
S. Thompson (Ed.): TFPIE 2017.
EPTCS 270, 2018, pp. 18–36, doi:10.4204/EPTCS.270.2

c© d’Alves, Bouman, Schankula, Hogg,
Noronha, Horsman, Siddiqui & Anand
This work is licensed under the
Creative Commons Attribution License.

Using Elm to Introduce Algebraic Thinking to K-8 Students

Curtis d’Alves, Tanya Bouman, Christopher W. Schankula, Jenell Hogg,
Levin Noronha, Emily Horsman, Rumsha Siddiqui, Christopher Kumar Anand

McMaster University
Hamilton, Ontario, Canada

{dalvescb,boumante,schankuc,anandc}@mcmaster.ca

In recent years, there has been increasing interest in developing a Computer Science curriculum for
K-8 students. However, there have been significant barriers to creating and deploying a Computer
Science curriculum in many areas, including teacher time and the prioritization of other 21st-century
skills. At McMaster University, we have developed both general computer literacy activities and
specific programming activities. Integration of these activities is made easy as they each support
existing curricular goals. In this paper, we focus on programming in the functional language Elm
and the graphics library GraphicSVG. Elm is in the ML (Meta Language) family, with a lean syn-
tax and easy inclusion of Domain Specific Languages. This allows children to start experimenting
with GraphicSVG as a language for describing shape, and pick up the core Elm language as they
grow in sophistication. Teachers see children making connections between computer graphics and
mathematics within the first hour. Graphics are defined declaratively, and support aggregation and
transformation, i.e., Algebra. Variables are not needed initially, but are introduced as a time-saving
feature, which is immediately accepted. Since variables are declarative, they match students’ ex-
pectations. Advanced students are also exposed to State by making programs that react to user taps
or clicks. The syntax required to do so closely follows the theoretical concepts, making it easy for
them to grasp. For each of these concepts, we explain how they fit into the presentations we make to
students, like the 5200 children taught in 2016.

Finally, we describe ongoing work on a touch-based Elm editor for iPad, which features (1)
type highlighting (as opposed to syntax highlighting), (2) preservation of correct syntax and typing
across transformations, (3) context information (e.g. displaying parameter names for GraphicSVG
functions), and (4) immediate feedback (e.g. restarting animations after every program change).

1 Introduction

There is a lot of current interest in developing a Computer Science curriculum for K-8 [21], with cur-
ricula being defined by some education authorities, e.g. year-by-year goals in the UK [8]. At McMaster
University, we have developed a number of outreach activities in collaboration with local teachers and
their students. The best activities are ones which students view as play but which teachers recognize as
motivating or reinforcing curricular goals. This paper introduces a learning environment in which chil-
dren can develop programming skills initially through exploration and then through discovery, motivated
by the desire to produce interesting vector graphics including animation, and for advanced students, inter-
action. The dependence on Cartesian coordinates and basic geometry is impossible to miss, but we think
the most important impact on the curriculum is how we can naturally introduce variables and functions
with the same semantics as they have in algebra.

While we agree that Computer Science should be integrated into the K-8 curriculum, it is important
to remember that most children will not go on to be software developers but, more so than ever before,
every student needs to succeed in secondary education, and other investigators have found that success

http://dx.doi.org/10.4204/EPTCS.270.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 19

in algebra is the lever we have as educators [22]. In this context, it makes sense to develop an approach
to K-8 CS which will better prepare children to master algebra.

We call our approach “algebraic thinking”, going back to the original use of “al jabr” (reunion of
broken parts) by the Baghdadi mathematician al-Khwarizmi in the book which transmitted algebra to
Europe [7]. But, rather than factoring integers and polynomials, we decompose complex shapes by iden-
tifying the constituent parts and teach children to build their own graphics up hierarchically. By focusing
on shapes, children learn about recursive (tree) data structures by building increasingly complex pic-
tures. We implement this approach in GraphicSVG, a Domain Specific Language (DSL) embedded in
the functional language Elm. Matching the semantics (and vocabulary) of drawing with stencils allows
children to begin exploring without stumbling over new concepts. Children start right away by modi-
fying a list of shapes, so initial learning is restricted to a short list of functions with small numbers of
obvious arguments and syntax for lists and for forward function application—pipelining—to better ex-
pose the combinatorial nature of shape construction and composition. Children’s “inner scientist” loves
experimenting with possibilities and rapidly assimilates the patterns. Almost all language features can
be introduced in a planned way after children are confident in their ability to handle programming.

Our project has developed the following tools to help us deliver this outreach program:

1. The DSL GraphicSVG for the algebraic construction of vector graphics, animations and interactive
programs, embedded in Elm.

2. A web interface to the Elm compiler with limits designed to minimize beginner mistakes, and a
chat system in which off-site mentors can see a child’s code when they ask for help.

3. A web-based discovery tool.

4. Adaptable lesson plans for introducing drawing, animations, functions, variables and user interac-
tion to children aged 10 to 14.

5. A prototype, iPad-based projectional editor for Elm with GraphicSVG.

Based on the needs of our partners, we deliver workshops in different configurations, from one hour
to one hour per week for seven weeks and “hackathons” of five hours. We almost exclusively deliver
our workshops to whole classes, because we want to reach underrepresented groups who are less likely
to be enrolled in optional activities. Our school board partners help us target schools in high-needs
neighbourhoods. On a smaller scale, we also visit summer camps, and encourage summer camps to adopt
our curriculum by hiring our volunteers, and we invite other individual students and groups to campus
for drop-in sessions. Most children are between 10 and 14 years old, with hackathon participants being
12 to 14. Although sending undergraduate instructors to schools makes it difficult to scale up, teachers
really like to have role models in their classrooms.

This paper is organized as follows: In section §2, we cover the background ideas which motivate
our approach, some history of introducing programming in K-12 education, the importance of algebra
in student success, and the evidence that using a functional language promotes success in algebra. All
of which motivates our adoption of the term Algebraic Thinking. We then explain the expected and
previously observed benefits of Social Constructivism. Finally we describe the important features of
Elm relevant to this work.

In section §3, we explain the design of graphics and interaction library, and give two examples of
how this design translates into particularly simple and attractive lesson plans. In section §4, we describe
our experience delivering these lesson plans in diverse schools and at different grade levels. In section
§5, we discuss two related works in progress and works of other researchers.

20 Elm and Algebraic Thinking

Finally, in section §6, we conclude with a summary of what we have learned and how this will shape
our future plans.

2 Background

It would be impossible to summarize the many threads of research and teaching practice attempting to in-
tegrate or leverage computers in education, but most trace back to Papert and coworkers at MIT [18], who
were not primarily interested in teaching programming, or recruiting future software developers. They
were interested in how children learn, and primarily interested in teaching them to discover mathematics
for themselves by forming hypotheses, performing experiments and reasoning.

2.1 Algebraic Thinking

Why do we characterize our approach as “algebraic thinking”, and not “computational thinking” or
“algebraic reasoning” or “algebraic program construction”? The term “computational thinking” was in-
troduced by Wing [28] to draw attention to the need for increased enrolment in CS at all levels. There
are now many outreach programs aimed at K-12, including well-funded non-profit organizations, how-
ever there are also some pointed questions being asked. In particular, what is the difference between
“computational thinking” of 2010 and “programming” of 1980, and the answer seems to be “not very
much”. Literacy researchers have observed the same patterns (failure to define or agree on aims, cycles
of reinvention) in other literacy movements [25], and it is a shame that we have not learned more from
them.

Numeracy and more general mathematical “literacy” have their own history, with a recent under-
standing of the role of algebra as a gateway to high school success [22], and the importance of preparing
students for high school algebra [15]. Pre-algebra starts as early as kindergarten with patterning (e.g.,
red-red-blue-red-red-blue-?), and some researchers also use the term Algebraic Thinking to describe the
basket of cognitive skills needed and promote methods of fostering them [14].

Recently, Guzdial [12] surveyed the literature on teaching computer science, focusing on K-12. He
is also critical of the simple definition of “computation thinking”, and he discusses at length Soloway’s
Rainfall problem which highlights the consistent failure of conventional approaches to teach even un-
dergraduates the basics of programming. In contrast, Fisler found in [10] that students using functional
languages “made fewer errors than in prior Rainfall studies and used a diverse set of high-level com-
position structures”. So there is some evidence that a functional approach is superior for beginning
undergraduate and high-school learners. Such an approach could be called “functional thinking”.

2.2 Social Constructivism

Social constructivism is the theory of learning which focuses on peer interactions, especially the sharing
of information and construction of shared explanations and procedures. Socially constructive learning
is thought to be better for acquiring higher-level skills, but it can only work if children are engaged
enough to stay on task (or, even better, invent their own tasks). It is closely associated with Papert,
but although far from novel, it is underexploited. We have relied on it in our other outreach activities,
which has inspired our attempts to use it for Elm programming. We describe the two most important
activities: when teaching binary numbers, we encourage children to help each other out in using our iPad
app Image 2 Bits, in which students encode black and white images with binary numbers. The students
each create an image on their iPad; the iPads share the encoding of that image with other students, and
the students then decode each other’s images. Once they are done decoding the image, students have

https://itunes.apple.com/app/image-2-bits/id967807383

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 21

the option to send a “like” to the student who created the image. Similarly, when teaching a (simplified
version of) Computed Aided Tomography (CAT scans), we rely on group reinforcement, motivated by
a game. Students arrange themselves in a grid to represent the body part being imaged. They act out
the x-rays passing through the body and partly being absorbed by bone and muscle tissue. Each student
represents either a piece of muscle or bone. The x-rays pass directly through the muscle tissue, but get
partly blocked by the bone tissue. In order to correctly calculate where the bone and muscle tissues are,
each student in the group must pay attention and correctly report how much light comes through. Then
the students work together to solve for the location of the bone and muscle. Where the numbers allow,
we have two or more groups work in parallel, competing to reconstruct their image first. That games
have rules does not surprise children, and they immediately realize that everyone must fully understand
their role, or the whole effort will collapse. Furthermore, they actively think about the algorithm they are
applying in an effort to find “shortcuts”.

Allowing children to consult each other and work together in groups can easily lead to off-topic chat-
ter, rather than collaboration, but we have found an easy way to gauge the effectiveness of unstructured
learning: If we observe that techniques explained to one group of students propagate across the class-
room, then we know that chatter is actually productive, and that we have successfully adjusted our goals
and teaching style to the class.

2.3 Elm

Elm (http://elm-lang.org) was imagined as a vehicle for delivering best practices in program language
design to web front-end developers [5]. It is deliberately simple, for example, dropping support for
Functional Reactive Programming in version 0.17 [6]. It looks like other ML-derived languages, with
algebraic datatypes, but it does not have user-defined type classes. For beginners, this is a good bal-
ance between expressiveness and simplicity (particularly of type errors). Languages with record types,
but lacking fully algebraic types, require encoding of state into strings and other error-prone idioms
which place additional burdens on the programmer. For example, the Elm compiler will not accept
incomplete case expressions. It has a foreign-function mechanism designed with safety first. When
it was initially developed, it was the natural language for Haskell programmers needing to create a
JavaScript app, and was a radical simplification of the complexity of JavaScript, HTML and CSS. Today,
such developers have many other options including PureScript (http://www.purescript.org), TypeScript
(https://www.typescriptlang.org/), or Flow (https://flow.org/).

In Elm 0.17, Functional Reactive Programming features were removed in favour of The Elm Archi-
tecture (TEA) [6] with subscriptions. It has three parts, which in our case are typed as

• a model data type for state, with an initial value,
• view : model -> Collage (Msg userMsg), and
• update : userMsg -> model -> model.

The model is a data type which contains information about the current state of the program. For
example, the model might contain information about the current time and what slide you’re on in the
case of a presentation.

The view function visually represents the state stored in the model, usually through HTML, or, in
the case of GraphicSVG, through SVG. Elm’s functional paradigm eliminates many pitfalls found in
traditional web development, as it guarantees that the same state always produces the same view.

The update function takes both the model and a data type (known as the “Message”) as a parameter.
The update function implements all transition functions from one state of the program to the next. Some
messages, such as time updates, are requested from the Elm runtime, while special transformers that can

22 Elm and Algebraic Thinking

be applied to any Shape tell the run-time to generate specific messages based on user interaction. Elm’s
runtime redraws automatically based on need.

Throughout the text, we use userMsg for the type variable which is always the type of the messages
the run-time system generates and passes to the update function. We need to use a type variable, because
the number and type of messages will change as the user adds buttons with a notifyTap transformer, or
requests tap location within a Shape using

notifyTapAt : ((Float, Float) -> userMsg)

-> Shape (Msg userMsg)

-> Shape (Msg userMsg)

and similar functions. This is an example of where the stronger typing available in Elm is used. We do
not yet know how to explain type parameters to children of this age, but completely hiding them would
require separate libraries for drawing interactive and non-interactive graphics.

As a teaching language, Elm offers simplicity in both syntax and semantics, and because it compiles
to JavaScript, it is accessible in schools without installing software. It works on every platform with a
web browser, and it is easy to build collaboration and distance-learning tools around it.

3 Instructional and Tool Design

Our instructional design is tightly linked to our tool design. At the core is our library GraphicSVG, §3.1,
which is a DSL for the algebraic construction of shapes, and upon reflection, it is really the language
students start learning, to the extent that the concept of variables, §3.2, is either delayed until the second
workshop, or introduced to individual students whose graphics are complex enough to warrant them, and
similarly for the concept of functions. In the next subsection, §3.3, we review our language requirements,
and how Elm meets them. We go back to instructional design in §3.4, where we explain how we introduce
state diagrams and then translate the concept into Elm code. Finally, in §3.5, we describe our facility for
distance mentoring.

3.1 GraphicSVG

Our Graphics library, GraphicSVG, is based on the original Elm Graphics module which targeted HTML
canvas elements, and it is partially backwards compatible. GraphicSVG’s principal types (Stencil,
Shape and Collage) model real-world concepts: Stencil describes a recipe for creating a shape; for
example, a circle with a certain radius, a rectangle with a width and height or text with a certain font and
size:

circle, square, triangle: Float -> Stencil

rect, oval: Float -> Float -> Stencil

roundedRect: Float -> Float -> Float -> Stencil

text: String -> Stencil

But, like a real-life stencil, a visible shape is not created until the user fills it in or traces its edge:

filled: Color -> Stencil -> Shape userMsg

outlined: LineType -> Stencil -> Shape userMsg

Thus, a concrete analogy explains why shapes cannot show up on the screen unless they are filled or
outlined. This architecture limits the number of parameters each function takes, making them easy to

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 23

learn or even guess, and the types match students intuition closely enough that we do not have to talk
about them. The limited number of arguments also make it easy to put all the basic functions in an
interactive crib sheet (Figure 1). The types Stencil and Shape are introduced to students orally and we
use the structure of the ShapeCreator to reinforce this. We do not use type signatures, but students see
the type names in compiler errors, e.g., when they try to move a Stencil rather than a Shape. They
never use constructors for these types directly, using exposed functions instead, some of which simplify
the underlying type construction. Fortunately, Elm’s type errors (e.g. found a Stencil where a Shape

was expected) also match their intuitive understanding of these types, and need little explanation, and,
so far, students who choose to attempt more complicated user interaction are able to build a workable
understanding of Elm types from there. (See the last section to learn how we plan to use types as a
teaching tool in the future.)

Figure 1: ShapeCreator: As a consequence of GraphicSVG’s design, we were able to expose the com-
binatorial nature of shape construction in an interactive tool for API discovery. The tool is presented as
a menu in which the user can pick one Stencil in section 1; either the filled or outlined functions
along with optional line style, and required colours, in sections 2 and 3; any number of transformations
in section 4; and given options to adjust arguments to all of the above functions in section 5.

3.1.1 Design Motivation: Instructional Scaffolding

One aspect of Elm’s original Graphics library that we found successful in classrooms was its support for
instructional scaffolding. [3] The instructor shows students how to draw basic shapes on the centre of the
collage. The next inquiry most students have is a logical progression from the current state: “How can we
move the shape from the centre of the collage?” Like with filled, we use forward function application
(|>)1 to apply transformations to Shapes, thereby visually laying out the combinatorial nature of shape
construction.

These functions have type (parameters) -> Shape userMsg -> Shape userMsg:

1Elm provides two function application operators, <| is like Haskell’s $ and |> flips the argument order.

24 Elm and Algebraic Thinking

move: (Float, Float) -> Shape userMsg -> Shape userMsg

scale: Float -> Shape userMsg -> Shape userMsg

rotate: Float -> Shape userMsg -> Shape userMsg

There are several advantages of this approach. First and foremost, it allows a very fast startup. By
separating transformations from the shape itself, within a minute or two, the instructor can create a shape
on screen simply by defining the bare minimum amount of information; for example, a radius and a
colour is all that is needed for a circle, which follows the students’ expectations about how to represent
shapes. It is also easier to remember parameter order than for similar functions in other languages which
either have multiple parameters, confounding size and position, or use stateful drawing models.

For many students, this is their first exposure to a “real” programming language—or any program-
ming language—and as such, seeing text produce a shape on screen is very exciting, and encourages
them to ask questions which can lead the rest of the presentation.

3.1.2 GraphicSVG Apps

GraphicSVG contains three types of “apps” graded by complexity.
The first and most basic one, graphicsApp, allows the static drawing of graphics on the screen. It

can be easily understood as requiring only the “view” portion of The Elm Architecture’s model-view-
update architecture, hiding the ideas of model and update from the student.

An intermediate app, notificationsApp allows the user to add interaction to their graphics by
adding notify transformers which cause messages to be sent to the student’s update function when, for
example, a shape is clicked:

notifyTap: msg -> Shape userMsg -> Shape userMsg

notifyEnter: msg -> Shape userMsg -> Shape userMsg

notifyLeave: msg -> Shape userMsg -> Shape userMsg

See § 3.4 for an example using notificationsApp to add interaction to a GraphicSVG application.
Finally, gameApp provides the functionality of notificationsApp, but also has a parameter for a

special kind of Tick message type, which, on each frame, will send their update function the time in
seconds since the app was started as well as information about keyboard presses. Given that gameApp has
only thus far been used for sporadic half-day workshops, few students have thus far taken advantage of
the advanced features provided by notificationsApp and gameApp, other than support for animation.
However, gameApp has been used internally to develop game templates used for day-long Hackathons
where students compete in teams to create educational games, which have been very well received.

3.2 Variables and Functions: a tool for code reuse

Graphics can be used as an effective way for students to learn the fundamental concepts behind math-
ematical functions. After a brief introduction of the “input-process-output” model, we asked a class of
Grade 7/8 students to come up with real-world examples of processes which can be described using this
model. They shared a wide variety of ideas: printers (inputs: blank paper, ink, information, energy; pro-
cess: place ink on to paper in the correct pattern; output: printed paper), schoolwork (inputs: constraints,
objectives, rubrics; process: completing the work according to necessary steps; output: completed as-
signment/presentation) and, somewhat comically, paperwork (inputs: forms to fill out; process: collect
and write down information; output: completed paperwork), among others. The mentor stressed that
almost any real-world process can be generalized using this idea.

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 25

Directly following the discussion, we used the example of the flower (Figure 2). The mentor demon-
strated how defining a separate variable with a GraphicSVG group,

group: List (Shape userMsg) -> Shape userMsg ,

can be used to easily create copies of a graphic on the collage plane. However, this time we presented a
new motivation: how can we create copies of the flower which are different colours? Once again, students
suggested the obvious “copy and paste” approach, with flowerRed, flowerGreen, flowerBlue, etc.
variables being created and then referenced in their collage. The volunteer instructor then emphasized the
point that similar code should be reused, instead of duplicated. The ultimate motivation then becomes
that learning how functions apply to Elm would benefit their more rapid and straightforward creation
of new artwork and animations. Thus, the concept of functions was presented as a “tip” rather than a
traditional lesson. The instructor then demonstrated how to add an input to the flower function, a term
with which they were familiar due to the aforementioned discussion:

flower colour = group [...]

upon receiving a compiler error on the projection screen, students were then able to successfully deter-
mine that the colour would need to be added after the name of the shape in the myShapes collage:

myShapes = group [

flower green

|> move(-50,0)

, flower blue

|> move(50,0)

]

Upon compiling the program, the students then found that the flowers had not yet changed colour.
After some discussion, they were able to determine that the colour variable must be used in lieu of a
specific colour:

[oval 50 30 |> filled colour]

After this guided example, students were able to independently come up with a strategy when asked:
what if we want to be able to set an arbitrary colour for the centre of the flower? After a subtle hint of
adding a “1” to the colour input, becoming colour1, students were able to leverage their knowledge
from creating a single-input function and solve the same kinds of problems that came up in the single-
input example, which allowed them to describe to the mentor how to implement a function with two
variables using Elm (Figure 2 d). Thus, students were able to map the “input-process-output” concept to
three different realms: an abstract concept, describing real-world processes, and, finally, implementing
the idea algebraically by leveraging graphics programming with GraphicSVG. Many students made the
connection to their math classes where they had begun to talk about mathematical functions and lines but
were motivated by being able to use the concept to improve their Elm graphics. Future work would in-
clude devising methods to determine quantitatively if the students who learned functions in terms of Elm
programming have a more concrete idea of the concept than students who learned it only mathematically.

3.3 Embedding in Elm

We have already discussed the use of Elm in different places, but with the previous context, we can now
better explain that we require a language with

• pure functions matching the child’s inherent idea of tools, like stencils, pens and paint brushes,

26 Elm and Algebraic Thinking

a)

b)

c)

d)

Figure 2: Introducing variables and functions as progressively more powerful ways of reusing code.
Initially in a) there is one flower, and without instruction, children will copy and paste the shapes to
produce multiple flowers, but in b) they are shown that the “flower” can be given a name flower to
make the purpose of the shapes clear, and so that in c) it can be used multiple times. Finally in d) it can
be transformed into a function to create less boring flowers.

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 27

• facility for creating a domain-specific language,
• strong types with simple type errors, like “Stencil expected, but found a Shape”,
• minimal syntax to learn, and
• a minimum of matching delimiters,

serves language designers and children alike. We could have designed a language from scratch, but
that would have been more work. Choosing a language which compiles to Javascript makes it easy
for children to share their accomplishments with friends and family, and to eventually graduate from
programming in the GraphicSVG sandbox to more general web programming. Or, because Elm is so
close to Haskell, they could go on to learn about type classes, and not run out of material for a long time.

Although the minimization of matching delimiters and things like the strictness of rules on leading
whitespace may seem to be minor points, when children encounter these issues, they really distract from
the important concepts they are supposed to be learning. In particular, the |> infix operation, which is
defined by

x |> f === f x

allows us to order the functions involved in shape creation in the natural order in which we introduce
them, and in which they are ordered in in the ShapeCreator (Figure 1).

3.4 Interaction

Although the Elm Architecture depends on separating state, updates and views, we do not explain state
until we are ready to introduce interaction. Although we use different types of interaction in our learning
tools, we only teach touch or click interactions. Any object can act as a button by simply adding the
notifyTap transformer in the same way that they add spatial transformation. So, unlike with most lan-
guages, syntax is a very low barrier, and the essential barrier is understanding state and transformations.
To make it memorable, we introduce state by putting up a simple state diagram (Figure 3) and acting it
out until the whole class understands the game. Children are very attuned to games, and understand the
need to learn the rules, so by making a State Diagram into a game, they control their own learning.

Moo Oink

Quack

2 arms

2 arms

2 arms

1 arm 1 arm

1 arm

start

Quiet2 arms

1 arm

Figure 3: Without explanation, students are given a state diagram similar to this one, and an instructor
waving arms (or clapping, flashing lights, etc.). It doesn’t take long for them to understand what state is.

Once they have understood states and transitions, we can show them how to translate the state dia-
gram into Elm by turning each state into a constructor for a state data type, and each transition function

28 Elm and Algebraic Thinking

into a function. We have only taught interaction to self-selected groups of children, so we have been able
to jump from the translation of one diagram to the identification of other state diagrams they encounter
in real life, and then state as it exists in games. After that, we show them a simple example like Figure 4,
and point out that the time they have been using in their animations is also as state which was updated
for them in code they were ignoring from the game template. There are only four steps to adding support
for interaction:

1. adding messages to a user-defined message type,
2. adding to any “buttons” a notification transformer with the appropriate message,
3. adding to the update function, possibly calling simple state transformation functions, and
4. adding initial values for any new state components.

Of course they can make arbitrarily complex use of state in their existing views.

Figure 4: When students are familiar with animations using model.time, it is relatively painless to add
user interaction by (1) adding messages to the Msg type, (2) adding a notify transformer to any shape, (3)
adding a case to the update function, and (4) adding initial values to any new state components.

State was the subject of lively discussion and even controversy at the conference, perhaps because
it is often associated with error-prone use of global variables in imperative programs. In fact, we would
argue that many tools relied on by functional programmers, including monads and functional reactive
programming, are syntactic sugar designed to make interacting with complex states safe. It is easy to
think that exposing state goes against the philosophy of functional programming. We view state as an
inherent property of interactive programs, and it is best to make it explicit so we can talk about it, rather
than hide it using abstraction or syntactic sugar. In fact, the successful Bootstrap program makes similar
use of explicit state[20].

3.5 Distance Mentoring

We have recently added an online mentoring system to our web programming environment. Each student
signs in and picks a “game slot” to work in. Some slots have challenges with specific goals, like adding a
new ice cream flavour to a vending machine, but most students opt to create pictures or animations in one
of the free-form slots, or one of the slots containing a game templates. Each slot has a chat, accessible
only by that student in that slot (Figure 5). Mentors have access to a view of all active discussions
(Figure 6) which indicate which discussions have unanswered questions.

The discussions are presented as “help lines” where students can ask any questions about their code
(working or broken), and mentors can send back answers or even links to differences between the stu-
dent’s code and code modified by the mentor. During scheduled workshops, we make sure someone is

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 29

Figure 5: Students are given unique identifiers and can send questions to mentors, which will give
mentors access to the student’s code. The mentor can reply with suggestions or fixes, and even attach
working code that the student can manually incorporate into their version.

monitoring the discussions and answering questions immediately. The mentor’s modifications are to a
private copy, not the student’s code, or the code of another mentor.

This system is new, but students are already using it to ask questions after school hours, as well as
to get answers faster during lab time when the on-site instructors are busy helping another student. We
anticipate using it to support teachers who have received training, but who would not attempt to teach
programming without such backup support. We have two teachers who plan to pilot this usage.

Figure 6: Mentors have access to a sortable list of questions posed by students as part of our new distance
learning approach.

30 Elm and Algebraic Thinking

4 Experience

One of the advantages of focusing on graphics so early, is that it allows every student or small group of
students to create their own image, which gives them an early sense of accomplishment. Many teachers
comment, in particular, on the engagement of children who very rarely engage with conventional math-
ematics instruction. Several of our undergraduate instructors who did not excel in mathematics at that
age have commented that a class learns pretty quickly which students will always answer questions first,
and this can be discouraging. Designing a personal or small-group graphic, however, cannot be left to
the “math geniuses”. Our Hall of Fame2 shows that there is a lot of creativity in students this age.

Working in pairs works best for most students, and since each team has their own project, inter-
actions between teams is positive and focused on sharing techniques. We encourage students to share
knowledge and achievements, and present more advanced topics as tips they may find useful for their
current creation. With previous activity designs and other programming languages, we frequently had
to devise strategies to keep children on task, including the interleaving of girls and boys to keep friends
from engaging in off-topic discussions. However, after switching to GraphicSVG/Elm, we can encour-
age children to consult each other. Now, if one team asks for help to make their shape blink, we will
soon see half the class following suit in their animations.

Younger children (less than 10 years old) do still stumble over syntax, probably because they are just
discovering punctuation in English, so they cannot build on that knowledge. For these students we will
describe ongoing work to create an error-free editor just for them.

Children have no trouble incorporating time as a variable any place a number can be used, which
allows them to animate their graphical creations. Once they start repeating elements, we introduce vari-
ables, which may expose that they do not understand that the view function has the current state as an
input, and therefore access to time. When this arises, we explain how to fix this by adding a time argu-
ment to abstracted functions, but we do not spend enough time with most children for them to encounter
this problem, or for them to understand how to plumb arguments through nested functions. Once they
ask about user interaction, we introduce state.

None of our students knows trigonometry, so we give them an example using sine to make an object
move back and forth, usually after the first group discovers that

move (model.time,0)

will move their shape off the screen, never to return. Since the conference in the summer, we have added
multiple tabs to the ShapeCreator (Figure 1) including a tab devoted to applying sine and cosine functions
to translation, rotation, scaling and colour changes.

Approximately 150 children who had attended workshops in previous years were taught how to add
tap and click detection to their programs, although they were not required to add interaction, and were
encouraged to continue work on animations if they were still working on that. Of those children about
half chose to experiment with interaction by modifying the example code written by the instructor, in
which a single clickable rectangle moved around the screen, and when clicked would update a score and
change a state. Because any Shape, even invisible Shapes can detect clicks, most children incorporated
their previous Shapes (especially Shapes with faces, including an animated turnip!) as buttons, and
found it quite rewarding to make difficult games in which the clickable object moves, grows and shrinks
in unpredictable ways. A handful of students added multiple click targets, e.g., by making the nose and
body clickable, adding points for clicking the nose, but subtracting points and displaying a message when
clicking on the body. State Diagrams give children a concrete representation to reason about something

2http://www.cas.mcmaster.ca/~anand/hall.html

http://www.cas.mcmaster.ca/~anand/hall.html

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 31

which they immediately recognize as a concept underlying the implementation of games. Even simple
games such as Snakes and Ladders involve recognizable states and transitions, and most video games
have levels and power-ups. Anecdotally, all children seem to find concrete State Diagrams useful, even
children with the highest levels of confidence and experience, who have an “aha” moment when they
realize that this unifies a lot of their experiences.

4.1 Adoption

Teachers are busy, and the curriculum is already full enough. One indirect way in which advancing tech-
nologies are indirectly making teaching even more challenging is a reaction to the expected displacement
of workers by automation [11]. In this context, teachers and schools in our area are trying to develop cre-
ativity and teamwork (referred to as 21st-century skills), which further squeezes time for pre-Computer
Science. In this context, what we need is a method of introducing Computer Science that provides at
least as much progress toward existing curricular goals as the instruction it will displace. We have relied
on teachers’ comments to judge how well we are meeting this goal, as we rely on peer recommendations
to be invited to new classrooms. Two quotes from teachers whose classes we visited in June:

This morning’s coding session was fantastic! Love that I see math curriculum connections
with integers and placing co-ordinates on a grid!

So, the connection with coordinates meets teachers’ needs to cover curriculum, and their students are so
excited by their ability to independently explore the material, that (at least anecdotally) their engagement
spills over into other subject areas.

My students were still talking about [the workshop] last week over the last few days so it
certainly had an impact on their learning and engagement!

So, although we see the acquisition of algebraic thinking as the bigger and more important target, the
visible gains in enthusiasm for geometry easily justifies the time taken, while we figure out how to
measure the impact on algebra.

5 Related Work

As a rule, tools meant for experts are not suitable for learners. This is certainly true of integrated de-
velopment environments with lots of key-press-saving state. Many practitioners who see functional
programming as the reserve of elite programmers have asked us why we use it for beginners. In this
case, functional programming’s fundamental advantages actually play out in the favour of beginners.
Pure functions are much easier for beginners to reason about. Declarative “variables” match preexisting
expectations from algebra, and will not cause confusion for students who have yet to learn algebra. They
are readily accepted as being shortcuts to avoid typing the same thing over and over. And finally, the
surfacing of structure in functional programs is of benefit to designers at all experience levels. Hughes’
observations apply equally to beginners [13], although they need to be incorporated into the instruc-
tional design, creating a new shared experience for these students, because it cannot be described relative
to previous practices which have no meaning to beginners. While we share a lot in motivation and
methodology with the Bootstrap program, as articulated in [9], especially the importance of functions,
we differ in some practical ways. We see typing as the most effective way of boosting program quality,
and something to start teaching early. We find the concrete syntax of Elm much closer to school algebra
than Scheme, lowering the barrier to knowledge transfer. Our building blocks stencils, shapes, groups
thereof, and geometric transformers, have a richer algebraic structure than the images used in Bootstrap.

32 Elm and Algebraic Thinking

Perhaps our younger audience finds this more natural, since they still spend a lot of time drawing and
composing artwork from simpler objects.

Our focus on the algebra of shapes grew over time, starting with the use of Gloss[16] with older
children, and subsequently the (now deprecated) Elm graphics library. The “many concise transformers”
design parallels Walck’s approach in supporting learning through exploration[27]. Although we have
created a Domain Specific Language for specifying diagrams, ours does not support more advanced
typing or layout engines, as, e.g., [1], [30], because the result would not be as learnable in small chunks,
and by having children do layout themselves, we get them to integrate visual art with mathematics.

5.1 Related Project: MacVenture

In MacVenture [2], students create their own gamebook with nodes (places) and edges (ways). This
game arose out of a desire to make graph structures interesting to children. Each place has a textual
description, including textual keys, and ways can be annotated with matching locks. Currently, students
also choose images for each place, but this frequently causes network problems, and makes sharing (as
demanded by students and teachers) impractical. Incorporating touch editing for Elm graphics to replace
the images will solve these problems.

5.2 Related Project: Touch Editing

We have done workshops where some students have written Elm programs on iPads and productivity is
obviously lower. All of the limitations of tablets are highlighted, and none of the advantages. Given the
prevalence of iPads in younger grades—with some schools phasing out desktop and laptop computers
entirely—we knew we had to do better. There are many examples to guide us: successful non-textual
editors (Scratch, Hopscotch, Lightbot, etc.); early experiments in user-directed program transforming
editors: “by precluding the creation of syntactically incorrect files, the Synthesizer lets the user focus on
the intellectually challenging aspects of programming” [24]; “autocompletion” in contemporary IDEs;
and current research on projectional editors [26], [17].

In rethinking the division of labour between programmer and computer, it seems obvious that there
is no advantage in providing hints to the programmer which are later found by the compiler to cause type
errors. To avoid type errors, instead of editing text, our users incrementally edit typed Abstract Syntax
Trees (ASTs), via touch-based interaction with the textual representation of the AST. Interesting points
about our implementation:

• Syntax highlighting helps readability and guides the user to create syntactically correct programs.
Our programs are always correct and typed, so we can use colour for type, with a unique colour
for every type. Holes are typed, and have default values so partially complete programs can be
visualized (Figure 7).
• Program transformations are supplied by the “editor”. This is the hard part. While strong typing

restricts substitutions of values and fully applied functions to reasonable numbers (when compared
to the tens and hundreds of autocompletions offered by conventional editors), beginners need more
structure so they can learn in layers. We are working out the presentation by trial and error as we
support increasingly complicated transformations (Figure 8).

This editor is still in development, but we have tested it with a dozen classes from ages 7 to 12, and early
feedback indicates that it will make the initial steps easier. The youngest group, a split grade 2/3 class
(ages 7 and 8) were productively creating graphics with moving shapes within half an hour. Some grade
7/8 students were able to effectively use variables within an hour.

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 33

Figure 7: The prototype app consists of three resizable panes: (1) is a list of definitions in the user’s
code, the visibility of which can be toggled on or off. In the main editor pane, (2), code is highlighted
according to type. Tapping different elements brings up context-specific panes that allow the insertion
of syntactically correct code (Figure 8). The top-right pane (3) is the output generate by the user’s code.
Finally, the buttons at (4) allow the student to toggle helpful tools such as the Cartesian grid and a bezier
curve helper.

Figure 8: Context- and Type-Aware Transformations: After tapping on an element, a popup gives the
user options to modify the value. The signature of the function using the element and position of the
selected argument is shown at the top (1). The user can type in a constant in (2), or make a new definition
out of the selected value (3). This is the only time that the user types the variable name, so there are no
concerns about misspelled variables. There is then the option to remove the current element (for example,
an element from a list, or a transformer application), or replace the value with a hole (4). Calculations
incorporating the current value follow (5), as well as the definitions which already are in the context and
match types (6). In this example, there is only model.time, which is an record element of the model

argument, but there could also be user-defined variables (3). Finally, there are conditional options (7).

34 Elm and Algebraic Thinking

6 Conclusion and Reflection

Although our workshops initially targeted grades 7 and 8 (ages 12-14), we found early on that volunteer
instructors preferred teaching younger children (aged 10), even though their hazy notion of punctuation
in English made it harder for them to understand syntax. We think this is because the younger children
were more open to discovery, and unperturbed by making mistakes. In her PhD thesis, analyzing four
early approaches to integrating computers into schools, [23], Solomon provides a possible explanation.
She describes the evolution of the four approaches as growing organically from differing assumptions
about educational psychology. The most revolutionary, the Logo school, draws on Piaget (as interpreted
by Papert) who tells them that children are natural scientists, discovering the rules of their world by
bumping up against it, and later by observing and interacting with older children and adults. But at
some point, organic experience of mathematics fails to motivate the learning of arithmetic, and learning
objectives must be imposed, which unfortunately suppresses the instinct to make numbers their own.
Papert wanted to extend this intrinsic phase of learning by providing an environment for mathematical
exploration through programming. Unfortunately, the range of Papert’s vision has not been taken up by
the Computational Thinking revivalists, because they assume that the way most software is written today
must be the best way, and therefore a simplified version thereof will be the best way of teaching children.

Our approach is different. We have identified achievement in math and especially preparation for
high-school algebra as our target, and have found that we can co-design tools and instruction to meet our
initial goals. To make our curriculum accessible to even younger children, we have started developing a
new iPad app. We have a lot of anecdotal evidence to support our approach, and advice for improving
both tools and instructional design. Our next steps include acting on that advice, fulling implementing
touch editing, enhancing distance mentoring, so that we can scale our program up beyond the schools to
which we can (physically) send mentors, and eventually designing experiments to measure the effect of
our instruction on learning. To main difficulty in designing effective experiments will be the anticipation
of confounding factors, such as the mutual reinforcement between programming achievement and spatial
awareness [4].

So, if a half century on we are to take up the banner and advocate for the child as scientist, why
should we be more successful?

Better Hardware Whereas Logo started in all caps, because that was what contemporary terminals
supported, we have touch interfaces and more processing power in the palm of our hand than
a 1970s’ supercomputer. Our iPad app will make better use of this power to construct a more
forgiving interface than a text editor.

Better Languages Logo was designed when structured programming was just beginning to be under-
stood. We know a lot more now, especially about types. Having separate types for shapes, stencils,
line styles, colours, etc., leads to understandable type errors. Being able to encode alternatives as
alternative constructors makes it easier to map a state diagram into code and back, giving children
multiple ways to think about the concept.

Measurement Whereas Logo took children out of school mathematics into Turtle geometry, this made
measurement harder, but our approach is based on Cartesian geometry, so it will be easier to mea-
sure transfer to the geometry in the curriculum. Similarly, the semantics of imperative program-
ming and particularly mutable variables conflicts with the usual encoding of word problems into
algebra. The Bootstrap project has found evidence of transfer to general mathematical knowledge
[29] and word-problem skills [19], and we would like to show that we can also make a positive
impact in the younger age groups we are teaching.

d’Alves, Bouman, Schankula, Hogg, Noronha, Horsman, Siddiqui & Anand 35

We thank the Dean of Engineering, NSERC PromoScience, and Google igniteCS for funding, our
many teacher partners for their advice and support over the years, Gordon Goodsman for his contribu-
tions to GraphicSVG, the referees for their thoughtful comments and practical suggestions for improving
this paper, and the many little scientists for their boundless enthusiasm.

References

[1] Peter Achten, Jurriën Stutterheim, László Domoszlai & Rinus Plasmeijer (2014): Task Oriented Program-
ming with Purely Compositional Interactive Scalable Vector Graphics. In: Proceedings of the 26Nd 2014
International Symposium on Implementation and Application of Functional Languages, IFL ’14, ACM, New
York, NY, USA, pp. 7:1–7:13, doi:10.1145/2746325.2746329.

[2] Helen Brown (2016): MacVenture: An iPad Application Design for Social Constructivist E-Learning. Mas-
ter’s thesis, McMaster University.

[3] Kathleen F. Clark & Michael F. Graves (2005): Scaffolding Students’ Comprehension of Text. The Reading
Teacher 58(6), pp. 570–580, doi:10.1598/RT.58.6.6.

[4] Stephen Cooper, Karen Wang, Maya Israni & Sheryl Sorby (2015): Spatial Skills Training in Introductory
Computing. In: Proceedings of the Eleventh Annual International Conference on International Computing
Education Research, ICER ’15, ACM, New York, NY, USA, pp. 13–20, doi:10.1145/2787622.2787728.

[5] Evan Czaplicki (2012): Elm: Concurrent FRP for Functional GUIs. Senior thesis, Harvard University.

[6] Evan Czaplicki (2016): A Farewell to FRP. Blog post on elm-lang.org.

[7] Oxford English Dictionary (2017): OED online.

[8] Department of Education (2013): National curriculum in England: computing programmes of study. Tech-
nical Report, UK Department of Education.

[9] Matthias Felleisen & Shriram Krishnamurthi (2009): Viewpoint: Why Computer Science Doesn’t Matter.
Commun. ACM 52(7), pp. 37–40, doi:10.1145/1538788.1538803.

[10] Kathi Fisler (2014): The Recurring Rainfall Problem. In: Proceedings of the Tenth Annual Confer-
ence on International Computing Education Research, ICER ’14, ACM, New York, NY, USA, pp. 35–42,
doi:10.1145/2632320.2632346.

[11] Carl Benedikt Frey & Michael A. Osborne (2017): The future of employment: How susceptible
are jobs to computerisation? Technological Forecasting and Social Change 114, pp. 254 – 280,
doi:10.1016/j.techfore.2016.08.019.

[12] Mark Guzdial (2015): Learner-Centered Design of Computing Education: Research on Com-
puting for Everyone. Synthesis Lectures on Human-Centered Informatics 8(6), pp. 1–165,
doi:10.2200/S00684ED1V01Y201511HCI033.

[13] J. Hughes (1989): Why Functional Programming Matters. The Computer Journal 32(2), p. 98,
doi:10.1093/comjnl/32.2.98.

[14] Carolyn Kieran (2004): Algebraic thinking in the early grades: What is it?. The Mathematics Educator 8(1),
pp. 139–151.

[15] Valerie E. Lee & David T. Burkam (2003): Dropping Out of High School: The Role of
School Organization and Structure. American Educational Research Journal 40(2), pp. 353–393,
doi:10.3102/00028312040002353.

[16] Ben Lippmeier (2017): The gloss package. hackage.

[17] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich & Matthew A Hammer (2017): Hazelnut: a
bidirectionally typed structure editor calculus. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, ACM, pp. 86–99, doi:10.1145/3093333.3009900.

http://dx.doi.org/10.1145/2746325.2746329
http://dx.doi.org/10.1598/RT.58.6.6
http://dx.doi.org/10.1145/2787622.2787728
http://dx.doi.org/10.1145/1538788.1538803
http://dx.doi.org/10.1145/2632320.2632346
http://dx.doi.org/10.1016/j.techfore.2016.08.019
http://dx.doi.org/10.2200/S00684ED1V01Y201511HCI033
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.3102/00028312040002353
http://dx.doi.org/10.1145/3093333.3009900

36 Elm and Algebraic Thinking

[18] Seymour Papert (1980): Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New
York, NY, USA.

[19] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi & Matthias Felleisen (2015): Transferring Skills
at Solving Word Problems from Computing to Algebra Through Bootstrap. In: Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, SIGCSE ’15, ACM, New York, NY, USA, pp.
616–621, doi:10.1145/2676723.2677238.

[20] Emmanuel Schanzer, Emma Youndtsmith, Kathi Fisler, Shriram Krishnamurthi, Joe Politz & Ben Lerner
(2012): Bootstrap:Reactive. Technical Report, Bootstrap.

[21] Elizabeth Schofield, Michael Erlinger & Zachary Dodds (2014): MyCS: CS for Middle-years Students and
Their Teachers. In: Proceedings of the 45th ACM Technical Symposium on Computer Science Education,
SIGCSE ’14, ACM, New York, NY, USA, pp. 337–342, doi:10.1145/2538862.2538901.

[22] David Silver, Marisa Saunders & Estela Zarate (2008): What factors predict high school graduation in the
Los Angeles Unified School District. Policy Brief 14.

[23] Cynthia Solomon (1988): Computer environments for children: A reflection on theories of learning and
education. MIT press.

[24] Tim Teitelbaum & Thomas Reps (1981): The Cornell Program Synthesizer: A Syntax-directed Programming
Environment. Commun. ACM 24(9), pp. 563–573, doi:10.1145/358746.358755.

[25] Annette Vee (2013): Understanding Computer Programming as a Literacy. Literacy in Composition Studies
1(2),doi:10.21623/1.1.2.4.

[26] Markus Voelter, Janet Siegmund, Thorsten Berger & Bernd Kolb (2014): Towards user-friendly projec-
tional editors. In: International Conference on Software Language Engineering, Springer, pp. 41–61,
doi:10.1007/978-3-319-11245-9 3.

[27] Scott N. Walck (2016): Learn Quantum Mechanics with Haskell. In: Proceedings of the 4th and 5th In-
ternational Workshop on Trends in Functional Programming in Education, TFPIE 2016, Sophia-Antipolis,
France and University of Maryland College Park, USA, 2nd June 2015 and 7th June 2016., pp. 31–46,
doi:10.4204/EPTCS.230.3.

[28] Jeannette M. Wing (2006): Computational Thinking. Commun. ACM 49(3), pp. 33–35,
doi:10.1145/1118178.1118215.

[29] Geoff Wright, Peter Rich & Robert Lee (2013): The influence of teaching programming on learning mathe-
matics. In: Society for Information Technology & Teacher Education International Conference, Association
for the Advancement of Computing in Education (AACE), pp. 4612–4615.

[30] Brent A. Yorgey (2012): Monoids: Theme and Variations (Functional Pearl). In: Proceedings of the 2012
Haskell Symposium, Haskell ’12, ACM, New York, NY, USA, pp. 105–116, doi:10.1145/2364506.2364520.

http://dx.doi.org/10.1145/2676723.2677238
http://dx.doi.org/10.1145/2538862.2538901
http://dx.doi.org/10.1145/358746.358755
http://dx.doi.org/10.21623/1.1.2.4
http://dx.doi.org/10.1007/978-3-319-11245-9_3
http://dx.doi.org/10.4204/EPTCS.230.3
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/2364506.2364520

	1 Introduction
	2 Background
	2.1 Algebraic Thinking
	2.2 Social Constructivism
	2.3 Elm

	3 Instructional and Tool Design
	3.1 GraphicSVG
	3.1.1 Design Motivation: Instructional Scaffolding
	3.1.2 GraphicSVG Apps

	3.2 Variables and Functions: a tool for code reuse
	3.3 Embedding in Elm
	3.4 Interaction
	3.5 Distance Mentoring

	4 Experience
	4.1 Adoption

	5 Related Work
	5.1 Related Project: MacVenture
	5.2 Related Project: Touch Editing

	6 Conclusion and Reflection

