
J. Hage (Ed.): Trends in Functional Programming
in Education 2019 and 2020 (TFPIE ’19 and ’20)
EPTCS 321, 2020, pp. 1–18, doi:10.4204/EPTCS.321.1

How to Design while Loops

Marco T. Morazán
Seton Hall University

morazanm@shu.edu

Beginning students find the syntactic construct known as a while loop difficult to master. The diffi-
culties revolve around guaranteeing loop termination and around learning how to properly sequence
mutations to solve a problem. In fact, both of these are intertwined and students need to be taught
a model that helps them reason about how to design while loops. For students that have been in-
troduced to how to design programs using structural recursion, generative recursion, accumulative
recursion, and mutation, the task of teaching them how to design while loops is made easier. These
students are familiar, for example, with state variables, termination arguments, and accumulator in-
variants. All of these are fundamental in the design of while loops. This articles presents a novel
technique used at Seton Hall University to introduce beginners to the design of while loops. It
presents a design recipe that students can follow step-by-step to establish such things as the driver
of the loop, the loop invariant, and the proper sequencing of mutations. The article also presents an
example of designing a while-loop based function using the new design recipe.

1 Introduction

Every instructor that has ever introduced beginners to while loops is witness to how students struggle
with this language construct. Toy examples of while loops may not pose a major challenge to many
students. Once loops increase in complexity, however, student frustration tends to settle in. It is not
uncommon for beginning students to feel frustrated with, what to them are inexplainable, infinite loops.
Even more frustrating are loops that terminate, but produce the wrong result. Through years of teaching,
instructors have heard many times from a myriad of frustrated students “my loop runs, but it is not giving
me the right result.” The source of the frustration has its roots in the fact that most textbooks (and,
therefore, probably most instructors) only teach students the syntax of while loops and then present
examples (e.g., [6, 9, 23, 24]). Some textbooks even warn the reader that they must avoid infinite loops.
The expectation is that somehow students will learn how to successfully write loops based on syntax,
examples, and warnings alone. Although many readers of this article, surely, “learned” how to write
while loops this way, it is time for CS educators to recognize that this approach is utter nonsense.
Students, especially beginners, need a systematic way to design while loops.

At the heart of the teaching-while-loops-problem to beginners is that syntax, examples, and warn-
ings do not provide beginners with a means to understand why while loops are infinite or halt or why
they produce a correct/incorrect result. In other words, learning to program with while loops is hard
(as evidenced, for example, by: [2, 8, 13, 15]). These loops are difficult for students, because the syntax
hides two important concepts. The first is that while loops are, in essence, syntactic sugar for accu-
mulative recursion–including, accumulative tail-recursion. The second is that while loops are typically
used with the sequencing of mutators and/or state-variable mutations. Roughly speaking, this sequenc-
ing corresponds to the arguments passed as input to a recursive call made by an accumulative recursive
function. If while loops correspond in this manner to accumulative recursive functions, then this means
that while loops must be designed to exploit accumulators and state variables. It does not suffice to

http://dx.doi.org/10.4204/EPTCS.321.1

2 How to Design while Loops

simply teach syntax just like it does not suffice to simply teach syntax for accumulative recursion and
for the manipulation of state variables. Students must learn how to solve problems using while loops.
An added benefit of designing while loops is that it helps students to organize their thoughts and to
communicate the solution to a problem to others–a fundamental pillar of programming [5].

As part of the design process for accumulative recursion, students must understand what an accumu-
lator represents and how to exploit it [3, 4]. That is, they must understand how to use accumulators to
solve problems. In essence, this means that they must develop an invariant that must be true every time
an accumulative recursive function is called. Interestingly enough, an invariant ought to be developed as
part of designing a while loop. Unfortunately, this is rarely done or taught in class leaving students to
discover their own ad hoc means to write loops. Students that have learned to design accumulative re-
cursive functions, however, can be shown that the while construct is syntactic sugar for such functions.
Thus, students can use this knowledge as a basis to learn how to design while loops. The parameters
of an accumulative recursive function are represented as state variables and students must determine the
proper sequencing of mutations to write a while loop’s body. This second task is nontrivial and is mostly
unrelated to solving the problem (i.e., accumulative recursion does not require variable mutation). This
means that students must not only solve a problem, but also have the added burden of finding the right
sequencing of mutations. To accomplish all this students need a framework that allows them to reason
about how to design while loops. This framework needs to provide them with the tools to identify the
role of accumulators as well as to identify the right order in which to mutate state variables. This can
be accomplished by teaching students rudimentary denotational semantics to exploit a loop invariant to
design their code. This is important, because programmers that identify and write down invariants are
more likely to write correct code [22], thus, eliminating a major source of student frustration.

This article presents such a framework in the form of a design recipe in the style put forth in the
textbook How to Design Programs (HtDP) [3, 4]. In addition, it presents how, at Seton Hall University
(SHU), an effective transition is made from designing accumulative recursive functions to the design of
while loops. The article is organized as follows. Section 2 briefly reviews related work. Section 3
describes the students’ background. Section 4 outlines the design of accumulative recursive functions.
Section 5 outlines the design of mutation-based functions. Section 6 presents how the new syntax is
initially introduced and used with students. Section 7 presents a design recipe for while loops. This
design recipe builds on lessons from the design of accumulative recursive functions and from mutation-
based computations. Students that lack this background can still benefit from the design recipe, but
will need to be introduced to accumulators and invariants for accumulators first. Section 8 presents
an extended example of using the design recipe in the classroom. Finally, Section 9 presents some
conclusions and directions for future work.

2 Related Work

Many textbooks describe while loops as the simplest kind of loop (e.g., [1, 9, 10]). A while loop is
described as testing if a condition holds and if it does the body of the loop is performed. After each
execution of the body, the loop condition is retested to determine if the body ought to be executed again.
If the condition fails, if ever, the loop is exited and the program continues execution just beyond the body
of the loop. Others add to the description of while loops that they are a syntactic structure to handle
computations that are inherently repetitive (e.g., [14, 23]). Such descriptions are mostly operational
descriptions of the mechanical execution of while loops and fail to reveal anything about the semantics
of loops or the design methodology that must be employed to write while loops. In contrast, the work in

M. T. Morazán 3

this article delves directly into how to reason about the design of while loops. It gives beginners a clear
methodology for developing the correct sequencing of mutations that conform the body of the loop.

Some textbooks go a step further and discuss the concept of a loop-invariant and of a post-condition
to establish the correctness and termination of a loop (e.g., [24]). A loop invariant is described as a
condition that holds after every iteration of the loop and the post-condition is described as the condition
that forces the loop to exit1. These concepts, however, are only given, at best, a lukewarm treatment and
are presented as something that is developed after the loop has been written. In contrast, for the work
presented in this article these concepts are not an afterthought. Loop invariants and post-conditions are
used as integral tool for code development. It is precisely the loop invariant that is useful in establishing
the correct sequence of mutations in the body of a loop.

The best-known textbook to teach beginners about program by design is HtDP [3, 4]. The method-
ology used by HtDP is based on the concept of the design recipe. A design recipe is a series of con-
crete steps–each with a specific outcome–that helps students design solutions to problems. The current
edition of HtDP [4] presents design recipes for structural, generative, and accumulative recursion. In
addition, the first edition of [3] also presents design recipes for state-based programming (i.e., using
mutations/assignments). The design recipe for generative recursion, for example, has the development
of a termination argument as an explicit step. The design recipe for accumulative recursion has the de-
velopment of accumulator invariants–conditions about the values the accumulators must hold every time
a function is called–as an explicit step. The design recipe for state-based computations includes explicit
steps on how to describe and use state variables. HtDP, however, does not cover the design of while
loops. The work presented in this article applies all of the mentioned HtDP concepts to the design and
implementation of while loops. Accumulator invariants, for example, are explicitly made part of loop
invariants and termination arguments are part of any while-loop design.

A great deal of work has been done on program semantics, but surprisingly very little of it makes it
into programming textbooks for beginners. Given how so many textbooks and programming languages
emphasize state-based computing, it is surprising that even the most rudimentary forms of denotational
semantics are not addressed. It is really not too difficult for beginning students to understand, for ex-
ample, basic Hoare logic [12]. The work presented in this article borrows techniques from denotational
semantics and uses them as tools to design while loops. Specifically, a loop invariant is “dragged”
through proposed mutations in the body of a loop to ascertain the correct ordering of the mutations. At
the beginning of a loop, these mutations make the invariant temporarily false and the remaining muta-
tions must restore the invariant and make progress towards termination. Once the invariant is restored,
the body of the loop has been designed.

3 Student Background

At SHU, the first two introductory Computer Science (CS) courses focus on problem solving using a
computer [16, 17]. The languages of instruction are the successively richer subsets of Racket known as
the student languages which are tightly-coupled with HtDP [3, 4]. No prior experience with programming
is assumed. The first course starts by familiarizing students with primitive data (e.g., numbers, strings,
booleans, symbols, and images), primitive functions, and library functions to manipulate images (i.e.,
the image teachpack). During this introduction, students are taught about variables, defining their own
functions, and the importance of writing contracts and purpose statements. The next step of the course
introduces students to data analysis and programming with compound data of finite size (i.e., structures).

1A more proper term for this condition is the negation of the loop’s driver.

4 How to Design while Loops

At this point, students are introduced to the first design recipe. Students gain experience in developing
data definitions, examples for data definitions, function templates, and tests for all the functions they
write. Building on this experience, students develop expertise with processing compound data of arbi-
trary size such as lists, natural numbers, and trees. In this part of the course, students learn to design
functions using structural recursion. After structural recursion, students are introduced to functional ab-
straction and the use of higher-order functions such as map and filter. The first semester ends with a
module on distributed programming [18, 20].

In the second course, students are exposed to generative recursion, accumulative recursion, and muta-
tion [17, 19]. The course starts with generative recursion. At this point, students have their first exposure
to the development of termination arguments. After this, the course exposes students to accumulative
recursion and iteration (i.e., tail-recursion). During this module, students learn to develop accumulator
invariants and to exploit accumulators. The course ends with two modules on mutation. It is at the end
of second module on mutation-based programming that students are exposed to the novel techniques
regarding while loops presented in this article.

Each course is for a semester (15 weeks). There are two weekly 75-minute lectures that students are
required to attend. The typical classroom has between 20 to 25 students. In addition to the lectures, the
instructor is available to students during office hours (3 hours/week) and there are 20-30 hours of tutoring
each week which the students may voluntarily attend. The tutoring hours are conducted by undergraduate
students handpicked and trained by the lecturer. These tutors focus on making sure students develop
answers for each step of the design recipe (from writing contracts to running tests). Students must
attempt to follow the steps of the design recipe prior to attending tutoring. Based on a student’s work, the
tutors and the instructor provide guidance but do not solve problems. Students are still responsible for
successfully completing all steps of the design recipe. In addition, tutors attend lectures to assist students
when they get stuck with, for example, syntax errors. This type of team-teaching with undergraduate
tutors has proven to be extremely well-received by students and to be an effective means to enhance the
learning experience.

4 Design of Accumulative Recursion Functions

CS students at SHU during their first-year programming course are presented with two motivations for
using accumulators. The first is avoid the loss of knowledge. For example, to find a path from A to B in a
directed graph, the nodes visited need to be remembered to avoid an infinite recursion caused by loops in
the graph. This knowledge (i.e., the nodes visited) is stored in an accumulator. Every recursive call adds
the new node processed to the accumulator. The second is to eliminate delayed operations. Eliminating
delayed operations is an optimization that may make programs faster–something that seems universally
appealing to CS students. In the presence of delayed operations, the evaluation of any argument that
applies a function, f, requires two jumps. A jump to evaluate f’s body and a jump to return to the
caller to finish the delayed operation. By using accumulators, delayed operations are eliminated and all
function calls can be implemented as a single jump requiring no return.

Regardless of the reason to use accumulators, the design recipe for accumulative recursion states that
each accumulator must have an invariant and that initializing and exploiting the accumulator must be
clearly stated [3, 4]. The accumulator invariant is an assertion about the value the accumulator stores.
Every time the function is called, it is the programmer’s responsibility to make sure that the argument
provided makes the invariant true. The initial call to the function, must provide the initial value of the
accumulator and this value must make its invariant true. When the function terminates, the invariant

M. T. Morazán 5

; fact: natnum → natnum

; Purpose: To compute the factorial of the given natnum

(define (fact n)

(cond [(= n 0) 1]

[else (* n (fact (- n 1)))]))

(check-expect (fact 0) 1)

(check-expect (fact 3) 6)

Figure 1: Factorial Using Structural Recursion.

; fact: natnum → natnum

; Purpose: To compute the factorial of the given natnum

(define (fact n)

(local [; fact-accum: natnum natnum → natnum

; Purpose: To compute n!

; Accum Inv: accum = Πn
i=k+1 i

(define (fact-accum k accum)

(cond [(= k 0) accum]

[else (fact-accum (sub1 k) (* accum k))]))]

(fact-accum n 1)))

(check-expect (fact 0) 1)

(check-expect (fact 3) 6)

Figure 2: Factorial Using Accumulative Recursion.

ought to be useful in establishing the correct value to return.
To make this concrete consider the function to compute n! in Figure 1. This function is designed

by students using structural recursion on natural numbers. Students are explained that the function *

is a delayed operation, because its evaluation must wait for the recursive call, (fact (- n 1)), to be
resolved. This makes fact a candidate to use an accumulator to eliminate the delayed operation.

To use an accumulator, the students introduce a locally defined function that, in this case, has a natural
number, k, and the accumulator, accum, as parameters. Before writing the body of this function, students
must identify the accumulator invariant. With the aid of examples, students observe that the value of the
product of the natural numbers processed so far must be accumulated. This means the accumulator
is a natural number. Students are led to realize that the natural numbers needed to compute n! are
partitioned in two. More formally, the accumulator is a natural number that stores the product of all the
natural numbers in [k+1..n]: Πn

i=k+1i. As the original function in Figure 1, the body of the function must
have a conditional expression designed around processing a natural number using structural recursion.

Armed with the knowledge of what the accumulator denotes, students must determine how to exploit
the accumulator. Students are taught that a good heuristic to determine how to exploit the accumulator is
to examine its value when the recursion halts. In this case, the recursion halts when k is 0. By plugging
in k= 0 into the accumulator invariant, the students observe:

6 How to Design while Loops

; fact: natnum → natnum ; fact: natnum → natnum

; Purpose: To compute n! ; Purpose: To compute n!

(define (fact n) (define (fact n)

(local [(local [

; natnum ; natnum

; Purpose: The next accum factor ; Purpose: The next accum factor

; Invariant: k ≥ 0 ; Invariant: k ≥ 0

(define k (void)) (define k (void))

; natnum ; natnum

; Purpose: The product so far ; Purpose: The product so far

; Invariant: accum=Πn
i=k+1 i ; Invariant: accum=Πn

i=k+1 i
(define accum (void)) (define accum (void))

(define (fact-state) (define (fact-state)

(cond (cond

[(= k 0) accum] [(= k 0) accum]

[else [else

(begin (begin

(set! k (sub1 k)) (set! accum (* k accum))

(set! accum (* k accum)) (set! k (sub1 k))

(fact-state))]))] (fact-state))]))]

(begin (begin

(set! k n) (set! k n)

(set! accum 1) (set! accum 1)

(fact-state)))) (fact-state))))

(check-expect (fact 0) 1) (check-expect (fact 0) 1)

(check-expect (fact 3) 6) (check-expect (fact 3) 6)

Figure 3: Two Plausible Implementations of Mutation-Based Factorial.

M. T. Morazán 7

accum = Πn
i=k+1 i

= Πn
i=1 i

= n!

Now, the students know how useful the invariant is to determine how to exploit the accumulator. When
k is 0, they need to return the accumulator. Otherwise, they must recursively process the value of k-1
(structural recursion as before) with a new value for the accumulator that makes the accumulator invariant
true. To determine this value, students can rewrite the invariant taking into account the new value of k.
This step yields:

accum = Πn
i=k+2 i

This tells them that the product stored in the accumulator for the recursive call needs to be multiplied
by k+1. In the current call, this value is k. Therefore, for the recursive call the accumulator must be
multiplied by k. The unit tests remain unchanged. The result of this design is displayed in Figure 2.

5 Design of State-Based Functions

The program in Figure 2, without any delayed operations, is what is called tail-recursive or iterative. If
tail calls are optimized then tail-recursive programs can be evaluated with a constant amount of memory
and function calls are implemented as unconditional jumps (i.e., GOTOs). In our example, the function
needs memory to store two natural numbers (k and accum). Students are asked to consider the trace of,
say, (fact 4):

k accum

(fact 4) = (fact-accum 4 1)

= (fact-accum 3 4)

= (fact-accum 2 12)

= (fact-accum 1 24)

= (fact-accum 0 24)

= 24

It is not difficult for students to observe that this is similar to mutating k and accum. Each recursive call
mutates k by decrementing it by 1 and mutates accum by multiplying it by k.

Students are explained that the translation to a state-based computation, makes the parameters of
fact-accum locally defined state variables. This step is akin to what is know as registerization in
programming languages [7]. To translate the body of the function, the structure remains the same (e.g.,
the if from fact-accum persists), but a sequence of mutations to change the state variables must be
made before calling the new parameterless function. The mutations inside the new local function use the
expressions in the recursive calls in the accumulative recursive function. The body of the local function
mutates the state variables to store the original values passed in the accumulative recursive version. This
leaves students with two equally plausible implementations of factorial. They are displayed in Figure 3.
Each state variable requires an invariant. For accum, the invariant is the same as for the accumulative
recursive function. The invariant for k is derived from the sample trace.

The translation from an accumulative recursive function to a state-based function is mostly mechan-
ical. The non-mechanical part of the transformation is the order in which the mutations to the state
variables are done in the else branch of the conditional in fact-state (in italics in Figure 3). Students

8 How to Design while Loops

are asked if k ought to be mutated first or if accum ought to be mutated first. A simple glance of the code
by a novice reveals no answers. At this point, students are told that they must use the invariants for each
of the state variables to design the code that performs the mutations. The two invariants must be true
every time fact-state is called (akin to what is required to call an accumulative recursive function).

For both state-based versions, the initial mutations making k = n and accum = 1 must make the
two invariants true. Students are shown how to reason to prove this. For example, in class the following
reasoning is developed:

n is a natural number ⇒ n ≥ 0 ⇒ k ≥ 0.

accum = 1

= Πn
i=n+1 i , given that n+1>n

= Πn
i=k+1 i

This establishes that the invariant is achieved. Therefore, it is fine to call fact-state. In class, emphasis
is placed on not calling the function if the invariant has not been achieved.

Now the task is too establish if any of the two versions of fact-state, re-establish the invariants
before the recursive call. Students are shown how to drag the invariant through the mutations in the
begin-expression in the else line of the conditional. This approach is essentially introducing students
to Hoare logic [11] in order to properly sequence mutations. If we perform this process for the function
on the left in Figure 3, we have:

;; k > 0 ∧ accum = Πn
i=k+1 i

(set! k (sub1 k))

;; k ≥ 0 ∧ accum = Πn
i=k+2 i

(set! accum (* k accum))

;; k ≥ 0 ∧ accum = k * Πn
i=k+2 i

Students can observe that the invariant is not established before the recursive call to fact-state. There-
fore, this sequence of mutations statements is not correct and the function can not be recursively called.

This process for the function on the right in Figure 3, yields:

;; k > 0 ∧ accum = Πn
i=k+1 i

(set! accum (* k accum))

;; k > 0 ∧ accum = Πn
i=k i

(set! k (sub1 k))

;; k ≥ 0 ∧ accum = Πn
i=k+1 i

Students can observe that the invariant is reestablished and, therefore, it is safe to make the recursive call
to fact-state.

The final step is to establish that n! is returned by fact-state. Given that the invariant is always
true when fact-state is called, it suffices to plug-in 0, the value of k when the recursion terminates,
into the invariant to establish that accum = n!. Therefore, the function on the right-hand side of Figure
3 is the correct implementation.

As a homework exercise, students are asked to fix the mutations on the left-hand side of Figure 3
without changing the order in which the state variables are mutated. Tutors report mixed results among
students with this exercise. Most students immediately realize that the accumulator ought to be multiplied
by k+1, not k, but have difficulty developing the assertions to establish demonstrating that the invariant

M. T. Morazán 9

; fact: natnum → natnum

; Purpose: To compute the factorial of the given natnum

(define (fact n)

(local

[; natnum

; Purpose: The next value to multiply into accum

; Invariant: k ≥ 0

(define k (void))

; natnum

; Purpose: The value of the product so far

; Invariant: accum = Πn
i=k+1 i

(define accum (void))

; fact-while: → natnum

; Purpose: To compute n!

(define (fact-while)

(begin

(set! k n)

(set! accum 1)

;; Invariant: k ≥ 0 ∧ accum = Πn
i=k+1 i

(while (not (= k 0))

;; k > 0 ∧ accum = Πn
i=k+1 i

(set! accum (* k accum))

;; k > 0 ∧ accum = Πn
i=k i

(set! k (sub1 k)

;; k ≥ 0 ∧ accum = Πn
i=k+1 i)

;; k ≥ 0 ∧ accum = Πn
i=k+1 i ∧ k = 0

;; ⇒ accum = Πn
i=1 i = n!

accum))]

(fact-while)))

Figure 4: Factorial Using a while Loop.

is restored. They can, however, verbalize (i.e., state in a natural language) correct reasoning. At this
point in the course, this is nothing less than a success given that this example is their first exposure to
this material.

6 A New Syntax: while

Students are explained that in many languages it is common to package the repeated mutations of state
variables using syntax in which the recursive call is not explicit. Such syntactic constructs are called
loops and they come in several variations. For example, for, while, and repeat-until loops. Students
are explained that they are all similar and that our focus will be on while loops. From the accumulative
recursive state-based implementation of a function, it is simple to explain to students the syntactic trans-
formation to create while loops. First, the state variables must be initialized to achieve the invariant, as
in done in the body of the local of the state-based implementation.

10 How to Design while Loops

1. Problem Analysis

(a) Outline how the problem is solved
(b) Pick a mutable data representation

2. Write signature, purpose and effect statements, and function header

3. Write Tests

4. Develop the Loop Invariant

5. Define a function with a local expression as its body

(a) Locally declare the state variables as (void)
(b) Define the type and purpose for each state variable
(c) Define headers for helper functions

6. Write the body of the local using a begin expression

(a) Initialize the state variables to achieve the invariant
(b) Define the while loop

i. Define the driver and write the loop header
ii. Use the invariant to correctly sequence mutations

iii. Make progress towards termination
(c) Use the negation of the driver and the invariant to determine the value to return

7. Develop a Termination Argument

8. Run Tests

Figure 5: The Design Recipe for while-Loop-Based Functions.

Second, students are asked to clearly identify the conditions under which a recursive call is not made.
The conjunction of these conditions is what is called the driver of the loop and it controls when the body
of the loop is executed. A straightforward way to identify the loop’s driver is to negate the conditions
that halt the recursion. It is fairly easy for students to see that in our example the driver is (not (= k

0)).
Third, the body of the loop is composed of the code in the recursive cases of the conditional in

the accumulative recursive state-based implementation. In our example, the code for the loop’s body is
easily identified as the expression in the else of the conditional. Given that the code of the while-loop
implementation is exactly the same as the code for the state-based implementation, it is easy for students
to see that the invariant is the same and holds every time the top of the loop is reached. Students are
explained that reaching the top of the loop is tantamount to calling an accumulative recursive function.
Therefore, the invariant must hold every time the top of the loop is reached.

Fourth, students are explained that the driver being false at the top of the loop is tantamount to the
recursive function halting. Therefore, the code after the loop corresponds to the code that is evaluated
whenever the state-based accumulative recursion function stops. For our example, it is easy for students
to see that the only thing that needs to be done is to return accum.

Figure 4 displays the result of this syntactic transformation for our factorial example2. The only

2The syntax for while loops in Racket is implemented using a macro.

M. T. Morazán 11

task left is to convincingly argue that returning accum is correct. Students are explained that when the
loop stops the invariant and the negation of the driver are true. These must be used to determine what
value ought to be returned. For our example, k = 0 and the invariant are true. As for the state-based
accumulative recursive function, plugging in k = 0 into the righthand side of the invariant for accum
reveals that that accum is n!. Therefore, it is the correct value to return.

At this point students understand the design and implementation of fact-while. This is especially
enlightening for students that come with prior programming experience, say, in Java or C++. Suddenly,
for these students, writing while loops is an exercise in design rather than an ad hoc trial and error
exercise. For students that do not come to the class with such prior programming experience, designing
while loops is an extension of the design-based methodology that they have been learning. The im-
portant point is that for both groups there is nothing mysterious about while loops. It is a syntactical
construct for state-based accumulative recursion. As such, it is natural for them to now expect a design
recipe for while loops.

7 A Design Recipe for while Loops

After seeing in class and doing for homework several exercises to transform an accumulative recursive
function into a while-based function, students are presented with the 8-step design recipe presented in
Figure 5. This design recipe aims to help students to directly develop while-loop based functions (with-
out going through all the transformations exemplified in Sections 4–6)3. The steps have been designed
to feel familiar to students building on their experience with other design recipes in HtDP and with the
transformation of accumulative recursive functions to while-based functions. In addition, every step in
the design recipe has a specific result that helps in the development of any while-loop based function.
It is noteworthy that these steps do not only help students write while loops. The result of each step
also assists instructors and tutors to gauge the understanding students have about a problem in order to
provide feedback and guidance. Furthermore, the results a student presents for each step of the design
recipe can be used to assign grades on homework, quizzes, and exams.

For the first step, students analyze a problem to determine how to solve it. If the students can outline
how to solve the problem with a finite number of variables that are repeatedly mutated the same way, then
they can consider using a while loop. A useful way to determine this is to successfully trace an example
using a table containing the values of the state variables at each step. Some of these state variables will
be accumulators, each requiring an accumulator invariant, and others may be the state variables around
which the algorithm is designed (e.g., a natural number or a list) from which they can derive the halting
condition.

For the second step, students first clearly identify the signature for the function defining the types
of the input, if any, and the output. Then they write a purpose statement. If the solution is based
on a generative recursion design, students must include a description of how the problem is solved.
Finally, students write the function header that contains the same number of parameters as the input in
the signature.

For the third step, students write tests to illustrate the behavior of their function. These tests must be
thorough and include at least one test for each variety of the data being processed. The tests must also
illustrate the effects, if any, of the function. For example, if the function sorts a vector in place then the
tests must establish that sample vectors are sorted after applying the function to it.

3Students, of course, always have the option to do so.

12 How to Design while Loops

; signature: Purpose: Effect:

(define (f-while ...)

(local [; <type>

; Purpose:

(define state-var1 (void))

. . .
; <type>

; Purpose:

(define state-varN (void))

<helper functions>]

(begin

(set! state-var1)

. . .
(set! state-varN)

; <Invariant>

(while <driver>

<while-body>)

; <Invariant> and (not <driver>)

<return value code>))

; <Termination argument>

) ; closes f-while

(check-expect (f-while . . .) . . .)
. . .

(check-expect (f-while . . .) . . .)

Figure 6: A Template to Design Functions Using while Loops.

The fourth step is a (somewhat) novel step for students. The development of the loop invariant is
usually the hardest step for beginners. This is the step in which the students establish the relationship
between the state variables. If they have used a table in step 1, then they can use the table to identify the
variable properties that are true for each row of the table (i.e., true before an iteration of the loop). The
invariant must include all the state variables mutated in the loop. Typically, it helps to identify, P, what
needs to be true after the loop is executed (also called the post-condition) and, S, the stopping condition.
If P and S are identified, then the following implication must hold:

Loop Invariant ∧ S ⇒ P.

When the above implication can be established, the students have, at the very least, a good approximation
of the loop invariant.

For step five, students use a local-expression as the body of the function. The local declarations
must capture the state variables. For each state variable, its type and purpose must be identified. In
addition, headers for helper functions should also be defined locally. These helper functions are inde-
pendently designed and implemented. The design of the current function assumes that the local helper
functions satisfy their signature and their purpose. One of the goals of this step is to have students use
encapsulation to hide the state variables and to have each function be a complete package containing
everything that is needed by the body of the local-expression.

For step 6, the body of the local-expression must be a begin-expression. The first steps in the

M. T. Morazán 13

begin-expression initialize the state variables to achieve the invariant. After initialization, while loop is
defined. This step is started by writing the loop header with its driver. The body of the loop is designed
by dragging the invariant through the proposed mutations as illustrated in Section 5. This means that
inside the loop’s body the invariant becomes temporarily false and must be restored before the body’s
end. It is emphasized to students that restoring the invariant does not suffice. As designers, they must
also make sure that the mutations make progress towards termination. That is, one or more mutations
must bring the computation one step closer to making the driver false. The final design step for the
begin-expression is to determine the value that must be returned. Students must use the invariant and
the negation of the driver to determine this value.

For step 7, students must argue that the loop terminates. That is, they must explain why their loop
eventually halts. If step 6 has been correctly designed, then establishing termination is not too difficult.
On the other hand, if the body of the loop fails to always make progress towards termination, then
students cannot develop this argument and must re-check their previous steps.

For step 8, students run their tests. If any tests fail, the students must check their work. Tests can fail
for two reasons. The first is that there is a bug in their design/code. To remedy this bug, students must
check the results of each step of the design recipe and make sure they have correctly performed each
step. The second is that a test has been incorrectly written. In this case, they must correctly rewrite the
test.

The steps of the design recipe suggest a function template for while-loop-based design. Figure 6
displays this template. Students can use this template as they develop answers for the steps of the design
recipe. In this manner, they can piece-wise write functions that use while loops. Whenever a student
is asked or decides to use a while-loop they can use this template as the starting point for the structure
of their function. The template emphasizes both correctness (i.e., invariant) and unit testing. This is a
sound approach when others, with different levels of expertise, understanding, and needs, may read your
code. The unit tests communicate the expected behavior of the function. This usually suffices for most
users of the code. The invariant and assertions communicate why the function is correct. This is required
if a user of the code needs to guarantee the correctness of the software they are developing.

Finally, it is important to emphasize to students that the steps of the design recipe do more than
simply help with code development. They also help to communicate to others how a problem is solved.
To demonstrate the importance of this students are asked to think if others would be able to understand
and to maintain their code. To make the point concrete, students are asked to update someone else’s
code. This provides the opportunity to talk to beginners about ethics and professionalism in Computer
Science.

8 The Design Recipe in Action

This section presents an extended example of the design recipe for while loops in action. The example
chosen is sorting a vector in place using insertion sorting. Students are familiar with insertion sorting as
it has been used as an example to sort a list of numbers using structural recursion earlier in the course.
Furthermore, students have also developed an insertion sorting function, designed using structural re-
cursion on vector intervals [21], to sort a vector of numbers in place. Therefore, this brings a familiar
example to the realm of teaching students how to design while loops.

For step 1 of the design recipe, problem analysis in class reveals that a local in-place sorting function,
sort!, needs to process a vector interval, [low..high], for an input vector V. Initially, the entire vector
must be sorted, thus, sort! must be called with [0..Vlen− 1], where Vlen is the length of V. The

14 How to Design while Loops

; (vectorof number) → (void)

; Purpose: To sort the given vector in non-decreasing order

; Effect: The given vector elements are rearranged in-place.

(define (ins-vector! V)

(local

[; sort!: VINTVV[natnum,natnum] → (void)

; Purpose: Sort given vector interval in non-decreasing order

; Effect: Given interval elements are rearranged in-place

(define (sort! low high)

(local

[; int

; Purpose: Next element index to move to sorted part of V

(define h (void))]

(begin

(set! h high)

; INV: V[h+1..high] is sorted in non-decreasing order

; ∧ h >= low-1

(while (not (empty-VINTV? low h))

; h >= low ∧ V[h+1..high] is sorted in non-decreasing order

(insert! h (sub1 high))

; h >= low ∧ V[h..high] is sorted in non-decreasing order

(set! h (sub1 h))

; h >= low-1 ∧ V[h+1..high] is sorted in non-decreasing order

) ; closes while

; h >= low-1 ∧ V[h+1..high] is sorted in non-decreasing order

; ∧ [low..h] is empty

; ==> h < low

; ==> h = low-1

; ==> V[low..high] is sorted in non-decreasing order

(void))))

; insert!: VINTVV[natnum,natnum] → (void)

; Purpose: . . .
; Effect: . . .
; Assumption: V[lo+1..hi] is sorted in non-decreasing order

(define (insert! lo hi)

. . .)]
(sort! 0 (sub1 (vector-length V)))))

(check-expect (begin (ins-vector! (vector)) V) (vector))

(check-expect (begin (ins-vector! (vector 20 76 3 44)) V) (vector 3 44 20 76))

(check-expect (begin (ins-vector! (vector 1 2 3)) V) (vector 1 2 3))

(check-expect (begin (ins-vector! (vector 101 8 87 87 8)) V) (vector 8 8 87 87 101))

Figure 7: Outline of In-Place Vector Insertion Sorting.

M. T. Morazán 15

sorting function halts when the vector interval is empty. The vector interval can be processed from high

to low using a structural recursion approach (that will be implemented using a while loop). At each
step, the vector interval will have two parts, the sorted and the unsorted portions, and the high element of
the unsorted portion is inserted into the sorted portion. The mutable high index, h, is represented as local
integer. An integer, not a natural number, is needed given that eventually the mutable index will become
-1 when the vector interval is empty. These observations lead to the design recipe’s step 2 signature,
purpose statement, effect statement, and function header displayed in Figure 7.

For step 3, students are explained that the tests must show that the effect is achieved. In our example,
this means that the tests must show that a vector ends in a sorted state. The tests aim to be thorough by
demonstrating that the effect is achieved given input vectors with different characteristics: empty, non-
empty, sorted, in reversed order, randomly populated, and containing repetitions. The tests are displayed
in Figure 7.

For step 4, students need to see how to formulate an assertion that captures the idea of the vector
interval is divided into the sorted and unsorted portions. After some class discussion, the initial invariant
developed is:

V[low..h] is unsorted ∧ V[h+1..high] is sorted in non-decreasing order

Students are asked if this invariant suffices to prove that the vector is sorted when the vector interval
becomes empty. In other words, does the following hold:

INV ∧ [low..h] is empty ⇒ V[low..high] is sorted in non-decreasing order

During class discussion two conclusions are reached. First, the proposed invariant is insufficient, because
it is not possible to determine the value of h. Second, including an assertion for the unsorted portion of
V is not useful and, therefore, can be dropped from the invariant. Students observe that when the loop
halts, it is necessary for h to be low-1. This leads to the following proposed invariant:

V[h+1..high] is sorted in non-decreasing order ∧ h >= low-1

At this point, students can argue that when the loop halts h=low-1 and, therefore, for the given vector
interval the vector is sorted. Thus, this invariant suffices.

For step 5, students locally define h as (void) with the type and purpose displayed in Figure 7.
The more interesting part of this step is to convince students to take a leap of faith and assume that they
can write an in-place function to insert V[h] into the sorted part of the vector. It is not uncommon,
however, for some students to remember lessons from designing this function using structural recursion
on a vector interval. These students remind the class that insert! must process a vector interval and
that all but the first element in the given vector interval are sorted in non-decreasing order. All of these
class observations are captured in the local declarations of ins-vector! in Figure 7. At this point, it
is worth asking students why they have not suggested to define insert! locally inside sort!. Most
students state that “for now” it is less confusing not to “clutter” sort! with more local definitions. Given
that students find it less confusing the author feels that this choice is acceptable. Some students, after
digesting the design, do make insert! local to sort!.

For step 6, students quickly realize that h must be initialized to high and that the driver is (not

(empty-VINTV? low h))4. Developing the body of the while is carefully guided by the instructor
with student input. The first step of to have students realize how the first assertion inside the loop is
derived from the invariant and the driver. In our case, this means that h ≥ low. Usually after this, the
first instinct students have to is to insert V[h] into the sorted part of the vector. It is not uncommon,

4(define (empty-VINTV? low high) (< high low))

16 How to Design while Loops

once again, for students to remember lessons from designing this function using structural recursion on
a vector interval and state that the vector interval provided as input to insert cannot contain high.
After some class discussion, students feel comfortable stating that after the call to insert!, h has not
changed and the sorted vector interval is now [h..high]. This is captured in the assertion after the call
to insert! in Figure 7. At this point, students can observe that progress has not been made towards
termination and that the state variable h has not been mutated. The mutation of h is straightforward for
students given that this is a design based on structural recursion. Observing that the invariant is restored
is also straightforward for students.

Step 7’s termination argument is relatively simple for students, since they know that structural re-
cursion always terminates. All students can state that h starts at high. Every time through the loop h is
decremented by 1. Therefore, h will eventually be less than low and the loop terminates.

In order to complete step 8, the insert! function must be implemented. It’s design follows in the
same spirit of sort!. It presents an excellent opportunity to reinforce the design process for while
loops.

9 Concluding Remarks and Future Work

This article presents a methodology to introduce beginners to while loops. This methodology is based on
a novel design recipe that outlines concrete steps with concrete outcomes to guide students in the design
of while loops. The design recipe is inspired in the translation of accumulative recursive functions into
a new syntax in which recursive calls are not explicit and in the work done by the denotational semantics
community. The steps of the design recipe presented address two of the biggest difficulties beginners
face. The first is how to sequence mutations to solve problems using while loops. The second is how to
design loops that are not infinite and argue that a well-designed loop terminates. An important benefit of
the approach is that students are introduced to program correctness. This is useful to them as a new tool
in their programming toolbox and serves as a gentle introduction for a course on program verification
they may take in the future.

Although the examples in this article use Racket syntax, the methodology is not Racket specific
nor it is specific to the Racket student languages. That is, the methodology can be used with many
programming languages. Furthermore, the presented design recipe does not depend on Racket in any
way. In fact, this methodology is used at Seton Hall University with students in their first year that are
taught using the Racket student languages and with students in their second year that are taught using
an object-oriented programming language like Java.

Future work includes measuring students’ attitudes towards the presented design recipe to determine
if they feel it is useful and to determine if it makes them better problem solvers. Future work also includes
investigating how to teach students to make while loops iterative (i.e., contain no delayed operations).
This is likely achievable by giving students a gentle introduction to the core ideas behind continuation-
passing style and by developing a design recipe students can follow to eliminate delayed operations.
Finally, future work also includes determining how this methodology can be vertically integrated into
the CS curriculum. This problem is very challenging, because many instructors are not familiar with
formal methods. The hope is that instructors of higher-level courses will be receptive to the idea given
that students come with some background in program correctness.

M. T. Morazán 17

10 Acknowledgements

The author thanks Douglas Troeger from The City College of New York, his Ph.D. advisor, for his
introduction to formal methods. The work we did with undergraduates at the time has influenced the
development of the design recipe for while loops. The author also thanks Matthias Felleisen et al. for
introducing termination arguments and accumulator invariants in HtDP. That introduction has proven
essential in making the work presented in this article more easily accessible to beginners.

References

[1] Kenneth A. Barclay (1989): C: Problem Solving and Programming, 1 edition. Prentice Hall International.

[2] Yuliya Cherenkova, Daniel Zingaro & Andrew Petersen (2014): Identifying Challenging CS1 Concepts in
a Large Problem Dataset. In: Proceedings of the 45th ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE 14, Association for Computing Machinery, New York, NY, USA, p. 695700,
doi:10.1145/2538862.2538966.

[3] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2001): How to Design
Programs: An Introduction to Programming and Computing, First edition. MIT Press, Cambridge, MA,
USA.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2018): How to Design
Programs: An Introduction to Programming and Computing, Second edition. MIT Press, Cambridge, MA,
USA.

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barsilay, Jay McCarthy
& Sam Tobin-Hochstadt (2018): A Programmable Programming Language. Commun. ACM 61(13), pp.
62–71, doi:10.1145/3127223.

[6] William Ford & William Topp (1996): Data Structures with C++, first edition. Prentice Hall.

[7] Daniel P. Friedman & Mitchell Wand (2008): Essentials of Programming Languages, 3 edition. The MIT
Press.

[8] David Ginat (2004): On Novice Loop Boundaries and Range Conceptions. Computer Science Education
14(3), pp. 165–181, doi:10.1080/0899340042000302709.

[9] Michael T. Goodrich, Roberto Tamassia & Michael H. Goldwasser (2014): Data Structures and Algorithms,
6 edition. JohnWiley & Sons, Inc.

[10] Samuel P. Harbison & Guy L. Steele Jr. (1991): C: A Reference Manual, 3 edition. Prentice Hall.

[11] C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming. Commun. ACM 12(10), pp. 576–
580, doi:10.1145/363235.363259.

[12] C.A.R. Hoare & H. Jifeng (1998): Unifying Theories of Programming. Prentice Hall series in computer
science, Prentice Hall.

[13] Cruz Izu, Cheryl Pope & Amali Weerasinghe (2019): Up or Down? An Insight into Programmers Ac-
quisition of Iteration Skills. In: Proceedings of the 50th ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE 19, Association for Computing Machinery, New York, NY, USA, p. 941947,
doi:10.1145/3287324.3287350.

[14] Al Kelley & Ira Pohl (1996): C by Dissection:The Essentials of C Programming, 3 edition. Addison-Wesley
Publishing Company, Inc.

[15] Hélène Martin (2010): While Loops Gone Wild. http://www.helenemartin.com/index.html%3Fp=297.html.
Accessed 2020-03-06.

[16] Marco T. Morazán (2011): Functional Video Games in the CS1 Classroom. In Rex Page, Zoltán Horváth
& Viktória Zsók, editors: Trends in Functional Programming: 11th International Symposium, TFP 2010,

http://dx.doi.org/10.1145/2538862.2538966
http://dx.doi.org/10.1145/3127223
http://dx.doi.org/10.1080/0899340042000302709
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/3287324.3287350

18 How to Design while Loops

Norman, OK, USA, May 17-19, 2010. Revised Selected Papers, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 166–183, doi:10.1007/978-3-642-22941-1 11.

[17] Marco T. Morazán (2012): Functional Video Games in CS1 II. In Ricardo Peña & Rex Page, editors: Trends
in Functional Programming: 12th International Symposium, TFP 2011, Madrid, Spain, May 16-18, 2011,
Revised Selected Papers, Lecture Notes in Computer Science 7193, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 146–162, doi:10.1007/978-3-642-32037-8 10.

[18] Marco T. Morazán (2014): Functional Video Games in CS1 III. In Jay McCarthy, editor: Trends in Func-
tional Programming: 14th International Symposium, TFP 2013, Provo, UT, USA, May 14-16, 2013, Revised
Selected Papers, Lecture Notes in Computer Science 8322, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 149–167, doi:10.1007/978-3-642-45340-3 10.

[19] Marco T. Morazán (2015): Generative and Accumulative Recursion Made Fun for Beginners. Comput. Lang.
Syst. Struct. 44(PB), pp. 181–197, doi:10.1016/j.cl.2015.08.001.

[20] Marco T. Morazán (2018): Infusing an HtDP-Based CS1 with Distributed Programming Using Functional
Video Games. Journal of Functional Programming 28, p. e5, doi:10.1017/S0956796818000059.

[21] Marco T. Morazán (2018): Vector Programming Using Structural Recursion . In Simon Thompson, editor:
Proceedings Sixth Workshop on Trends in Functional Programming in Education, Canterbury, Kent UK, 22
June 2017, Electronic Proceedings in Theoretical Computer Science 270, Open Publishing Association, pp.
1–17, doi:10.4204/EPTCS.270.1.

[22] Michael L. Scott (2000): Programming Language Pragmatics, 1 edition. Morgan Kaufmann Publishers.
[23] Robert Sedgewick & Kevin Wayne (2008): Introduction to Programming in Java: An Interdisciplinary Ap-

proach, 6 edition. Pearson Education, Inc.
[24] Paul T. Tymann & G. Michael Schneider (2004): Modern Software Development Using Java. Thomson

Brooks/Cole.

http://dx.doi.org/10.1007/978-3-642-22941-1_11
http://dx.doi.org/10.1007/978-3-642-32037-8_10
http://dx.doi.org/10.1007/978-3-642-45340-3_10
http://dx.doi.org/10.1016/j.cl.2015.08.001
http://dx.doi.org/10.1017/S0956796818000059
http://dx.doi.org/10.4204/EPTCS.270.1

	1 Introduction
	2 Related Work
	3 Student Background
	4 Design of Accumulative Recursion Functions
	5 Design of State-Based Functions
	6 A New Syntax: while
	7 A Design Recipe for while Loops
	8 The Design Recipe in Action
	9 Concluding Remarks and Future Work
	10 Acknowledgements

