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We introduce LAM, a subsystem of IMALL2 with restricted additive rules able to manage duplication

linearly, called linear additive rules. LAM is presented as the type assignment system for a calculus

endowed with copy constructors, which deal with substitution in a linear fashion. As opposed to

the standard additive rules, the linear additive rules do not affect the complexity of term reduction:

typable terms of LAM enjoy linear strong normalization. Moreover, a mildly weakened version of

cut-elimination for this system is proven which takes a cubic number of steps. Finally, we define a

sound translation from LAM’s proofs into IMLL2’s linear lambda terms, and we study its complexity.

1 Introduction

Linear Logic (LL) is a refinement of both classical and intuitionistic logic introduced by Girard in [13].

A central role in LL is played by the exponential modalities ! and ?, which give a logical status to

the structural rules of weakening and contraction. The exponentials allow us to discriminate between

linear resources, consumed exactly once, and non-linear resources, reusable at will. Moreover, since the

uncontrolled use of the structural rules is forbidden, conjunction and disjunction come with two distinct

presentations: the multiplicative version (resp. ⊗ and `) and the additive one (resp. & and ⊕).

The presence of multiple formulations of the same connective has prompted the analysis of specific

fragments of Linear Logic, i.e. subsystems of LL that illustrate the behavior of a specific group of connec-

tives. The simplest fragment of LL is MLL (Multiplicative Linear Logic), i.e. the modal-free subsystem of

LL with inference rules for ⊗, `. Another one is MALL (Multiplicative Additive Linear Logic), obtained

by extending MLL with additive rules, i.e. the inference rules for &, ⊕.

As pointed out in [19], according to the “computation-as-normalization” paradigm, the additive rules

of LL can be used to express non-deterministic program executions. This intuition has been further

investigated in the field of ICC (Implicit Computational Complexity), a branch of computational com-

plexity devising calculi that abstract from machine models and characterize complexity classes without

imposing “external” resource bounds. In this setting, several variants of the additive rules able to express

non-deterministic computation more explicitly have been proposed to capture the class NP. Examples

are [19, 11, 20], all based on light logics, i.e. subsystems of (second-order) LL with weaker exponential

rules that induce a complexity bound on proof normalization.

Using variants of the additive rules to characterize the non-deterministic polytime problems raises

some issues, because these inference rules affect the complexity of cut-elimination/normalization, which

may require an exponential cost. A standard approach to circumvent this fact is to focus on a specific

cut-elimination strategy called lazy [12], which “freezes” those commuting cut-elimination steps that

involve duplication of (sub)proofs. A similar technique can be found in [11], where the type system

STA+ is introduced to capture the complexity class NP in the style of ICC. STA+ extends Soft Type

Assignment [10] with the sum rule below

Γ ⊢M : A Γ ⊢ N : A sum
Γ ⊢M+N : A

(1)
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and the non-deterministic reductions M←M +N→ N for the choice operator +. The sum rule is close

to the additive rules, and suffers the same drawbacks. Consequently, to prove that STA+ is sound for

NP, a particular reduction strategy is needed to avoid exponential computations.

In this paper we present a different solution to the complexity-theoretical issues caused by the addi-

tive rules. We start focusing on the second-order intuitionistic formulation of MALL, i.e. IMALL2. We

shall look at the latter as a type system, essentially by considering formulas as types and by decorating

logical derivations with λ -terms endowed with pairs and projections. The analysis of the non-linear

features of the additive rules leads to the new type system LAM (Linearly Additive Multiplicative Type

Assignment). This is a subsystem of IMALL2 obtained by imposing some conditions on types and by

replacing the standard additive rules with weaker versions, called linear additive rules. To some ex-

tent, LAM is more expressive than the “lazy” restriction of IMALL2. Indeed, the linear additive rules

allow some forms of duplication that lazy evaluation forbids. Nonetheless, these special additive rules

are able to maintain control on the complexity of normalization, preventing exponential explosions and

recovering linear strong normalization.

The cut-elimination rules for LAM are constrained to copy-cat the reduction rules on terms, making

the cut rule no longer admissible. We then identify a class of types, called ∀-lazy, whose derivations can

always be turned into cut-free ones in cubic time. This result is analogous to Girard’s restricted (lazy)

cut-elimination theorem for MALL in [12], but somehow more permissive.

Last, following essentially [7], we introduce a computationally sound translation mapping a deriva-

tion of LAM into a linear λ -term of IMLL2 whose size can be exponentially bigger than the source

derivation. The translation exploits the mechanisms of linear duplication and erasure studied by Mairson

and Terui in [17, 18], and shows how LAM is able to express such mechanisms in a very compact and

elegant way.

2 From Standard Additives to Linear Additives

In this section we briefly recall the (⊸,&,∀) fragment of IMALL2 as a type system, and we show how

nesting instances of the additive rules in a derivation produces an exponential blow up in normaliza-

tion. To circumvent this issue we introduce linear additives, weaker versions of the standard additives

permitting restricted forms of duplication without affecting the complexity of normalization.

2.1 The System IMALL2

We present IMALL2 as a type assignment system for the calculus Λπ,〈〉, whose terms are defined by the

following grammar:

M := x | λx.M | MM | 〈M,M〉 | π1(M) | π2(M) (2)

where x is taken from a denumerable set of variables. The set of free variables of a term M is written

FV (M), and the meta-level substitution for terms is denoted M[N/x]. The size |M| of a term M is

inductively defined as follows:

|x| , 1

|λx.M|, |πi(M)|, |M|+1 i ∈ {1,2}

|MN|, |〈M,N〉|, |M|+ |N|+1.

(3)
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The one-step relation→β is the binary relation over Λπ,〈〉 defined by:

(λx.M)N→β M[N/x] πi〈M1,M2〉 →β Mi i ∈ {1,2} (4)

Its reflexive and transitive closure is→∗β . If M β -reduces to N in exactly n steps we write M→n
β N. As

usual, a λ -term is in (or is a) normal form whenever no reduction rule applies to it.

The set Θ& of types of IMALL2 is generated by the following grammar:

A := α | A⊸ A | A & A | ∀α .A (5)

where α belongs to a denumerable set of type variables. The set of free type variables of a type A is

written FV (A), and the standard meta-level substitution for types is denoted A〈B/α〉. A type A is closed

if FV (A) = /0. The size |A| of a type A is inductively defined as follows:

|α |, 1

|A⊸ B|, |A & B|, |A|+ |B|+1

|∀α .A|, |A|+1.

(6)

We define the notions of positive subtype and of negative subtype of a type A by simultaneous induction

on the structure of A:

• A is a positive subtype of itself;

• if B⊸C is a positive (resp. negative) subtype of A, then B is a negative (resp. positive) subtype of

A, and C is a positive (resp. negative) subtype of A;

• if B &C is a positive (resp. negative) subtype of A, then so are B and C;

• if ∀α .B is a positive (resp. negative) subtype of A, then so is B.

We say that a type A has positive (resp. negative) occurrences of ∀ if there exists a positive (resp. negative)

subtype of A with shape ∀α .B. We define in a similar way positive and negative occurrences of⊸ and

&.

The system IMALL2 (Intuitionistic Second-Order Multiplicative Additive Linear Logic) is displayed

in Figure 1, where &R and &Li are the additives rules. It derives judgements with form Γ ⊢M : A, where

M ∈ Λπ,〈〉, A ∈ Θ& and Γ is a context, i.e. a finite multiset of assumptions x : A. The system requires the

linear constraint FV (Γ)∩FV (∆) = /0 in both cut and⊸L, where FV (Γ) denotes the set of all free type

variables in Γ. With D ⊳Γ ⊢M : A we denote a derivation D of Γ ⊢M : A, and in this case we say that

M is an inhabitant of A (or that A is inhabited by M). The size |Γ| of a context Γ = x1 : A1, . . . ,xn : An is

∑n
i=1 |Ai|, and the size |D | of a derivation D is the number of its rules applications.

We recall that IMLL2 (Intuitionistic Second-Order Multiplicative Linear Logic) is obtained from

IMALL2 by excluding the additive rules from Figure 1. It gives a type exactly to the class of linear

λ -terms (see [14, 18]), i.e. those terms M from the standard λ -calculus such that:

(i) each free variable of M occurs in it exactly once, and

(ii) for each subterm λx.N of M, x occurs in N exactly once.

Tensors (⊗) and units (1) can be introduced in IMLL2 (and hence in IMALL2) by means of second-

order definitions:

1, ∀α .(α⊸ α) A⊗B, ∀α .(A⊸ B⊸ α)⊸ α

I, λx.x M⊗N , λ z.zM N

let M be I in N ,MN let M be x⊗ y in N ,M(λx.λy.N).

(7)
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x : A ⊢ x : A
ax

Γ ⊢ N : A ∆,x : A ⊢M : C

Γ,∆ ⊢M[N/x] : C
cut

Γ,x : A ⊢M : B

Γ ⊢ λx.M : A⊸ B
⊸R

Γ ⊢ N : A ∆,x : B ⊢M : C

Γ,y : A⊸ B,∆ ⊢M[yN/x] : C
⊸L

Γ ⊢M1 : A1 Γ ⊢M2 : A2

Γ ⊢ 〈M1,M2〉 : A1 & A2

&R
Γ,xi : Ai ⊢M : C i ∈ {1,2}

Γ,y : A1 & A2 ⊢M[πi(y)/xi] : C
&Li

Γ ⊢M : A〈γ/α〉 γ 6∈ FV(Γ)

Γ ⊢M : ∀α .A
∀R

Γ,x : A〈B/α〉 ⊢M : C

Γ,x : ∀α .A ⊢M : C
∀L

Figure 1: The system IMALL2.

Hence, the inference rules for ⊗ and 1, and the reduction rules

let I be I in N→β N

let M1⊗M2 be x1⊗ x2 in N→β N[M1/x1,M2/x2]
(8)

are derivable in IMLL2.

2.2 Exponential Blowup and Lazy Cut-Elimination for IMALL2

The additive rule &R in Figure 1 affects the complexity of normalization in IMALL2, letting the size of

typable terms and the number of their redexes grow exponentially during reduction. Definition 1 and

Proposition 1 show an example.

Definition 1 (Nesting IMALL2 terms). Let A ∈ Θ& and M ∈ Λπ,〈〉. For all n ∈ N, we define A[n] and M[n]

as follows:

A[n] ,

{

A n = 0

A[n−1] & A[n−1] n > 0
M[n] ,

{

M n = 0

〈M[n−1],M[n−1]〉 n > 0
(9)

Notice that 〈M,M〉[n] = M[n+1]. Moreover, for all n ∈ N we define addx
n as follows:

addx
n ,

{

x n = 0

(λy.addy
n−1)〈x,x〉 n > 0

(10)

Proposition 1 (Exponential blow up). Let A ∈Θ&, and let M ∈ Λπ,〈〉 be of type A. For all n ∈N:

1. ⊢ λx.addx
n : A⊸ A[n] is derivable in IMALL2;

2. (λx.addx
n)M→

n+1
β

M[n], where |(λx.addx
n)M|= O(n · |M|) and |M[n]|= O(2n·|M|).
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D

Γ ⊢M : A

...

∆,x : A ⊢ N : B

...

∆,x : A ⊢ P : C
&R

∆,x : A ⊢ 〈N,P〉 : B &C
cut

Γ,∆ ⊢ 〈N[M/x],P[M/x]〉 : B &C

 

D

Γ ⊢M : A

...

∆,x : A ⊢ N : B
cut

Γ,∆ ⊢ N[M/x] : B

D

Γ ⊢M : A

...

∆,x : A ⊢ P : C
cut

Γ,∆ ⊢ P[M/x] : C
&R

Γ,∆ ⊢ 〈N[M/x],P[M/x]〉 : B &C

Figure 2: Commuting cut-elimination step (with term annotation) involving duplication of D .

Proof. Concerning point 1, we prove by induction on n that λx.addx
n has type A[k] ⊸ A[k+n], for all

k ∈ N. If n = 0 then addx
0 = x, so that λx.x has type A[k] ⊸ A[k]. Let us consider the case n > 0.

By induction hypothesis, λy.addy
n−1 has type A[k+1]⊸ A[k+n]. If x has type A[k] then 〈x,x〉 has type

A[k+1] and (λy.addy
n−1)〈x,x〉 has type A[k+n]. Therefore, λx.addx

n = λx.((λy.addy
n−1)〈x,x〉) has type

A[k]⊸ A[k+n]. Concerning point 2, it suffices to prove by induction on n that addx
n→

n
β x[n]. The base case

is trivial. If n > 0 then addx
n = (λy.addy

n−1)〈x,x〉 →β add
y
n−1[〈x,x〉/y]. Since by induction hypothesis

add
y
n−1 →

n−1
β y[n−1] then add

y
n−1[〈x,x〉/x] →n−1

β y[n−1][〈x,x〉/y] = 〈x,x〉[n−1] = x[n]. Finally, we notice

that, for all n ∈ N, it holds that |addx
n|= (5 ·n)+1 and |M[n]|= 2n·|M|+∑n−1

i=0 2i.

Proposition 1 is about the complexity of normalization for IMALL2’s typable terms, but it can be

easily restated for cut-elimination. To prevent the problem of exponential computation, Girard introduced

in [12] the so-called lazy cut-elimination, a rewriting procedure for both MALL’s proof nets and their

second-order versions that requires only a linear number of steps. Intuitively, in the sequent calculus

presentation of IMALL2, lazy cut-elimination “freezes” the commuting cut-elimination steps applied

to those instances of cut whose right premise is the conclusion of &R, as they involve duplication of

(sub)proofs (see Figure 2). Since lazy cut-elimination cannot perform certain cut-elimination steps, it

may fail to produce a cut-free proof. Nonetheless, Girard showed that a cut-elimination theorem for

MALL2’s proof nets holds if we stick to those receiving (&,∃)-free types (see [12]). Following [18], we

call these special types “lazy”, and we define their intuitionistic counterparts as follows:

Definition 2 (Lazy types). A type A ∈ Θ& is lazy if it contains no negative occurrences of ∀ and no

positive occurrences of &.

Note that the restriction on negative occurrences of ∀ in the above definition is just to forbid the

hiding of & connectives by ∀L in IMALL2.

Lazy cut-elimination for IMALL2 can be reformulated as a reduction on terms by introducing some

form of sharing, e.g. explicit substitution (see [1]). The idea is to replace the meta-notation M[N/x] with

a term constructor of the following shape:

M〈〈x := N〉〉 (11)



Gianluca Curzi 79

and to add reduction rules able to introduce and perform substitution stepwise, such as:

(λx.M)N→M〈〈x := N〉〉

x〈〈x := N〉〉 → N

y〈〈x := N〉〉 → y y 6= x

(λy.M)〈〈x := N〉〉 → λy.(M〈〈x := N〉〉) y 6= x and y 6∈ FV (N)

(MP)〈〈x := N〉〉 →M〈〈x := N〉〉P〈〈x := N〉〉

πi(M)〈〈x := N〉〉 → πi(M〈〈x := N〉〉) i ∈ {1,2}

〈M,P〉〈〈x := N〉〉 → 〈M〈〈x := N〉〉,P〈〈x := N〉〉〉.

(12)

Lazy reduction is then obtained by forbidding substitutions of terms in a pair, i.e. by ruling out the last

rewriting rule of (12), since it mimics the cut-elimination step in Figure 2. As an example, consider the

following typable terms of IMALL2:

M , (λx.π1〈x,x〉)N

M′ , (λx.〈x,x〉)N.
(13)

If we applied standard β -reduction to M we would obtain π1〈N,N〉, thus creating a (useless) copy of

N. By contrast, thanks to explicit substitution, lazy reduction enables a better control on the parameter-

passing mechanism and reduces M without making new copies of N:

(λx.π1〈x,x〉)N → π1〈x,x〉〈〈x := N〉〉 → x〈〈x := N〉〉 → N.

The above reasoning does not apply to M′, as the substitution 〈x,x〉〈〈x := N〉〉would remain unperformed,

so that lazy reduction may fail to produce a substitution-free term, in general. Again, as in the case of

cut-elimination, when a term has lazy type in IMALL2 each pair 〈P,Q〉 occurring in it eventually turns

into a redex πi〈P,Q〉, so that all suspended substitutions are sooner or later carried out. Going back to the

terms in (13), notice that M has lazy type in IMALL2 whenever N has, while only (non-lazy) types with

shape A & A can be assigned to M′.

Explicit substitution and other forms of sharing play a fundamental role in the study of reasonable

cost models of the untyped λ -calculus, where β -reduction and meta-level substitution cause size ex-

plosions similar to Proposition 1 (see e.g. [2, 3, 16]). As an example, in [3] Accattoli and Dal Lago

have shown that λ -terms with explicit substitutions can be managed in reasonable (i.e. polynomial) time,

without having to unfold the sharing (that would re-introduce an exponential size blow up). Explicit sub-

stitutions have been introduced to cover the gap between the λ -calculus and concrete implementations,

but they can also produce pathological behaviors in a typed setting, as shown by Melliès in [21].

2.3 Linear Additives

To prevent the exponential blow up discussed in the previous section we introduce weaker versions

of the standard additive rules called linear additive rules, which give types to copy constructs. The

linear additive rules are displayed in Figure 3, where V is a value, i.e. a closed and normal term free

from instances of copy and projections, and the types A,A1,A2 are closed and ∀-lazy, according to the

following definition:

Definition 3 (∀-lazy types). A type A ∈Θ& is ∀-lazy if it contains no negative occurrences of ∀. We say

that x1 : A1, . . . ,xn : An ⊢M : B is a ∀-lazy judgement if A1⊸ . . .⊸ An⊸ B is a ∀-lazy type. Finally, we

say that D ⊳Γ ⊢M : A is a ∀-lazy derivation if Γ ⊢M : A is a ∀-lazy judgement.
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⊢M1 : A1 ⊢M2 : A2

⊢ 〈M1,M2〉 : A1 & A2

&R0
Γ,xi : Ai ⊢M : C i ∈ {1,2}

Γ,y : A1 & A2 ⊢M[πi(y)/xi] : C
&Li

x1 : A ⊢M1 : A1 x2 : A ⊢M2 : A2 ⊢V : A

x : A ⊢ copyV x as x1,x2 in 〈M1,M2〉 : A1 & A2

&R1

Figure 3: Linear additive rules, where V ∈ V and A,A1,A2 are closed and ∀-lazy types.

The reduction rule corresponding to copy will be of the following form:

copyVU as x1,x2 in 〈M1,M2〉 → 〈M1[U/x1],M2[U/x2]〉 U,V ∈ V (14)

where V is the set of all values. Notice that the inference rule &R0 in Figure 3 is introduced to let

the above reduction rule preserve types, i.e. to assure Subject reduction. Intuitively, the operator copy

behaves as a suspended substitution, quite like in lazy reduction discussed in Section 2.2: the crucial

difference is that lazy reduction forbids any substitution of a term N in a pair 〈M1,M2〉, while copy

allows it when N is turned into a value U .

Hence, some limited forms of duplication are permitted by the linear additive rules. Nonetheless, they

do not affect the complexity of normalization. On the one hand, indeed, the reduction rule in (14) can

only copy values, i.e. normal terms, so that no redex is duplicated. This allows linear time normalization.

On the other hand, since any ∀-lazy type A is inhabited by finitely many values (see Proposition 3.2), by

taking V in Figure 3 as the largest one of that type, we enable the size of copyV to bound the size of the

new copy of U produced by applying (14) (since U has type A). This lets reduction strictly decrease the

size of terms, recovering linear space normalization.

As a final remark, let us observe that the linear additive rule &R1 introduces a seemingly severe

restriction: context-sharing is permitted for premises having exactly one assumption. This constraint has

no real impact on the algorithmic expressiveness of linear additives, since a general inference rule with

premises sharing multiple assumptions can be easily derived by exploiting the definitions in (7). Indeed,

tensors are able to turn a context with n assumptions x1 : A1, . . . ,xn : An into one with single assumption

x : A1⊗ . . .⊗An. Narrowing context-sharing has its benefits: it avoids heavy notation produced by several

occurrences of the construct copy, each one expressing the sharing of a single assumption.

3 A Type Assignment With Linear Additives

In this section we introduce Linearly Additive Multiplicative Type Assignment, LAM for short. It is a

subsystem of IMALL2 endowed with the linear additive rules in Figure 3. Thanks to the controlled use

of substitution, these rules can be freely nested in LAM without incurring exponential normalization.

3.1 The System LAM

The following grammar generates raw terms:

M,N := x | λx.M | MM | 〈M,M〉 | πi(M) | copyU M as x,y in 〈M,M〉 (15)
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U,V := x | λx.U |UU | 〈U,U〉 (16)

where copyU M as x,y in 〈P,Q〉 binds both x in P and y in Q. A value is any closed raw term generated

by the grammar (16) that is normal with respect to the reduction step (λx.U)V →U [V/x]. The set of

all values is denoted V . A raw term is a term if any occurrence of the copyU operator in it is such that

U ∈ V . The set of terms is denoted Λcopy. We extend the definition of |M| in (3) to the new clause:

|copyU M as x,y in 〈P,Q〉|= |U |+ |M|+ |〈P,Q〉|+1

The one-step reduction→ on Λcopy extends→β in (4) with the reduction rule in (14), and applies in any

context. Its reflexive and transitive closure is→∗. If M reduces to N in exactly n steps we write M→n N.

A term is in (or is a) normal form if no reduction applies to it.

The system LAM is essentially obtained by replacing the standard additive rules of IMALL2 with the

linear additive rules in Figure 3, and by imposing a mild requirement on the inference rules⊸L and ∀R
that plays an crucial role to assure a weak form of cut-elimination.

Definition 4 (The system LAM). The system LAM (Linearly Additive Multiplicative Type Assignment)

is the type assignment for Λcopy obtained by extending IMLL2 with the linear additive rules in Figure 3,

and by imposing the following closure conditions:

(i) no instance of⊸L has conclusion ∆,y : A⊸ B,Γ ⊢M : C with FV (B) = /0 and FV (A) 6= /0;

(ii) no instance of ∀R has conclusion Γ ⊢M : ∀α .A with FV (∀α .A) = /0 and FV (Γ) 6= /0.

As it stands, LAM is able to linearly bound the number of steps required to normalize typable terms,

essentially because we can only duplicate values, which are redex-free. However, the system has no

control over the size of terms, which may grow exponentially during normalization. What we need is to

bound the size of the new copies of values that are produced by applying the reduction rule (14). This is

the goal of Proposition 3 and Remark 1.

Definition 5 (η-expansion). Given D ⊳Γ ⊢M : A a ∀-lazy and cut-free derivation, we say that D is η-

expanded if all its axioms are atomic, i.e. of the form x : α ⊢ x : α for some type variable α . In this case,

M is called a η-long normal form (note that M must be a normal form).

We now state some basic properties about ∀-lazy and η-expanded derivations.

Proposition 2 (∀-lazy derivations).

1. If a premise of one among the rules⊸R,⊸L and ∀R is not ∀-lazy, then neither is its conclusion.

Moreover, the conclusions of &R1, &Li and ∀L are not ∀-lazy, while the conclusion of &R0 is.

2. Let D ⊳Γ ⊢M : A be ∀-lazy and cut-free, then:

• D contains no instances of &R1, &Li and ∀L;

• M is normal and contains no occurrences of copy and πi;

• if Γ = /0 then M ∈ V .

Proposition 3 (η-expanded derivations). Let D ⊳Γ ⊢M : A be ∀-lazy and η-expanded. Then:

1. |M| ≤ |Γ|+ |A| ≤ 2 · |D |;

2. if D ′ ⊳Γ ⊢ N : A is cut-free for some N ∈ Λcopy, then both |N| ≤ |M| and |D ′| ≤ |D |.
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Proof. By Definition 5 and Proposition 2.2, D is cut-free and without instances of &R1, &Li, ∀L, with M

normal and free from copy constructs. Point 1 is a straightforward induction on D . Concerning point 2,

we have |D ′| ≤ |D |, because D is η-expanded. Now, notice that |N|+∀(Γ,A) = |D ′|+∀ax(D
′), where

∀(Γ,A) denotes the number of occurrences of ∀ in Γ,A, and ∀ax(D
′) denotes the number of occurrences

of ∀ in the conclusions of the instances of ax in D ′. We have, |N|+∀(Γ,A) = |D ′|+∀ax(D
′) ≤ |D |+

∀ax(D) = |M|+∀(Γ,A), which implies |N| ≤ |M|.

Remark 1. Given D ⊳Γ ⊢M : A a ∀-lazy and cut-free derivation, we can always construct a η-expanded

derivation D∗ ⊳Γ ⊢M∗ : A. Moreover, Proposition 3.2 implies both |N| ≤ |M∗| and |D ′| ≤ |D∗|, for any

cut-free derivation D ′ ⊳Γ ⊢ N : A. Henceforth, w.l.o.g. we shall assume that the derivation of the premise

⊢V : A of &R1 is η-expanded.

Remark 1 prevents the increase of size during normalization, since the size of V in &R1 is always

bigger than then size of any value U of type A, and so the construct copyV bounds the size of the new

copy of U produced by applying the reduction rule in (14).

3.2 Linear Additives Prevent the Exponential Blowup

We can observe the benefits of moving from the standard additive rules to the linear additive rules as

soon as we adapt the constructions in Definition 1 to LAM.

Definition 6 (Nesting LAM terms). Let V ∈ V and k ∈ N. For all n ∈N we define ladd
x,V[k]
n as follows:

ladd
x,V[k]
n ,

{

x n = 0

(λy.ladd
y,V[k+1]

n−1 )(copyV[k]x as x1,x2 in 〈x1,x2〉) n > 0

where V[k] is as in (9).

The following proposition states that nesting instances of &R1 in a derivation of LAM produces no

exponential blow up.

Proposition 4 (Linearity of LAM). Let A be a closed and ∀-lazy type, and let U,V ∈ V be inhabitants

of A, with V a η-long normal form. For all n ∈N:

1. ⊢ λx.laddx,V
n : A⊸ A[n] is derivable in LAM;

2. (λx.laddx,V
n )U →2n+1 U[n], where |(λx.laddx,V

n )U |> |U[n]|> 2n+1.

Proof. Concerning point 1, we prove by induction on n that λx.ladd
x,V[k]
n has type A[k] ⊸ A[k+n], for

all k ∈ N. If n = 0 then ladd
x,V[k]
n = x, so that λx.x has type A[k] ⊸ A[k]. Let us consider the case

n > 0. By induction hypothesis, λy.ladd
y,V[k+1]

n−1 has type A[k+1]⊸ A[k+n]. If x,x1,x2 have type A[k] then

copyV[k]x as x1,x2 in 〈x1,x2〉 has type A[k+1] and (λy.ladd
y,V[k+1]

n−1 )(copyV[k]x as x1,x2 in 〈x1,x2〉) has type

A[k+n]. Therefore, λx.ladd
x,V[k]
n has type A[k]⊸ A[k+n]. Concerning point 2, we show by induction on n

that (ladd
x,V[k]
n )[U[k]/x]→2n U[n+k], for all k ∈ N. The base case is trivial. If n > 0 then, since U[k] ∈ V ,

we have:

(ladd
x,V[k]
n )[U[k]/x] = (λy.ladd

y,V[k+1]

n−1 )(copyV[k]U[k]as x1,x2 in 〈x1,x2〉)

→ (λy.ladd
y,V[k+1]

n−1 )〈U[k],U[k]〉

→ ladd
y,V[k+1]

n−1 [〈U[k],U[k]〉/y] = ladd
y,V[k+1]

n−1 [U[k+1]/y]
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which reduces in 2(n− 1) steps to U[k+n] by induction hypothesis. Finally, we notice that |ladd
x,V[k]
n | =

7n+∑n−1
i=0 |V[k+i]|+ 1 and |U[n]| = 2n·|U |+∑n−1

i=0 2i, for all n ∈ N. Since V is a η-long normal form of A,

we have |V | ≥ |U | by Proposition 3.2, and the conclusion follows.

4 Computational and Proof-Theoretical Properties of LAM

In Section 3.2 we have shown with the help of a key example how linear additives prevent exponential ex-

plosions in normalization. We now investigate further this point by proving that LAM enjoys both linear

strong normalization (Theorem 8) and a mildly weakened cubic cut-elimination property (Theorem 13).

4.1 Subject Reduction and Linear Strong Normalization

Linear strong normalization for LAM is achieved by proving that reduction preserves types and shrinks

the size of typable terms, i.e. a slightly stronger version of Subject reduction. First, we need some

straightforward preliminary lemmas:

Lemma 5 (Linearity). If D ⊳Γ,x : A ⊢M : C then x occurs exactly once in M.

Lemma 6 (Generation).

1. If D ⊳Γ ⊢ λx.M : A then A = ∀α1 . . .∀αn.(B⊸C) and, by permuting some rules of D , we obtain

a derivation D ′ of Γ,x : B ⊢M : C, followed by an instance of⊸R and a sequence of ∀R.

2. If D ⊳Γ,x : ∀α .A ⊢M[xN/y] : B then D contains an instance of ∀L that introduces x : ∀α .A.

3. If D ⊳Γ,x : A⊸ B ⊢M[xN/y] : C then D contains an instance of⊸L that introduces x : A⊸ B.

4. If D ⊳Γ ⊢ 〈M1,M2〉 : A then Γ = /0, A = B1 & B2, and the last rule of D is &R0.

5. If D ⊳Γ,x : A1 &A2 ⊢M[πi(x)/xi] : A then D contains an instance of &Li that introduces x : A1 &A2.

6. If D ⊳Γ,x : B ⊢M[copyV x as x1,x2 in 〈N1,N2〉/y] : A, then D contains an instance of &R1 that

introduces x : B.

Theorem 7 (Subject reduction). If D ⊳Γ ⊢M1 : A and M1→M2 then:

• |M2|< |M1|, and

• D∗ ⊳Γ ⊢M2 : A, for some D∗.

Proof. We proceed by structural induction on D . The crucial case is when the last rule of D is an instance

of cut introducing the redex in M1 that has been fired by the reduction step M1→M2. We just consider

the case where M1 = P[copyUV as x1,x2 in 〈N1,N2〉/y] and M2 = P[〈N1[V/x1],N2[V/x2]〉/y]. We have:

D1⊳ ⊢V : B D2 ⊳∆,x : B ⊢ P[copyU x as x1,x2 in 〈N1,N2〉/y] : A
cut

D ⊳∆ ⊢ P[copyUV as x1,x2 in 〈N1,N2〉/y] : A

By applying Lemma 6.6, D2 must be of the following form:

D ′ ⊳ x1 : B ⊢ N1 : B1 D ′′ ⊳ x2 : B ⊢ N2 : B2 D ′′′⊳ ⊢U : B
&R1

x : B ⊢ copyU x as x1,x2 in 〈N1,N2〉 : B1 & B2

... γ

D2 ⊳∆,x : B ⊢ P[copyU x as x1,x2 in 〈N1,N2〉/y] : A
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where γ is a sequence of rules. We construct D∗ as the following derivation:

D1⊳ ⊢V : B D ′ ⊳ x1 : B ⊢ N1 : B1
cut

⊢ N1[V/x1] : B1

D1⊳ ⊢V : B D ′′ ⊳ x2 : B ⊢ N2 : B2
cut

⊢ N2[V/x2] : B2
&R0

⊢ 〈N1[V/x1],N2[V/x2]〉 : B1 & B2

... γ

∆ ⊢ P[〈N1[V/x1],N2[V/x2]〉/y] : A

By Remark 1, U is a η-long normal form, so that |V | ≤ |U | by Proposition 3.2. By Lemma 5, x1 and x2

occur exactly once in N1 and N2, respectively. Hence, |Ni[V/xi]|= |Ni|+ |V |−1, for i = 1,2. We have:

|〈N1[V/x1],N2[V/x2]〉|= |N1[V/x1]|+ |N2[V/x2]|+1 = 2 · |V |+ |N1|+ |N2|−1

≤ |U |+ |V |+ |N1|+ |N2|−1 < |copyUV as x1,x2 in 〈N1,N2〉|

and this implies |M2|< |M1|.

Subject reduction entails linear strong normalization.

Theorem 8 (Linear strong normalization). If D ⊳Γ ⊢M : A then M reduces to a normal form in at most

|M| reduction steps.

Remark 2. By Newman’s Lemma (see [4]), confluence of→ for typable terms holds as a consequence of

Theorem 8 and weak confluence, the latter being easy to establish. Therefore, each typable term reduces

to a unique normal form.

4.2 Cubic ∀-Lazy Cut-Elimination

LAM is a subsystem of IMALL2. Hence, from a purely proof-theoretical viewpoint, the former inherits

the cut-elimination rules of the latter (see for example [6]). However, these proof rewriting rules for LAM

would be more permissive than the reduction rules for Λcopy, essentially because the copy construct can

only duplicate values. The next examples illustrate this point.

Example 1. Let us consider the following derivation of LAM:

y : 1 ⊢ yI : 1

x1 : 1 ⊢ x1 : 1 x2 : 1 ⊢ x2 : 1 ⊢ I : 1
&R1

x : 1 ⊢ copyI x as x1,x2 in 〈x1,x2〉 : 1 & 1
cut

y : 1 ⊢ copyI yI as x1,x2 in 〈x1,x2〉 : 1 & 1

(17)

and let us apply the cut-elimination rule of IMALL2 moving the cut upward. We get a derivation of

y : 1 ⊢M : 1 & 1, where M is copyI y as y1,y2 in 〈y1I,y2I〉. But copyI yI as x1,x2 in 〈x1,x2〉 6→
∗ M.

Example 2. Let us consider the following derivation of LAM:

x1 : 1 ⊢ x1 : 1 x2 : 1 ⊢ x2 : 1 ⊢ I : 1
&R1

x : 1 ⊢ copyI x as x1,x2 in 〈x1,x2〉 : 1 & 1

z : 1 ⊢ z : 1
&Li

y : 1 & 1 ⊢ π1(y) : 1
cut

x : 1 ⊢ π1(copy
I x as x1,x2 in 〈x1,x2〉) : 1

(18)

and let us apply the principal cut-elimination rule for & in IMALL2. We get a cut with premises x1 : 1 ⊢
x1 : 1 and z : 1 ⊢ z : 1. However, no reduction rule rewrites π1(copy

I x as x1,x2 in 〈x1,x2〉) into x1.
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negative ∀ positive &

lazy types X X

∀-lazy types X X

Figure 4: Lazy types vs ∀-lazy types.

To circumvent the above mismatch between proof rewriting and term reduction, we introduce the

∀-lazy cut-elimination rules. They never eliminate instances of cut like (17) and (18), so that cut-

elimination fails in general. We then show that, by defining a special ∀-lazy cut-elimination strategy

with cubic cost, cut-elimination can be recovered in the restricted case of derivations of ∀-lazy types

(Theorem 13). This result is analogous to the restricted (lazy) cut-elimination property for derivations

of lazy types discussed in Section 2.2. The crucial difference is that, while Girard’s lazy types rule out

both negative occurrences of ∀ and positive occurrences of &, the ∀-lazy types only require the absence

of negative ∀, as illustrated in Figure 4. This allows us to nest instances of &R1 in a derivation of LAM

without incurring exponential proof normalization, as shown in Section 3.2 in the case of term reduction.

Definition 7 (∀-lazy cut-elimination rules).

• With (X ,Y ) we denote a cut whose left (resp. right) premise is the conclusion of an instance of the

inference rule X (resp. Y ). Cuts are divided into four classes: the symmetric cuts are (⊸ R,⊸ L),
(&R0,&Li), (∀R,∀L) and those of the form (X ,ax) or (ax,Y ), for some X and Y ; the copy-first

cuts have form (&R1,&Li); the critical cuts have form (X ,&R1), for some rule X ; finally, the

commuting cuts are all the remaining instances of cut.

• Let the following be a critical cut:

D

Γ ⊢M : A

x1 : A ⊢ N1 : B x2 : A ⊢ N2 : C ⊢V : A
&R1

x : A ⊢ copyV x as x1,x2 in 〈N1,N2〉 : B &C
cut

Γ ⊢ copyV M as x1,x2 in 〈N1,N2〉 : B &C

It is called safe if Γ = /0, and deadlock otherwise. Also, it is called ready if it is safe and D is

cut-free. In this case, since A is ∀-lazy, Proposition 2.2 implies M ∈ V .

• The ∀-lazy cut-elimination rules are defined as follows:

– they correspond to the standard cut-elimination rules of LL for commuting cuts and for the

symmetric cuts (⊸ R,⊸ L), (∀R,∀L), (X ,ax) and (ax,Y ) (see e.g. [6]);

– they are displayed in Figure 5 for the symmetric cut (&R0,&Li) and for those critical cuts

(X ,&R1) which are ready;

– there is no ∀-lazy cut-elimination rule for copy-first cuts and the remaining critical cuts.

If D rewrites to D ′ by a ∀-lazy cut-elimination rule, we write D D ′. The reflexive and transitive

closure of is ∗.

The ∀-lazy cut-elimination rules prevent duplication of terms that are not values, restoring a match

between proof rewriting and term reduction. What we are going to show is that any ∀-lazy derivation D

can be rewritten into a cut-free one by a specific strategy of ∀-lazy cut-elimination steps. This implies

that any instance of critical cut in D (e.g. the deadlock in (17)) is eventually turned into a ready cut, and

that all instances of copy-first cuts like (18) are eventually turned into (&R0,&Li) cuts. The latter is due

to the replacement of &R1 with &R0 given by the ∀-lazy cut elimination of ready cuts in Figure 5.

The proposition below exploits the closure conditions introduced in Definition 4.
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(&R0,&Li)
⊢ N1 : A1 ⊢ N2 : A2

⊢ 〈N1,N2〉 : A1 & A2

Γ,xi : Ai ⊢M : B i ∈ {1,2}

Γ,x : A1 & A2 ⊢M[πi(x)/xi] : B
cut

Γ ⊢M[πi〈N1,N2〉/xi] : B

 
⊢ Ni : Ai Γ,xi : Ai ⊢M : B

cut
Γ ⊢M[Ni/xi] : B

(X ,&R1)
D†

⊢V : A

x1 : A ⊢ N1 : B1 x2 : A ⊢ N2 : B2 ⊢U : A

x : A ⊢ copyU x as x1,x2 in 〈N1,N2〉 : B1 & B2
cut

⊢ copyUV as x1,x2 in 〈N1,N2〉 : B1 & B2

 

D†

⊢V : A x1 : A ⊢ N1 : B1
cut

⊢ N1[V/x1] : B1

D†

⊢V : A x2 : A ⊢ N2 : B1
cut

⊢ N2[V/x2] : B2
&R0

⊢ 〈N1[V/x1],N2[V/x2]〉 : B1 & B2

Figure 5: ∀-lazy cut-elimination rules for (&R0,&Li) and for ready cuts, where D† is cut-free.

Proposition 9. If D ⊳Γ ⊢M : A and FV (A) = /0 then FV (Γ) = /0.

Proof. By induction on D using the closure conditions (i)-(ii) in Definition 4 and the conditions on

linear additives. We only consider some interesting cases. Suppose D ends with an instance of ⊸L

with premises Γ′ ⊢ N : B and ∆,x : C ⊢M′ : A. If FV (A) = /0 then, by induction hypothesis, FV (∆) =
FV (C) = /0. By applying the closure condition (i), we have FV (B) = /0. By applying, again, the induction

hypothesis we have FV (Γ′) = /0, and hence FV (Γ′,y : B⊸ C,∆) = /0. Let us now consider the case

where D ends with an instance of &Li with premise Γ′,xi : Bi ⊢M′ : A and conclusion Γ′,y : B1 & B2 ⊢
M′[πi(y)/xi] : A. If FV (A) = /0 then FV (Γ′) = /0 by induction hypothesis. Moreover, since B1 & B2 is a

closed ∀-lazy type, we conclude FV (Γ′,y : B1 & B2) = /0.

The next lemmas are essential to ensure the restricted cut-elimination result for ∀-lazy types.

Lemma 10. Let D ⊳Γ ⊢M : A be a derivation whose only cuts are either deadlocks or copy-first. If one

of those cuts exists in D , then D is not ∀-lazy.

Proof. First, we show that both the conclusion of a deadlock and the conclusion of a copy-first cut

cannot be ∀-lazy. It suffices to find a closed type in the context of these judgments, since closed types

must contain at least a ∀ in positive position. Let

∆ ⊢ N : B x : B ⊢ copyV x as x1,x2 in 〈P,Q〉 : C & D
cut

∆ ⊢ copyV N as x1,x2 in 〈P,Q〉 : C & D

be a deadlock. By definition, we have ∆ 6= /0. Since x : B ⊢ copyV x as x1,x2 in 〈N1,N2〉 : C & D is the

conclusion of &R1, we have FV (B) = /0. Hence FV (∆) = /0, by Proposition 9. Moreover, let

x : B ⊢ copyV x as x1,x2 in 〈N1,N2〉 : B1 & B2 ∆,x : B1 & B2 ⊢M[πi(x)/xi] : C
cut

∆,x : B ⊢M[πi(copy
V x as x1,x2 in 〈N1,N2〉)/xi] : C

be a copy-first cut. Its leftmost premise is the conclusion of &R1, so B must be closed by definition.

Suppose now that D contains some cuts. Then it contains at least a deadlock or a copy-first cut. In

both cases, D contains a judgment that is not ∀-lazy. Let R1, . . .Rn be the sequence of rule instances

from Γ ⊢M : A up to this judgment. We prove by induction on n that Γ ⊢M : A cannot be ∀-lazy. The

case n = 0 is trivial. If n > 0, then we have two cases depending on Rn. If Rn is a cut, then it is either a

deadlock or a copy-first cut, and its conclusion cannot be ∀-lazy, so we apply the induction hypothesis.

If Rn is not a cut, we apply Proposition 2.1 and the induction hypothesis.
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Lemma 11 (Existence of a safe cut). Let D ⊳Γ ⊢M : A be a ∀-lazy derivation whose only cuts are either

critical or copy-first. Then:

1. if D has critical cuts, then it has safe cuts;

2. if D is free from critical cuts, then it is free from copy-first cuts.

Proof. Both points follow from Lemma 10.

Definition 8 (Height and weight). Let D ⊳Γ ⊢M : A be a derivation of LAM:

• The weight of D , written &(D), is the number of instances of the rule &R1 in D .

• Given a rule instance R in D , the height of R, written h(R), is the number of rule instances from

the conclusion Γ ⊢M : A of D upward to the conclusion of R. The height of D , written h(D), is

the largest h(R) among its rule instances.

Lemma 12 (Eliminating a ready cut). Let D ⊳Γ ⊢M : A be a ∀-lazy derivation whose only cuts are either

critical or copy-first. The following statements hold:

1. if D has critical cuts, then it has ready cuts;

2. if D∗ is obtained by eliminating a ready cut in D , then |D∗|+2 ·&(D∗)< |D |+2 ·&(D).

Proof. Concerning point 1, by Lemma 11.1 D contains at least one safe cut. Let R be the one with

maximal height, we display as follows:

D ′

⊢ N : B

D1

x1 : B ⊢M1 : B1

D2

x2 : B ⊢M2 : B2

D ′′

⊢U : B
&R1

x : B ⊢ copyU x as x1,x2 in 〈M1,M2〉 : B1 & B2
cut

⊢ copyU N as x1,x2 in 〈M1,M2〉 : B1 & B2

(19)

Since B is a ∀-lazy type, D ′ is a ∀-lazy derivation. By Lemma 11.1 and maximality of h(R), D ′ has no

critical cut, hence D ′ is cut-free by Lemma 11.2. Therefore, R is a ready cut.

As for point 2, let D∗ be the derivation obtained by eliminating a ready cut like (19) in D (see

Figure 5). By Remark 1, D ′′ is η-expanded, hence cut-free by definition. Since both D ′ and D ′′ are

∀-lazy and cut-free, they have no instances of &R1 by Proposition 2.2, so that &(D∗) = &(D)− 1.

Moreover, |D ′| ≤ |D ′′| by Proposition 3.2. We have: 2 · |D ′|+ |D1|+ |D2|+ 3+ 2 ·&(D∗) < |D |+ 2 ·
&(D∗)+2 = |D |+2 · (&(D∗)+1). Therefore, |D∗|+2 ·&(D∗)< |D |+2 ·&(D).

Theorem 13 (Cubic ∀-lazy cut-elimination). Let D ⊳Γ ⊢M : A be a ∀-lazy derivation. Then, the ∀-lazy

cut-elimination reduces D to a cut-free D† ⊳Γ ⊢M† : A in O(|D |3) steps.

Proof. Let us define a ∀-lazy cut-elimination strategy divided into rounds. At each round:

{1} we eliminate all the commuting instances of cut;

{2} if a symmetric instance of cut exists, we eliminate it; otherwise, all instances of cut are either

critical or copy-first, and we eliminate a ready one, if any.

We now show that the above ∀-lazy cut-elimination strategy terminates with a cut-free derivation. We

proceed by induction on the lexicographical order of the pairs 〈|D |+ 2 ·&(D),H(D)〉, where H(D) is

the sum of the heights h(D ′) of all subderivations D ′ of D whose conclusion is an instance of cut. Dur-

ing {1}, every commuting ∀-lazy cut-elimination step moves an instance of cut upward, strictly decreas-

ing H(D) and leaving |D |+ 2 ·&(D) unaltered. During {2}, every symmetric ∀-lazy cut-elimination
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step shrinks |D |. If only critical and copy-first cuts are in D then, by Lemma 11.2, either D has critical

cuts or it is cut-free. In the former case, by Lemma 12.1 a ready cut exists. By Lemma 12.2, if we apply

the corresponding ∀-lazy cut-elimination step D  D∗, we have |D∗|+2 ·&(D∗)< |D |+2 ·&(D).

We now exhibit a bound on the number of ∀-lazy cut-elimination steps from D to D†. Generally

speaking, we can represent a ∀-lazy cut-elimination strategy as:

D = D0 
∗

cc0

D
′
0  

src0

D1 · · · 
∗

cci

D
′
i  

srci

Di+1  
∗

cci+1

· · ·D ′n−1  
srcn−1

Dn 
∗

ccn

D
′
n = D

∗ (20)

where, for 0 ≤ i ≤ n and 0 ≤ j ≤ n− 1, cci denotes a sequence of ∀-cut elimination steps applied to

commuting cuts, while src j denotes a ∀-cut elimination step applied to either a symmetric or a ready

cut. A bound on the length of the sequence cci is |Di|
2 because every instance of rule in Di can, in

principle, be commuted with every other. Moreover, |D j+1|+2 ·&(D j+1)< |D
′
j|+2 ·&(D ′j), for every

0≤ j≤ n−1. Finally, since |Di|= |D
′
i | for all 0≤ i≤ n, we have n≤ |D |+2 ·&(D)≤ 3 · |D |. Therefore,

the total number of ∀-lazy cut-elimination steps in (20) is O(|D | · |D |2).

Recalling that the normal form of a typable term in LAM exists by Theorem 8 and is unique by

Remark 2, we have the following straightforward corollary.

Corollary 14. Let D ⊳Γ ⊢M : A be a ∀-lazy derivation, and let M† be the normal form of M. Then:

• M† is free from instances of copy and πi;

• if Γ = /0 then M† ∈ V .

Proof. It suffices to observe that, if a ∀-lazy derivation D ⊳Γ ⊢ M : A rewrites to D ′ ⊳Γ ⊢ M′ : A by a

∀-lazy cut-elimination step, then M→∗ M′ (we consider terms up to α-equivalence). By Theorem 13 a

cut-free D† exists such that D† ⊳Γ ⊢M† : A, for some M†. We conclude by Proposition 2.2.

As we already observed in Section 2.3, a copy construct behaves quite like a suspended substitution.

So, a normal form with shape copyV N as x1,x2 in 〈P,Q〉 represents a substitution that cannot be per-

formed. Corollary 14 states that, whenever a term has ∀-lazy type, its normal form is always free from

these “unevaluated” expressions. This result is analogous to Girard’s linear normalization by lazy evalu-

ation for terms having lazy type in IMALL2 (see Section 2.2). However, the above corollary allows us to

gain something more. On the one hand, indeed, LAM’s typable terms enjoy linear strong normalization

(Theorem 8). Therefore, as opposed to IMALL2, the system LAM does not require specific evaluation

strategies to avoid exponential reductions. On the other hand, as already remarked, the ∀-lazy types are

more expressive than the lazy ones (see Figure 4).

5 Comparing LAM and IMLL2

Following [7], we exploit the mechanisms of linear erasure and duplication studied by Mairson and

Terui [17, 18] to define a sound translation of LAM into IMLL2 (Theorem 17). A fundamental result of

this section is Theorem 18, stating that derivations of LAM may exponentially compress linear λ -terms

of IMLL2. On the one hand, these results witness that the former system is not algorithmically more

expressive than the latter. On the other hand, in a way similar to [7], they show that LAM is able to

compactly represent Mairson and Terui’s linear erasure and duplication.



Gianluca Curzi 89

5.1 Linear Erasure and Duplication in IMLL2

Mairson has shown in [17] that IMLL is expressive enough to encode boolean circuits. This result

was later reformulated by Mairson and Terui in IMLL2 to prove results about the complexity of cut-

elimination [18], where the advantage of working with IMLL2 is to assign uniform types to structurally

related linear λ -terms. In the latter encoding, the boolean values “true” and “false” are represented by

tt, λx.λy.x⊗ y and ff, λx.λy.y⊗ x respectively, with type B, ∀α .α⊸ α⊸ α⊗α . The key step

of the encoding is the existence of an “eraser” EB and a “duplicator” DB for the Boolean data type B:

EB , λ z.let zII be x⊗ y in (let y be I in x) : B⊸ 1 (21)

DB , λ z.proj1(z(tt⊗tt)(ff⊗ff)) : B⊸ B⊗B (22)

proj1 , λ z.let z be x⊗ y in (let EB y be I in x) : (B⊗B)⊸ B (23)

where proj1 is the linear λ -term projecting the first element of a pair. For M ∈ {tt,ff}, we have

EB M→∗β I and DB M→∗β M⊗M. In other words, linear erasure involves a stepwise “data consumption”

process, while linear duplication works “by selection and erasure”: it contains both possible outcomes

of duplication tt⊗tt and ff⊗ff, and it selects the desired pair by linearly erasing the other one.

In [18], Mairson and Terui generalize the above mechanism of linear erasure and duplication to the

class of closed Π1 types:

Definition 9 (Π1 types [18]). A type of IMLL2 is a Π1 type if it contains no negative occurrences of ∀.

Closed Π1 types represent finite data types, because they admit only finitely many closed and normal

inhabitants. An example is B, representing the Boolean data type.

The fundamental result about closed Π1 types is the following:

Theorem 15 (Erasure and duplication [18]).

1. For any closed Π1 type A there is a linear λ -term EA of type A⊸ 1 such that, for all closed and

normal inhabitant M of A, EA M→∗β I.

2. For any closed and inhabited Π1 type A there is a linear λ -term DA of type A⊸ A⊗A such that,

for all closed and normal inhabitant M of A, DA M→∗βη M⊗M.

We call EA eraser and DA duplicator of A. Intuitively, by taking as input a closed and normal inhabi-

tant M of closed Π1 type A, DA implements the following three main operations:

(1) “expand” M to an η-long normal form of A, let us say M′;

(2) compile M′ to a linear λ -term ⌈M′⌉ which encodes M′ as a boolean tuple;

(3) copy and decode ⌈M′⌉ obtaining M′⊗M′, which η-reduces to M⊗M.

Point (3) implements Mairson and Terui’s “duplication by selection and erasure” discussed for the type

B, and requires a nested series of if-then-else playing the role of a look-up table that stores all pairs of

closed and normal inhabitants of A (which are always finite, as already observed). Each pair represents

a possible outcome of duplication. Given a boolean tuple ⌈M′⌉ as input, the nested if-then-else select

the corresponding pair M′⊗M′, erasing all the remaining “candidates”. The inhabitation condition for

A stated in Theorem 15.2 assures the existence of a default pair N ⊗N, a sort of “exception” that we

“throw” if the boolean tuple in input encodes no closed normal inhabitant of A.

Point 2 of Theorem 15 was only sketched in [18]. A detailed proof of the construction of DA is in [7],

which also estimates the complexity of duplicators and erasers:

Proposition 16 (Size of EA and DA [7]). If A is a closed Π1 type, then |EA| ∈ O(|A|). Moreover, if A is

inhabited, then |DA| ∈ O(2|A|
2

).
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5.2 A Translation of LAM Into IMLL2 and Exponential Compression

Following [7], we define a translation (_)• from derivations of LAM into linear λ -terms with type in

IMLL2. It maps closed ∀-lazy types into closed Π1 types, and instances of the inference rules &R1 and

&Li into, respectively, duplicators and erasers of closed Π1 types. We prove that the translation is sound

and the linear λ -term D• associated with a derivation D of LAM has size that can be exponential with

respect to the size of D .

Definition 10 (From LAM to IMLL2). We define a map (_)• translating a derivation D ⊳Γ ⊢ M : A of

LAM into a linear λ -term D• such that Γ• ⊢D• : A• is derivable in IMLL2.

1. The map (_)• is defined on types of Θ& by induction on their structure:

α• , α (A & B)• , A•⊗B•

(A⊸ B)• , A•⊸ B• (∀α .A)• , ∀α .A• .

Notice that (A〈B/α〉)• = A•〈B•/α〉. If Γ = x1 : A1, . . . ,xn : An, we set Γ• , x1 : A•1, . . . ,xn : A•n.

2. The map (_)• is defined on derivations D ⊳Γ ⊢M : A of LAM by induction on the last rule:

(a) if D is ax with conclusion x : A ⊢ x : A, then D• , x;

(b) if D has last rule cut with premises D1 ⊳∆⊢N : B and D2⊳Σ,x : B⊢P : A, where M =P[N/x],
then D• ,D•2 [D

•
1 /x];

(c) if D has last rule⊸R with premise D1 ⊳Γ,x : B ⊢ N : C and M = λx.N, then D• , λx.D•1 ;

(d) if D has last rule ⊸L with premises D1 ⊳∆ ⊢ N : B and D2 ⊳ Σ,x : C ⊢ P : A, where Γ =
∆,Σ,y : B⊸C, then D• ,D•2 [yD

•
1 /x];

(e) if D has last rule &R0 with premises D1⊳ ⊢ N1 : B1 and D2⊳ ⊢ N2 : B2 then D• ,D•1 ⊗D•2 ;

(f) if D has last rule &Li with premise D1 ⊳∆,xi : Bi ⊢ N : A, where Γ = ∆,x : B1 & B2, then

D• , let x be x1⊗ x2 in (let EB•3−i
x3−i be I in D•1 ), where EB•3−i

is the eraser of B•3−i;

(g) if D ends with &R1 with premises D1⊳x1 : B⊢N1 : B1, D2⊳x2 : B⊢N2 : B2, and D3⊳⊢V • : B•

then D• , let DB•x be x1⊗ x2 in D•1 ⊗D•2 , where DB• is the duplicator of B•;

(h) if D has last rule ∀R with premise D1 ⊳Γ ⊢M : B〈γ/α〉 then D• ,D•1 ;

(i) if D has last rule ∀L with premise D1 ⊳∆,x : B〈C/α〉 ⊢M : A, where Γ = ∆,x : ∀α .B, then

D• ,D•1 .

Remark 3. Points 2(f)-(g) are well-defined. Indeed, since B,B1,B2 in both points are closed and ∀-lazy,

the types B•,B•1,B
•
2 are closed Π1, so that Theorem 15.1 assures the existence of EB•3−i

. Moreover, the

closed Π1 type B• in point 2(g) is inhabited by the closed linear λ -term D•3 . The latter is also normal,

since by Remark 1 D3 is η-expanded (hence cut-free). Therefore, Theorem 15.2 assures that DB• exists.

We now show that every ∀-lazy cut-elimination step applied to a derivation D ⊳Γ ⊢M : A of LAM

can be simulated by a sequence of βη-reduction steps applied to D•.

Theorem 17 (Soundness of (_)•). Let D be a derivation of LAM. If D  D ′ then D•→∗βη D ′•.

Proof. W.l.o.g. it suffices to consider the case where the last rule of D is the instance of cut the ∀-lazy

cut-elimination rule D D ′ is applied to. The only interesting cases are the ∀-lazy cut-elimination rules

in Figure 5. So, suppose that D ends with a cut (&R0,&Li), where the premises of &R0 are D1⊳⊢N1 : A1

and D2⊳ ⊢ N2 : A2, and the premise of &Li is D3 ⊳Γ,xi : Ai ⊢M : B. Since D•3−i is a closed linear λ -term

of closed Π1 type A•3−i, by applying Theorem 15.1 and the reduction rules in (8) we have:

D
• = let D

•
1 ⊗D

•
2 be x1⊗ x2 in (let EA•3−i

x3−i be I in D
•
3 )
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→β let EA3−i
D
•
3−i be I in D

•
3 [D

•
i /xi]

→∗β let I be I in D
•
3 [D

•
i /xi]

→β D
•
3 [D

•
i /xi] = D

′•.

Finally, suppose that D ends with a ready cut (X ,&R1), for some X , where the left premises of the cut

is D1⊳ ⊢V : A and the premises of &R1 are D2 ⊳ x1 : A ⊢ N1 : B1, D3 ⊳ x2 : A ⊢ N2 : B2 and D4⊳ ⊢U : A.

Since the cut is ready, D1 must be cut-free, and hence D•1 is a closed and normal linear λ -term of closed

Π1 type A•. Therefore, by applying Theorem 15.2 and the reduction rules in (8), we have:

D
• = let DA•D

•
1 be x1⊗ x2 in D

•
2 ⊗D

•
3

→∗βη let D
•
1 ⊗D

•
1 be x1⊗ x2 in D

•
2 ⊗D

•
3

→β D
•
2 [D

•
1 /x1]⊗D

•
3 [D

•
1/x2] = D

′•

this concludes the proof.

The above result stresses a fundamental advantage of LAM over IMLL2: as shown in both [18]

and [7], the latter type system requires an extremely complex linear λ -term to encode linear duplication

(see Theorem 16), while the former can compactly represent it by means of typed terms with shape:

λx.copyV x as x1,x2 in 〈x1,x2〉 : A⊸ A & A (24)

Moreover, linear erasure is expressed by the following simple typed term:

λx.π2(〈x,I〉) : A⊸ 1 (25)

This crucial aspect of LAM can be made apparent by estimating the impact of the translation (_)• on

the size of derivations, and hence the cost of “unpacking” the inference rules &R1 and &Li.

Theorem 18 (Exponential compression for LAM). Let D be a derivation in LAM. Then, |D•| =

O(2|D |
k

), for some k ≥ 1.

Proof. By structural induction on D . The only interesting case is when D ends with &R1 with premises

D1 ⊳ x1 : A ⊢ N1 : B1, D2 ⊳ x2 : A ⊢ N2 : B2 and D3⊳ ⊢U : A. By Definition 10, D• = let DA•x be x1⊗
x2 in D•1 ⊗D•2 . By Remark 1, D3 is η-expanded, so that |A| ≤ 2 · |D3| by Proposition 3.1. Hence, |DA| ∈

O(2(2·|D3 |)
2

) by Proposition 16. We apply the induction hypothesis on D1 and D2 and conclude.

6 Conclusions

We introduce LAM, a type assignment system endowed with a weaker version of the Linear Logic ad-

ditive rules &R and &L, called linear additive rules. We prove both linear strong normalization and a

restricted cut-elimination theorem. Also, we present a sound translation of LAM into IMLL2, and we

study its complexity.

A future direction is to find linear additive rules based on the additive connective ⊕, and to prove

results similar to Theorem 8 and Theorem 13. This goal turns out to be harder, due to the “classical

flavor” of the inference rule ⊕L, displayed below:

Γ,x : A ⊢M : C Γ,y : B ⊢ N : C

Γ,z : A⊕B ⊢ case z of [inj1(z)→M | inj2(z)→ N] : C
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Let us discuss this point. The linear additive rule &R1 prevents exponential normalization by carefully

controlling context-sharing, which involves hidden contractions and is responsible for unrestricted dupli-

cation. Finding a linear additive rule corresponding to ⊕L means controlling the sharing of types in the

right-hand side of the turnstile. But this sharing hides a co-contraction, i.e. C⊗C⊸C, which requires

fairly different techniques to be tamed.

Interesting applications of linear additives are in the field of ICC, and indeed they motivate the tools

developed in the present paper. As already discussed in the Introduction, variants of the additive rules

expressing non-determinism explicitly have been used to capture NP [19, 11, 20]. To the best of our

knowledge, all these characterizations of NP crucially depend on the choice of a special evaluation

strategy able to avoid the exponential blow up described in Section 2.2. Linear additives can refine [19,

11, 20], because they do not affect the complexity of normalization, and so they allow for natural cost

models that can be implemented with a negligible overhead. A possible future work could be then to

extend Soft Type Assignment (STA), a type system capturing PTIME [10], with a non-deterministic

variant of linear additives, and to show that Strong Non-deterministic Polytime Soundness holds for the

resulting system. This would allow us to characterize NP in a “wider” sense, i.e. independently of the

reduction strategy considered.

In a probabilistic setting, similar goals have already been achieved. In [8] Curzi and Roversi studied

the type system PSTA, an extension of STA with a non-deterministic variant of the linear additive rules

obtained by replacing &Li with the following:

Γ,x : A ⊢M : C

Γ,y : A & A ⊢M[π(y)/x] : C

and by considering the non-deterministic reduction rule M← π(〈M,N〉)→N in place of πi(〈M1,M2〉)→
Mi. It is shown that, when PSTA is endowed with a probabilistic big-step reduction relation, it is able to

capture the probabilistic polytime functions and problems independently of the reduction strategy.
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