radians -> BeamStack -> BeamStack

(c)

Figure 3: The Stern-Gerlach beam splitter. (a) A Stern-Gerlach splitter oriented in thez direction. (b)
Schematic representation of the splitter in thez direction, using thesplitZ function from part (c) of
the figure. (c) Laboratory language functions for Stern-Gerlach beam splitters oriented in thex, y, and
z directions. Thesplit function takes two spherical coordinates in radians as arguments so that the
splitting can be done in an arbitrary direction. (Radians is a type synonym forDouble.) These functions
act on the top (most recent) beam of the stack, remove that beam from the stack, and replace it with two
new beams.



Scott N. Walck 35

1.0
splitZ

0.5

0.5

splitZ

0.5

0.0

(a)

GHCi, version 7.10.2: http://www.haskell.org/ghc/ :? for help

Prelude> :m Physics.Learn.BeamStack

Prelude Physics.Learn.BeamStack> randomBeam

Beam of intensity 1.0

Prelude Physics.Learn.BeamStack> splitZ it

Beam of intensity 0.5

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> dropBeam it

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> splitZ it

Beam of intensity 0.5

Beam of intensity 0.0

(b)

Figure 4: Townsend’s[10] Experiment 1. (a) Measuring the same thing twice in succession gives the
same results. Every particle that is found to deflect in the positive z direction at the first splitter also
deflects in the positivez direction at the second splitter. We see this from the intensities. The entire
intensity of 0.5 that enters the second splitter comes out with positive deflection. The intensity of 0.0
in the negatively deflected beam means that no particles are deflected in the negativez direction at the
second splitter. (b) A GHCi transcript showing use of the laboratory language to obtain the results of
Experiment 1. The beam at the top of the stack is the last beam printed and hence appears at the bottom
of the list.



36 Learn Quantum Mechanics with Haskell

xpFilter :: BeamStack -> BeamStack

xpFilter = dropBeam . splitX

xmFilter :: BeamStack -> BeamStack

xmFilter = dropBeam . flipBeams . splitX

zpFilter :: BeamStack -> BeamStack

zpFilter = dropBeam . splitZ

zmFilter :: BeamStack -> BeamStack

zmFilter = dropBeam . flipBeams . splitZ

Figure 5: Filtering is the composition of splitting and dropping. The functionxpFilter keeps only the
beam that deflected in the positivex direction. Since the beam that deflected in the negativex direction is
placed on the top of the stack in thesplit function, we merely have to drop it. The functionxmFilter
keeps only the beam that deflected in the negativex direction. Since the beam that deflected in the
negativex direction is placed on the top of the stack in thesplit function, we need to flip the beams on
the stack so that we drop the positivex beam. The functionsypFilter andymFilter could, of course,
also be defined.

by anx-splitter. We see that an incoming beam ofz-spin-up particles experiences a 50/50 split at the
x-splitter. Although it is not shown in the figure, an incomingbeam ofz-spin-down particles will also
experience a 50/50 split at anx-splitter.

Townsend’s Experiment 3 extends Experiment 2 with a third splitter, so that the orientations of the
splitters arez thenx thenz. At the output of the last splitter, we now have equal intensities ofz-spin-up
andz-spin-down beams. This result may be surprising or puzzlingwhen compared with Experiment 1,
in which a secondz-splitter sends all of the particles in the direction in which they split at a previousz-
splitter. In Experiment 3, all of the particles entering thelastz-splitter had previously split upward at the
first z-splitter, yet now half of those entering the lastz-splitter are splitting downward. Experiment 3 can
also be viewed as inserting a filter forx-spin-up particles between the splitters of Experiment 1. Clearly
this filter is having a significant and strange effect on the final splitting. It seems as though the particles
have “forgotten” that they had previously split upwards at az-splitter. This is a crucial observation that
will need to be reflected in the theory.

Experiment 3 shows that the upper beam exiting thex-splitter will undergo a 50/50 split at the sub-
sequentz-splitter. It is also the case, as can be tested with the laboratory language, that the lower beam
exiting thex-splitter will also undergo a 50/50 split if sent into az-splitter.

We can recombine two beams with the same kind of inhomogeneous magnetic fields that we used
to split a beam. Figure 8 shows an SG recombiner. Recombiningis not as intuitive as it might seem.
If the two beams that enter a recombiner did not come from a splitter in the same direction, there is no
guarantee that they will bend the right way to merge them intoa single beam. For example, flipping two
beams before recombining will generally give different results (and often a beam intensity of zero) from
simply recombining the two beams.1

Townsend’s Experiment 4, shown in Figure 9, builds on Experiment 3 by adding anx-recombiner
after thex-splitter. From Experiment 3, we know that each of the beams with intensity 0.25 in Fig-

1I thank my student Justin Cammarota for noticing this and bringing it to my attention.



Scott N. Walck 37

1.0
splitZ

0.5

0.5

splitX

0.25

0.25

(a)

1.0
zpFilter

0.5
splitX

0.25

0.25

(b)

GHCi, version 7.10.2: http://www.haskell.org/ghc/ :? for help

Prelude> :m Physics.Learn.BeamStack

Prelude Physics.Learn.BeamStack> zpFilter randomBeam

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> splitX it

Beam of intensity 0.25000000000000006

Beam of intensity 0.24999999999999994

(c)

Figure 6: Townsend’s Experiment 2. (a) Schematic diagram with splitters. (b) Alternate diagram of the
same experiment using a filter. (c) GHCi transcript.



38 Learn Quantum Mechanics with Haskell

1.0
splitZ

0.5

0.5

splitX

0.25

0.25

splitZ

0.125

0.125

(a)

Prelude Physics.Learn.BeamStack> randomBeam

Beam of intensity 1.0

Prelude Physics.Learn.BeamStack> splitZ it

Beam of intensity 0.5

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> dropBeam it

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> splitX it

Beam of intensity 0.25000000000000006

Beam of intensity 0.24999999999999994

Prelude Physics.Learn.BeamStack> dropBeam it

Beam of intensity 0.25000000000000006

Prelude Physics.Learn.BeamStack> splitZ it

Beam of intensity 0.12500000000000006

Beam of intensity 0.125

(b)

Figure 7: Townsend’s Experiment 3. Some particles split downward at the lastz-splitter, even though all
particles entering the lastz-splitter have previously split upward at the firstz-splitter. This tempers the
results of Experiment 1, which showed that no particles would split downward at the secondz-splitter
after they had split upward at the firstz-splitter. Reconciling Experiments 1 and 3 is an important job for
the theory. (a) Schematic diagram with splitters. (b) GHCi transcript. There are many alternate ways to
do this, including using filters.



Scott N. Walck 39

Inhomogeneous
magnetic field

Opposite
magnetic field

z

(a)

recombineZ

(b)

recombineX :: BeamStack -> BeamStack

recombineY :: BeamStack -> BeamStack

recombineZ :: BeamStack -> BeamStack

recombine :: Radians -> Radians -> BeamStack -> BeamStack

(c)

Figure 8: The Stern-Gerlach beam recombiner. (a) A Stern-Gerlach recombiner oriented in thez direc-
tion. (b) Schematic representation of the recombiner in thez direction, using therecombineZ function
from part (c) of the figure. (c) Stern-Gerlach beam recombiners oriented in thex, y, andzdirections. The
recombine function takes two spherical coordinates in radians as arguments so that the recombining can
be done in an arbitrary direction. These functions act on thetop two beams of the stack, remove those
beams from the stack, and replace them with a single new beam.



40 Learn Quantum Mechanics with Haskell

1.0
splitZ

0.5

0.5

splitX

0.25

0.25
recombineX

0.5
splitZ

0.5

0.0

(a)

Prelude Physics.Learn.BeamStack> randomBeam

Beam of intensity 1.0

Prelude Physics.Learn.BeamStack> splitZ it

Beam of intensity 0.5

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> dropBeam it

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> splitX it

Beam of intensity 0.25000000000000006

Beam of intensity 0.24999999999999994

Prelude Physics.Learn.BeamStack> recombineX it

Beam of intensity 0.5

Prelude Physics.Learn.BeamStack> splitZ it

Beam of intensity 0.5

Beam of intensity 0.0

(b)

Figure 9: Townsend’s Experiment 4. One way to view this experiment is that anx-splitter-recombiner
pair has been inserted into the apparatus of Experiment 1, and the same results are obtained as in Exper-
iment 1. A second way to view this experiment is that two beams, each of which would produce a 50/50
split in asplitZ, are being recombined into a beam that produces a 100/0 splitin asplitZ.

ure 9 would experience a 50/50 split at az-splitter. Recombining the two beams before thez-splitter
produces a 100/0 split! The finalz-splitter produces noz-spin-down particles, just as the finalz-splitter
in Experiment 1 produced noz-spin-down particles. Whereas thex-splitter in Experiment 3 disturbed
the repeatability of thez-splitter results in Experiment 1, thex-splitter-recombiner combination in Ex-
periment 4 does not disturb the repeatability. This is another result that the theory will need to deal
with.

Of course we can use the laboratory language to go beyond Townsend’s experiments. Students can
invent other configurations of splitters and recombiners and see if the results match their expectations.

The last basic building block of the laboratory language is application of a uniform magnetic field
to a beam. A magnetic field can be applied in a particular direction with a certain strength for a certain
amount of time. The functions to do this are as follows.

applyBFieldX :: Radians -> BeamStack -> BeamStack

applyBFieldY :: Radians -> BeamStack -> BeamStack

applyBFieldZ :: Radians -> BeamStack -> BeamStack

applyBField :: Radians -> Radians -> Radians -> BeamStack -> BeamStack

These functions apply a uniform magnetic field to the top beamof the stack. In the function



Scott N. Walck 41

applyBFieldX, the Radians argument is an angle in radians that represents a combination of the
strength of the applied magnetic field and the duration over which it is applied. TheapplyBField
function takes two spherical coordinates as arguments to represent the direction of the applied magnetic
field, and a third numerical argument to represent the combination of magnetic field strength and time
over which the field is applied.

Here are some example puzzles for students to work on as they explore the laboratory language.

• First, find a sequence of two filters such that no particles exit the second filter (no particles is the
same as a beam of zero intensity). Now, is it possible to find a third filter to place between the first
two, such that particles now flow from the last filter? If this is possible, we may need to adjust our
intuition about what a filter is.

• Can you find a direction and duration for a uniform magnetic field to act on a beam exiting a
zpFilter so that the entire beam intensity will make it through anxpFilter? Does this suggest
a way to think about what a uniform magnetic field does?

• In Townsend’s Experiment 4, suppose we apply a uniform magnetic field in thex direction to the
lower beam between thex-splitter andx-recombiner. If the duration of application of the magnetic
field is zero, the results will match that of Experiment 4. What is the next shortest duration when
the results match again? Is the answer surprising?

Students seemed happy to play with the laboratory language,and some came up with interesting
situations. I gave almost no instruction on how to use GHCi orHaskell, yet students seemed to make
good progress. That function application takes precedenceover operations such as division was not
intuitive for my students. Most surprising to me was that while students asked questions about a variety
of issues, no one sought clarification about why they were getting errors from the compiler. They just
tried different things until something worked. I learned that I need to be proactive about explaining error
messages.

3 Calculational Language

Quantum Theory claims that the state of affairs for a particle is described by a vector in a complex vector
space. In the case of a spin-1/2 particle, the vector can describe the state of the particle as it exits a
Stern-Gerlach splitter, for example. Paul Dirac created a notation based on the inner product, or bracket
〈φ |ψ〉, calling 〈φ | abra and|ψ〉 aket. The bra vector is dual to the ket vector. Jerzy Karczmarczukgave
an early implementation of kets in Haskell.[3] Figure 10 shows ket vectors for spin-1/2 particles. The
calculational language is available in the modulePhysics.Learn.Ket in thelearn-physicspackage[11].

Physical quantities such as position, momentum, angular momentum, and energy are represented
by linear operators in quantum mechanics. For a spin-1/2 particle, the observables of interest are com-
ponents of angular momentum in various directions. We denote by Sx, Sy, andSz the x-, y-, andz-
components of spin angular momentum. The Pauli operatorsσx, σy, andσz are then defined bySx =

h̄
2σx,

Sy =
h̄
2σy, andSz =

h̄
2σz. These Pauli operators are implemented assx, sy, andsz in Figure 11.

The power of Dirac’s notation is in the Dirac product, which is associative. As shown in the equation
below, the expression|x+〉〈x+|y+〉 can be regarded either as an operator acting on a ket (as shownat
the left end of the equation, where the Dirac product of a ket and a bra is anouter product, producing
an operator), or as the scalar product of a ket and an inner product (as shown at the right end of the
equation).

(|x+〉 〈x+|) |y+〉= |x+〉〈x+|y+〉= |x+〉 (〈x+|y+〉)



42 Learn Quantum Mechanics with Haskell

data Ket

xp :: Ket |x+〉= 1√
2
|z+〉+ 1√

2
|z−〉

xm :: Ket |x−〉= 1√
2
|z+〉− 1√

2
|z−〉

yp :: Ket |y+〉= 1√
2
|z+〉+ i√

2
|z−〉

ym :: Ket |y−〉= 1√
2
|z+〉− i√

2
|z−〉

zp :: Ket |z+〉
zm :: Ket |z−〉
np :: Radians -> Radians -> Ket |n+(θ ,φ)〉 = cosθ

2 |z+〉+eiφ sin θ
2 |z−〉

nm :: Radians -> Radians -> Ket |n−(θ ,φ)〉 = sin θ
2 |z+〉−eiφ cosθ

2 |z−〉

Figure 10: Kets for spin-1/2 particles.

data Operator

sx :: Operator |x+〉 〈x+|− |x−〉 〈x−|
sy :: Operator |y+〉 〈y+|− |y−〉 〈y−|
sz :: Operator |z+〉 〈z+|− |z−〉 〈z−|
sn :: Radians -> Radians -> Operator |n+(θ ,φ)〉 〈n+(θ ,φ)| − |n−(θ ,φ)〉 〈n−(θ ,φ)|

Figure 11: Operators for spin-1/2 particles.

We use the Haskell notation<> for the Dirac product. Figure 12 shows types for which the Dirac product
is defined, and gives examples of its use. There is also an adjoint operation, represented by a dagger,
which turns kets into bras, bras into kets, complex numbers into their complex conjugates, and operators
into their adjoint operators.

The Dirac product is implemented with multi-parameter typeclasses and functional dependencies.
As shown in Figure 13, the Dirac product<> is owned by the type classMult. The Dirac product is used
to multiply complex numbers, kets, bras, and operators. Of the 16 pairs of these four types, 12 make
sense to multiply; each of these 12 corresponds to an instance of type classMult, three of which are
shown in Figure 13. The four pairs that make no sense to multiply are shown in Figure 12(a).

In the absence of intervention, a state vector|ψ(t)〉 evolves according to the Schrödinger equation,

ih̄
d
dt

|ψ(t)〉= H |ψ(t)〉 ,

whereH is a special operator called theHamiltonian, which describes the particle and its interaction
with the environment. The calculational language providesa function

timeEv :: TimeStep -> Operator -> Ket -> Ket

to numerically solve the Schrödinger equation, using an algorithm from Numerical Recipes[5]. This
function takes a time step, a Hamiltonian operator, and the current state ket, and returns the state ket
advanced by the time step.

One of the most important calculations in quantum mechanicsis finding the probability that a particu-
lar measurement result will occur. There are many situations in which a measurement result is associated
with anoutcome ket|φ〉. In these situations, the probability of the outcome is given by the square of the
magnitude of the inner product of the outcome ket with the state ket|ψ〉.

P= |〈φ |ψ〉|2

In the calculational language, we would express this as follows.



Scott N. Walck 43

Dirac |y+〉 〈y+| B
product Ket Bra Operator

|x+〉 |x+〉 |y+〉 |x+〉〈y+| |x+〉B
Ket nonsense Operator nonsense

〈x+| 〈x+|y+〉 〈x+| 〈y+| 〈x+|B
Bra C nonsense Bra

A A|y+〉 A〈y+| AB
Operator Ket nonsense Operator

(a)

Term Type Notation
dagger ym <> xp C 〈y−|x+〉
yp <> dagger ym Operator |y+〉〈y−|
sx <> yp Ket σx |y+〉
xp <> dagger xp <> yp Ket |x+〉〈x+|y+〉
dagger zm <> sy <> yp C 〈z−|σy |y+〉

(b)

Figure 12: The Dirac product. (a) Table showing which products make sense and which do not. The type
C is a complex number. (b) Examples of the Dirac product. The first line is an inner product. The second
line is an outer product. The functiondagger is an adjoint operation that turns kets into bras, bras into
kets, operators into (adjoint) operators, and complex numbers into their complex conjugates. The Dirac
product<> is used for scalar products, inner products, outer products, operator products, and wherever it
makes sense.



44 Learn Quantum Mechanics with Haskell

class Mult a b c | a b -> c where

(<>) :: a -> b -> c

instance Mult Bra Ket C where

Bra matrixBra <> Ket matrixKet

= sum $ zipWith (*) (toList matrixBra)

(toList matrixKet)

instance Mult Operator Ket Ket where

Operator matrixOp <> Ket matrixKet

= Ket (matrixOp #> matrixKet)

instance Mult Operator Operator Operator where

Operator m1 <> Operator m2 = Operator (m1 M.<> m2)

Figure 13: Implementation of the Dirac product. The multi-parameter type classMult owns the Dirac
product<>. Three of the twelve instances ofMult are shown. The first instance is for forming the inner
product of a bra and a ket, resulting in a complex number. The second instance is for an operator acting
on a ket, producing another ket. The third instance is the operator product.

magnitude (dagger phi <> psi) ** 2

Here,phi andpsi are kets,dagger phi is a bra vector, and<> is the Dirac product used for scalar
multiplication, inner product (the case here), and outer product.

4 Simplified Laboratory Language

Having used the calculational language to solve problems, make predictions, and do animations, we
would now like to use it to implement the laboratory languagethat we started with. However, the lab-
oratory language that we started with requires one important feature that we have not included in the
calculational language, a feature that I do not typically cover in a one-semester course on quantum me-
chanics. What is missing is the idea of a density matrix, which is a more general way of describing the
state of a physical system. The only purpose to which the density matrix is put in the laboratory language
is the description of therandomBeam coming out of the oven.

Our simplified laboratory language will constrain itself tobeams that have already come out of some
SG apparatus. There is a great simplification in this constraint, in that our central data type can now be
Beam, rather thanBeamStack. The functions in Figure 14 are those that students are askedto imple-
ment. In terms of theBeam data type, their type signatures are clearer and more meaningful than the
corresponding functions for working with aBeamStack.

Up to this point, students have not really been programming.They have been using GHCi as a fancy
calculator. Very little needed to be explained in term of language syntax and semantics. At this point,
some time needs to be spent on basic language issues in order for students to be able to write function
definitions for the functions in Figure 14.

I do not expect students to write code for theBeam data type. Instead, we discuss as a class the
information that aBeam needs to contain, and the options for representing that data. There are different



Scott N. Walck 45

data Beam

xpBeam :: Beam

xmBeam :: Beam

ypBeam :: Beam

ymBeam :: Beam

zpBeam :: Beam

zmBeam :: Beam

intensity :: Beam -> R

split :: Radians -> Radians -> Beam -> (Beam,Beam)

splitX :: Beam -> (Beam,Beam)

splitY :: Beam -> (Beam,Beam)

splitZ :: Beam -> (Beam,Beam)

xpFilter :: Beam -> Beam

xmFilter :: Beam -> Beam

zpFilter :: Beam -> Beam

zmFilter :: Beam -> Beam

recombine :: Radians -> Radians -> (Beam,Beam) -> Beam

recombineX :: (Beam,Beam) -> Beam

recombineY :: (Beam,Beam) -> Beam

recombineZ :: (Beam,Beam) -> Beam

applyBField :: Radians -> Radians -> Radians -> Beam -> Beam

applyBFieldX :: Radians -> Beam -> Beam

applyBFieldY :: Radians -> Beam -> Beam

applyBFieldZ :: Radians -> Beam -> Beam

Figure 14: Simplified version of the laboratory language. The goal is for a student to implement the listed
functions in terms of the calculational language. The typesR andRadians are synonyms forDouble.



46 Learn Quantum Mechanics with Haskell

ways to defineBeam; we decide as a class how we want to do it, then I write code forBeam that the class
uses to construct the functions in Figure 14.

FunctionsxpBeam, zmBeam, and the like are straightforward to implement once a definition for Beam
is in place. Students had little trouble with these functions. Theintensity function is a good next step
for students in that it requires a bit of thought and a bit of wrestling with computational details such as
the difference between a complex number (typeC) that happens to be real and a real number (typeR). The
splitting functions are the real heart of the exercise. Theyhave been a challenge for students, but worth
the effort. I think the process of writing the splitters has helped to clarify what the splitters are really
doing. The filter and magnetic field functions are not as hard to write as the splitters. The recombiners
are the most difficult functions to write.

My sense is that students experience some frustration when they know what they want to say, but
don’t know how to say it in Haskell, but in most cases they find that an idea’s expression in Haskell,
once learned, seems quite reasonable. Students appear to experience satisfaction when they succeed in
expressing ideas like the functions in Figure 14, and can then use those functions to express bigger ideas.

References

[1] Fernando Alegre & Juana Moreno:Haskell in Middle and High School Mathematics. Submission to TFPIE
2015.

[2] Richard P. Feynman, Robert B. Leighton & Matthew Sands (1965): The Feynman Lectures on Physics,
Quantum Mechanics. Addison-Wesley.

[3] Jerzy Karczmarczuk (2003):Structure and Interpretation of Quantum Mechanics: A Functional Framework.
In: Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell ’03, ACM, New York, NY, USA,
pp. 50–61, doi:10.1145/871895.871901.

[4] Seymour A. Papert (1993):Mindstorms: Children, Computers, And Powerful Ideas, 2 edition. Basic Books.

[5] William H. Press, Brian P. Flannery, Saul A. Teukolsky & William T. Vetterling (1989):Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press.

[6] J. J. Sakurai & Jim Napolitano (2011):Modern Quantum Mechanics, 2nd edition. Addison-Wesley.

[7] Benjamin Schumacher & Michael Westmoreland (2010):Quantum Processes, Systems, and Information.
Cambridge University Press, doi:10.1017/CBO9780511814006.

[8] Gerald Jay Sussman & Jack Wisdom (2001):Structure and Interpretation of Classical Mechanics. The MIT
Press.

[9] Gerald Jay Sussman & Jack Wisdom (2013):Functional Differential Geometry. The MIT Press.

[10] John S. Townsend (2012):A Modern Approach to Quantum Mechanics, 2nd edition. University Science
Books.

[11] Scott N. Walck (2012–2016):The learn-physics package.
http://hackage.haskell.org/package/learn-physics.

[12] Scott N. Walck (2014):Learn Physics by Programming in Haskell. In James Caldwell, Philip Hölzenspies
& Peter Achten, editors: Proceedings 3rd International Workshop onTrends in Functional Programming in
Education,Soesterberg, The Netherlands, 25th May 2014,Electronic Proceedings in Theoretical Computer
Science170, Open Publishing Association, pp. 67–77, doi:10.4204/EPTCS.170.5.

http://dx.doi.org/10.1145/871895.871901
http://dx.doi.org/10.1017/CBO9780511814006
http://hackage.haskell.org/package/learn-physics
http://dx.doi.org/10.4204/EPTCS.170.5

	1 Introduction
	2 Laboratory Language
	3 Calculational Language
	4 Simplified Laboratory Language

