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Prawitz formulated the so-called inversion principle as one of the characteristic features of Gentzen’s

intuitionistic natural deduction. In the literature on proof-theoretic semantics, this principle is often

coupled with another that is called the recovery principle. By adopting the Computational Ludics

framework, we reformulate these principles into one and the same condition, which we call the

harmony condition. We show that this reformulation allows us to reveal two intuitive ideas standing

behind these principles: the idea of “containment” present in the inversion principle, and the idea

that the recovery principle is the “converse” of the inversion principle. We also formulate two other

conditions in the Computational Ludics framework, and we show that each of them is equivalent to

the harmony condition.

1 Introduction

This paper aims to study some of the characteristic features of the so-called proof-theoretic semantics

within the framework of Computational Ludics. Generally, the main objective of proof-theoretic seman-

tics is to explain the meaning of linguistic expressions in terms of proof-conditions rather than truth-

conditions, which are typical of referentialist semantics. In particular, by taking inspiration from the

Brouwer-Heyting-Kolmogorov explanation of logical connectives, proof-theoretic semantics rests on the

idea that we know the meaning of a compound sentence when we know what counts as a canonical proof

of it. And if proofs are formalised within the framework of natural deduction, then a canonical proof of

a sentence A is nothing but a closed derivation ending with an introduction rule of the main connective

of A.1 The introduction rules play then a privileged role in fixing the meaning of a certain connective. It

is in this sense that we should understand Gentzen’s remark, according to which the introduction rules

of a connective represent, as it were, the “definitions” of this connective, while the elimination rules of

such a connective are nothing but the “consequences” of these definitions (see [20, p. 80]).

However, according to Prawitz, the words “definition” and “consequence” are used here only in a

sort of metaphorical way [17, p. 33, f.n. 1]. To assign a more precise sense to Gentzen’s remark, Prawitz

formulated the so-called inversion principle. The idea behind this principle is that an elimination rule

E of a certain connective should essentially behave as the “inverse” of the corresponding introduction

rule(s), in the sense that by an application of E one simply “restores what had already been established if

the major premise of the application was inferred by an application of an introduction rule” [17, p. 33].
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say that it is open.

http://dx.doi.org/10.4204/EPTCS.353.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


A. Naibo & Y. Takahashi 133

We can explain how this idea is used by Prawitz to better specify Gentzen’s remark by means of an

example. Consider the introduction (I) and elimination (E) rules for the implication (→):

n

A.... d

B
A→ B

→I n A→ B A
B

→E

If we accept that the →I rule defines the connective →, in the sense that it determines the meaning of

→, then by stating A→ B we should not be allowed to deduce anything more than what we can already

obtain from the sub-derivation d. Otherwise, the meaning of A→B would be more informative than what

is stipulated by the→I rule. It is in this sense that we should understand Prawitz’s characterisation of the

inversion principle in terms of “containment”: the premise of an introduction rule of certain connective

c already contains all of the information that is required to obtain the conclusion of the corresponding

elimination rule. The application of the elimination rule is thus dispensable when its major premise is

the conclusion of an introduction rule. In the case of implication, this means that

n

A.... d1

B
A→ B

→I n

.... d2

A
B

→E
can be transformed into

.... d2

[A]
.... d1

B

because the (open) derivation d1 of the premise of the →I rule, when combined with the derivation d2

of the minor premise of the→E rule, already “contains” a derivation of the conclusion of→E (see [17,

p. 33]). It is precisely in terms of this relation of “containment” that one can make sense of Gentzen’s

remark that the elimination rules are nothing but the consequences of the introduction rules of a certain

connective. The proof-transformation that we have just presented corresponds to what is usually called

a (local) reduction step of a detour (in this case, a →-detour).2 And if we work under the proofs-as-

programs correspondence (i.e. the Curry-Howard correspondence), then a computational content can be

assigned to this detour reduction step because it corresponds to a β -reduction step (preserving typing) in

typed λ -calculus.

Several subsequent works [15, 8, 18] tried to improve Prawitz’s analysis of Gentzen’s remark by

coupling the inversion principle with another principle, which we call here the recovery principle by

following [18]. As we have seen, the inversion principle corresponds to a no more condition. However,

if we want the →I rule to completely determine the meaning of the connective →, then we have to

impose an extra condition in addition to the one already imposed by the inversion principle. This extra

condition consists in asking that by stating A→ B we should not be allowed to deduce anything less

than what we can already obtain from the sub-derivation d. Otherwise, the meaning of A→ B would be

less informative than what is stipulated by the →I rule. If we want to mimic Prawitz’s account of the

inversion principle and formulate the recovery principle in terms of “containment”, then we should do it

in a fashion which looks like the “converse” of the inversion principle itself: all of the information that is

required to obtain the conclusion of an introduction rule of a certain connective c is already contained in

2When Prawitz formulated the inversion principle in his monograph on natural deduction in 1965, he was unaware of

Gentzen’s unpublished works. In particular, Prawitz was not aware that in an unpublished version of his PhD thesis, which

was only discovered in 2005 by Jan von Plato [16], Gentzen had already defined the detours reduction steps for the rules

of intuitionistic logic. It is certainly for this reason that he considered that Gentzen’s remark on the relationship between

introduction and elimination rules of natural deduction was stated in metaphorical terms (while we know today that Gentzen’s

remark was probably based on some technical results similar to those later obtained by Prawitz himself).
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the derivation of the major premise of the corresponding elimination rule of c. In the case of implication,

this means that

.... d

A→ B can be transformed into

.... d

A→ B
n

A
B

→E

A→ B
→I n

The idea is that given a derivation d of the major premiss of the →E rule, one can extract from it ev-

erything that is required to apply the corresponding introduction rule →I .
3 As noted in [15, 11], under

the proofs-as-programs correspondence, this transformation can be seen as an η-expansion step in typed

λ -calculus.

When taken together, the inversion principle and the recovery principle guarantee a balance between

the introduction and the elimination rules of a certain connective: the elimination rules are no more and

no less informative than the introduction rules. Consequently, by borrowing a terminology introduced

by Dummett, some authors say that the rules which satisfy both the inversion and the recovery principle

are harmonious (see [8]). Moreover, as we already mentioned, asking for both the inversion and the

recovery principle is a way of demanding that the meaning of a connective is completely determined by

its inference rules (and more specifically, by its introduction rules). This means that to fix the meaning

of such of a connective, we do not need to look for any specific context of where to fix the reference (or

the denotation) of this connective. Traditionally, a linguistic expression whose meaning is independent,

and thus invariant, from any referential (or denotational) context is usually identified with what we call

a logical constant. It is for this reason that harmony is considered to play not only the role of a meaning

criterion but also of a logicality criterion (see [5, pp. 286–287]).

We propose here a way to clarify both of (1) the idea of “containment” present in Prawitz’s inversion

principle, and of (2) the idea that the recovery principle plays the role of the “converse” of the inversion

principle. These ideas are still informal, so one should provide each of them with a precise sense. For this

purpose, we study the notion of harmony from the point of view of Girard’s Ludics [9]. More precisely,

we adopt here Terui’s Computational Ludics [21], because its λ -calculus-style syntax is particularly use-

ful for our purpose. In Section 2, we make ideas (1) and (2) more precise by reformulating the notion

of harmony within Computational Ludics (see Definition 2.11). Consequently, we will generalise the

notion of connective in Computational Ludics and consider not only the “good” (i.e. meaningful/logical)

connectives satisfying our notion of harmony but also the “bad” (i.e. non-meaningful/non-logical) con-

nectives not satisfying it.4 In Section 3, we show that our notion of harmony is characterised by each

of two conditions that make an essential use of the locative and interactive features proper to the Ludics

approach. The first condition, which we call the dual decomposability of connectives, is a variant of

the so-called internal completeness of connectives. The second, which we call the dual decomposability

of visitable paths, is formulated in terms of the regularity of behaviours introduced by Fouqueré and

Quatrini [7] in Girard’s Ludics and extended by Pavaux [13, 14] to Computational Ludics.

3The situation is more complicated for a disjunction. The particular format of its elimination rule means that to obtain A∨B

from a derivation
d

A∨B
, one first has to apply a ∨I rule to obtain A∨B in each of the minor premisses of ∨E , and then

apply ∨E itself to discharge the open assumptions present in the derivations of the two minor premisses. Thus, in contrast

to the case of →, the elimination rule is applied after the introduction rule(s) and not before. The same remark holds for the

existential quantifier. One of the advantages of the Ludics framework is that we can have a homogeneous treatment of the

recovery principle and we do not depend on the format of the elimination rule of the connective under analysis.
4Our generalisation allows us to take into account connectives that do not satisfy the Ludics counterparts of the inversion

principle and the recovery principle (see Example 2.10 below).
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2 Inversion and Recovery Principles in Computational Ludics

In Section 2.1, we give the basic definitions of Terui’s Computational Ludics by following [21, 3, 14].

Next, in Section 2.2, our notion of connective is introduced. Then, in Section 2.3, we will reformulate

the inversion and recovery principles as the harmony condition in Computational Ludics.

2.1 From Derivations to Computational Designs

Computational designs (in short, c-designs) are the basic entities of Computational Ludics. They can

be understood as abstract sequent derivations because the designs in Girard’s original Ludics are such

entities (for Girard’s designs, see [9, 4, 12]). Consider the following procedure to extract an abstract

sequent derivation from the leftmost derivation (note that the leftmost derivation contains the rule Daimon

z, which enables one to deduce any sequent):

⊢ B,C
z

⊢ B`C
`

⊢ A⊕ (B`C)
⊕
⊢ D

z

⊢ (A⊕ (B`C))& D &
(1)
→֒

z

(−,B`C,{{B,C}})

(+,A⊕ (B`C),{B`C}) z

(−,(A⊕ (B`C))& D,{{A⊕ (B`C)},{D}})
(2)
→֒

z

(−,ξ12,{{1,2}})

(+,ξ1,{2}) z

(−,ξ ,{{1},{2}})

In step (1), we encode the information on the rules’ applications into triples: for example, the triple

(−,(A⊕ (B`C))&D,{{A⊕ (B`C)},{D}}) indicates that ⊢ (A⊕ (B`C))&D is inferred from the two

premises ⊢ A⊕ (B`C) and ⊢D by a negative (i.e. reversible) rule. On the other hand, the triple (+,A⊕
(B`C),{B`C}) indicates that ⊢ A⊕ (B`C) is inferred from ⊢ B`C by a positive (i.e. irreversible)

rule. In step (2), we abstract the information on the positions (i.e. the locations) of the formulas by

omitting the information on their contents. The formula (A⊕ (B`C))& D is replaced with its location

ξ ; its first immediate subformula is denoted by its location ξ 1, where 1 indicates that it is the location

of the first immediate subformula, and so on. The triples and the symbol z in the rightmost derivation

above can be considered to be actions performed to construct this derivation in the bottom-up way as

in proof-search. These abstract sequent derivations are called designs as desseins in [9] and untyped

proofs in [12]. These abstract sequent derivations can have infinitely long branches because one does not

consider formulas anymore and so one can keep on decomposing a location ξ at infinity. Moreover, they

can also have infinite width (i.e. infinite branching) because there are infinitary many actions that can be

applied to a location ξ .

C-designs can be treated as abstract sequent derivations that are expressed in the style of generalised

infinite λ -terms (for the precise definition of c-designs, see Definition 2.1 below). We will take a sig-

nature A = (A,ar) which is a pair of a set A of names and a mapping ar that assigns an arity to each

name a ∈ A. Then, we consider positive actions and negative actions corresponding to positive triples

(+,ξ , I) and negative triples (−,ξ ′,N ), respectively. In contrast to Girard’s designs, negative actions

in c-designs include variable binding to obtain a generalisation of λ -abstraction. However, the notion

of c-design preserves a fundamental feature of Girard’s Ludics: the absence of any essential distinction

between syntactic and semantic level, i.e. between derivations and models (see e.g. [21, 3]). As we have

just seen, c-designs are abstract sequent derivations possibly with infinite branches and infinite widths.

They are thus suitable to work not only as derivations but also (counter-)models, as far as one considers

infinite trees in extracting models from proof-search failure.5

5Note that the opposition between finite derivations and infinite (counter-)models disappears when logical systems satisfying

the finite model property are considered. This is what happens, for instance, in the case of multiplicative additive linear logic

MALL, as remarked in [3, p. 2].
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On the basis of these explanations, we provide a precise definition of c-designs. Let V be a countably

infinite set of variables. As stated above, a signature A = (A,ar) is a pair of a set A of names and a

mapping ar assigning an arity to each name a ∈ A. The set of positive actions consists of Daimon z,

Divergence Ω and proper positive actions a for any a ∈ A. The set of negative actions consists of all

variables in V and proper negative actions a(x1, . . . ,xn) for any a ∈ A with ar(a) = n and any distinct

x1, . . . ,xn ∈ V . We often abbreviate a proper negative action a(x1, . . . ,xn) as a(~xa). Let T be the set of

possibly non-well founded labelled trees such that (1) each of their nodes is labelled with either z, Ω, a

proper positive action a, a variable x or an A-indexed set {a(~xa)}a∈A of proper negative actions, and (2)

each of their edges is labelled with a natural number or a name.

Definition 2.1 (Computational Designs). The set D+ of positive c-designs and the set D− of negative

c-designs are defined as the largest subsets of T satisfying the following conditions.

• If P ∈D+ holds then (1) P is a node labelled with z, or (2) P is a node labelled with Ω, or (3) P

is of the form

a

N0 Nk· · ·

0

❖❖❖❖❖❖❖❖❖❖ k♦♦
♦♦
♦♦
♦♦
♦♦

with ar(a) = k and N0, . . . ,Nk ∈D−. We denote this tree by N0|a〈N1, . . . ,Nk〉.

• If N ∈D− holds then (1) N is a node labelled with a variable x, or (2) N is a tree of the form

{a(~xa)}a∈A

· · · Pa · · · (a ∈ A)❖❖❖❖❖❖❖

♦♦♦♦♦♦♦
a

such that it has |A| immediate subtrees {Pa}a∈A and Pa ∈D+ holds for any a∈A, where |A| denotes

the cardinality of A. We denote this tree by ∑a(~xa).Pa, and we stipulate that the variables ~xa are

bound in this tree.

Define D := D+ ∪D−. A subdesign of a c-design T is a subtree of T .

As explained in [21], ∑a(~xa).Pa is the additive superimposition of positive c-designs {Pa}a∈A and so,

for instance, the value [[∑a(~xa).Pa]] of the normal form function of ∑a(~xa).Pa is equal to ∑a(~xa).[[Pa]]
(for the definition of the normal form function, see Definition 2.2). We denote positive c-designs by P,Q,

negative c-designs by M,N and positive or negative c-designs by T,U possibly with suffixes. Following

[14], we adopt Barendregt’s variable condition: no variable occurs both as a free one and as a bound one

in a c-design, and all bound variables in a c-design are distinct. Moreover, two α-equivalent c-designs

are identified (for the definition of α-equivalence on c-design, see [21, Definition 2.5]).

Divergence Ω allows one to express partially branching c-designs: when K is a subset of A and

{Pa}a∈K is a K-indexed family of positive c-designs, we denote by ∑K a(~xa).Pa the negative c-design

∑a(~xa).Qa such that Qa =Pa if a∈K, and Qa =Ω otherwise. If K is a finite set {a1, . . . ,an}we then write

a1(~xa1
).Pa1

+ · · ·+an(~xan
).Pan

instead of ∑K a(~xa).Pa. In particular, we write a(~xa).Pa if K = {a}. Similar

notations ∑α a(~xa).Pa are used for a set α of negative actions such that for any distinct a(~xa),b(~xb) ∈ α ,

a 6= b holds. If we include the unary name λ in A and denote the positive action λ by @, then we have

the λ -abstraction λ (x).P and the λ -application M|@〈N〉 in Computational Ludics, so ∑a(~xa).Pa and

N0|a〈N1, . . . ,Nn〉 are the generalised abstraction and the generalised application, respectively. The set of

free variables in a c-design T is denoted by fv(T ). On the other hand, T [N1/x1, . . . ,Nn/xn] denotes the
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c-design resulting from the simultaneous substitution of the negative c-design Ni for all occurrences of

xi in T for each i, where bound variables in T are renamed if necessary.

The λ -term-style syntax of c-designs enjoys some computational features which are similar to the

ones of λ -calculus. We can define a notion of redex as a sort of β -redex called a cut, and the execution

of a redex is defined as the cut reduction: a c-design T is a cut if T is a positive c-design of the form

(∑a(~xa).Pa)|a〈N1, . . . ,Nk〉. The reduction rule for cuts is defined as (∑a(~xa).Pa)|a〈~N〉 −→ Pa[~N/~xa]. A

c-design is cut-free if it has no cut. Note that, as in the case of λ -terms, a c-design can be treated both as

a function and as a value. The known fact below (Theorem 2.3) shows that we have a limited form of the

confluence of cut reduction.

In addition, we use the following notions concerning the classification of c-designs. A variable x

occurring as N0|a〈N1, . . . ,x, . . .Nn〉 in a c-design T is called an identity in T . A c-design T is identity-free

if T is not a variable and there is no identity in T . Intuitively, an identity in a c-design T indicates that

T can be “η-expanded” at the position of x (for a detailed explanation of the notion of identity, see [21,

§ 2.1]). A c-design T is total if T 6= Ω holds. A c-design T is linear if for any of its subdesigns of the

form N0|a〈N1, . . . ,Nk〉, the sets fv(N0), . . . , fv(Nk) are pairwise disjoint. A c-design T is standard if T is

cut-free, identity-free, total, linear and fv(T ) is finite.

We denote the reflexive and transitive closure of the reduction relation −→ by −→∗, and write P ⇓Q

if there is a c-design Q such that P −→∗ Q holds and Q is neither a cut nor Ω, otherwise we write

P ⇑. To define the normal form function on c-designs, we use the head normal form function hn f and

corecursion. Let hn f : D → D be the function preserving the polarity such that hn f (N) = N for any

negative c-design N, and if P ⇓ Q then hn f (P) = Q, otherwise hn f (P) = Ω. By using the corecursive

definition principle of functions on c-designs (for the proof of this principle, see [21, § 2.2]), we define

the normal form function on c-designs as follows.

Definition 2.2 (Normal Form Function on C-Designs). The normal form function [[·]] : D → D on c-

designs are defined as follows:

[[P]] = z, if P ⇓z,

= Ω, if P ⇑,

= x|a〈[[N1]], . . . , [[Nk]]〉, if P ⇓ x|a〈N1, . . . ,Nk〉,

[[N]] = x, if N = x,

= ∑a(~xa).[[Pa]], if N = ∑a(~xa).Pa.

When [[T ]] = z holds, we say that T converges to z. We have the following limited version of

confluence (for its proof, see [3, Theorem 1.12]). It is limited in the sense that it implies the joinability

only for the values of the normal form function: for example, we have [[[[T ]][N/x]]] = [[T [[[N]]/x]]], which

says that [[T ]][N/x] and T [[[N]]/x] are joinable with respect to their values of [[·]].

Theorem 2.3 (Associativity). For any c-design T and any negative c-designs N1, . . . ,Nn, we have

[[T [N1/x1, . . . ,Nn/xn]]] = [[[[T ]][[[N1]]/x1, . . . , [[Nn]]/xn]]].

2.2 The Computational Behaviour of C-Designs

Since c-designs are untyped objects, we cannot classify them with respect to their computational behavior

in advance (i.e. a priori), but we can do it a posteriori by testing them with other c-designs. For this

purpose, we first define anti-designs. Let x0 be an arbitrary but fixed variable. A positive c-design P is

atomic if fv(P)⊆ {x0} holds. A negative c-design N is atomic if fv(N) is empty.
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Definition 2.4 (Anti-Designs). (1) An anti-design against positives is a finite set {(x1,N1), . . . ,(xn,Nn)}
of pairs of a variable xi and an atomic negative c-design Ni such that x1, . . . ,xn are pairwise distinct.

We say that {x1, . . . ,xn} is the base of this anti-design. (2) An anti-design against negatives is a finite

set {P,(x1,N1), . . . ,(xn,Nn)} such that P is an atomic positive c-design and {(x1,N1), . . . ,(xn,Nn)} is an

anti-design against positives. We say that {x1, . . . ,xn} is the base of this anti-design. Later on, we denote

{(x1,N1), . . . ,(xn,Nn)} by [N1/x1, . . . ,Nn/xn], and {P,(x1,N1), . . . ,(xn,Nn)} by [P,N1/x1, . . . ,Nn/xn].

The orthogonality, which we define below, provides a way for testing c-designs with other c-designs:

if a c-design T is orthogonal to an anti-design against it, this means that T passes the test in terms of this

anti-design.

Definition 2.5 (Orthogonality). (1) A positive c-design P and an anti-design [G] = [N1/x1, . . . ,Nn/xn]
against positives are orthogonal if and only if P[N1/x1, . . . ,Nn/xn] is closed and converges to z. (2) A

negative c-design M and an anti-design [G] = [P,N1/x1, . . . ,Nn/xn] against negatives are orthogonal if

and only if P[M[N1/x1, . . . ,Nn/xn]/x0] is closed and converges to z. When a c-design T and an anti-

design [G] are orthogonal, we write T⊥[G].

An anti-design is cut-free (resp. standard) if any c-design contained in it is cut-free (resp. standard).

When T is a set of cut-free c-designs of the same polarity and G is a set of cut-free anti-designs of the

same polarity, then we define as follows:

• If all c-designs in T are atomic, T⊥ is the set of all standard and atomic c-designs U with T⊥U for

any T ∈ T, where for any atomic P and N, P⊥N :⇔ N⊥P :⇔ P[N/x0] is closed and converges to

z. Otherwise, T⊥ := {[G] : [G] is standard and T⊥[G] holds for any T ∈ T}.

• G⊥ := {T : T is standard and T⊥[G] holds for any [G] ∈G}.

The reason why we restrict the elements of T⊥ and G⊥ to cut-free ones, in particular, standard ones is

that we define behaviours as sets of standard c-designs. Note that one may define behaviours as sets of

l-designs, following [21]: an l-design is an identity-free, total and linear c-design with finitely many free

variables. By defining behaviour as sets of standard c-designs, i.e. sets of cut-free l-designs as in [2, 3],

one can simplify some formulations concerning behaviours and we have adopted this approach. In our

case, we can make the characterisations of the harmony condition in Section 3 simpler because a positive

c-design in a behaviour is always of the form x|a〈N1, . . . ,Nk〉 due to its cut-freeness.

Definition 2.6 (Behaviours). A set T of standard c-designs of the same polarity is a behaviour if and

only if T = T⊥⊥ holds. We say a behaviour T is an a-behaviour if all c-designs in T are atomic.

Behaviours correspond to types inhabited by c-designs, and they give a classification of c-designs

(in fact, standard c-designs) in terms of the orthogonality or tests: a standard c-design T belongs to a

behaviour B iff T⊥[G] holds for any [G] ∈ B⊥. Note that if B is an a-behaviour, then B⊥ is also an

a-behaviour.

Since behaviours correspond to types, a connective in Computational Ludics applies to behaviours,

and returns a new behaviour. Our notion of connective is defined as follows:

Definition 2.7 (Connectives). An n-ary connective α is a triple (~z,α I ,αE) of a finite sequence ~z of

variables and two finite sets of negative actions α I ,αE satisfying the following three conditions.

• The finite sequence~z consists of n distinct variables z1, . . . ,zn with x0 6∈ {z1, . . . ,zn}.

• The union α I ∪αE is a set {a1(~x1), . . . ,am(~xm)} of negative actions such that a1, . . . ,am are pair-

wise distinct names and for each i with 1 ≤ i ≤ m, there is a natural number k and indices

(i,1), . . . ,(i,k) with {~xi}= {x(i,1), . . . ,x(i,k)} ⊆ {~z}. We denote {x(i,1), . . . ,x(i,k)} by Xi.
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• The union
⋃

1≤i≤m Xi is equal to {~z}.

We stipulate that each variable in~z is bound in a connective (~z,α I ,αE).

As c-designs, two α-equivalent connectives are identified (e.g. (x,y,{a(x)},{b(y,x)}) is identified

with (v,z,{a(v)},{b(z,v)})). The reason why we imposed the condition x0 6∈ {z1, . . . ,zn} is that, infor-

mally speaking, we want to keep x0 to be the location of atomic c-designs. This is useful for several of

the formulations that follow; in particular, the formulation of game-semantic framework of [13, 14] in

Section 3.2.

A connective α = (~z,α I ,αE) gives the abstract information for obtaining a set of introduction and

elimination rules. In general, α I in a connective α = (~z,α I ,αE) determines the rule for α which con-

structs a c-design from an α I-indexed family of positive c-designs as in the leftmost tree below. On

the other hand, the set αE determines |αE | rules, where |αE | denotes the cardinality of the set αE , via

the positive actions a1, . . . ,an corresponding to the negative actions in αE = {a1(~x1), . . . ,an(~xn)}. These

rules are expressed as the remaining trees below:

{a(~xa)}a(~xa)∈α I

· · · Pa · · ·❖❖❖❖❖❖❖

♦♦♦♦♦♦♦a

a1

N0 N(1,k1)N(1,1) · · ·❄❄❄❄
♦♦
♦♦
♦♦
♦♦

· · · an

N0 N(n,kn)N(n,1) · · ·❄❄❄❄
♦♦
♦♦
♦♦
♦♦

We treat the leftmost rule as the introduction rule for α and the other rules as the elimination rules for α
because the c-design (∑α I a(~xa).Pa)|ai〈N(i,1), . . . ,N(i,ki)〉 with ai(~xi) ∈ αE is a cut; namely, a redex with

respect to the reduction −→, which is a generalisation of β -reduction.

In addition, the finite sequence ~z in α fixes the arity of the connective α . To see this, we define

the semantic entailment (introduced in [3, Definition 2.7]) and behaviours composed by connectives (a

variant of the kind of behaviours defined in [21, Definition 4.11]). These behaviours are also crucial for

our reformulation of harmony. A positive context is a finite set {x1 : P1, . . . ,xn : Pn} of pairs of a variable

xi and a positive a-behaviour Pi such that x1, . . . ,xn are pairwise distinct. A negative context is a finite set

{N}∪Γ such that N is a negative a-behaviour and Γ is a positive context.

Definition 2.8 (Semantic Entailment). (1) Let P be a positive standard c-design with fv(P)⊆{x1, . . . ,xn}
and {x1 : P1, . . . ,xn : Pn} be a positive context. The entailment relation P |= x1 : P1, . . . ,xn : Pn holds if

and only if for any M1 ∈ P⊥1 , . . . ,Mn ∈ P⊥n , P[M1/x1, . . . ,Mn/xn] converges to z. (2) Let N be a negative

standard c-design with fv(N) ⊆ {x1, . . . ,xn} and {x1 : P1, . . . ,xn : Pn,N} be a negative context. The

entailment relation N |= x1 : P1, . . . ,xn : Pn,N holds if and only if for any M1 ∈ P⊥1 , . . . ,Mn ∈ P⊥n and any

Q ∈ N⊥, Q[N[M1/x1, . . . ,Mn/xn]/x0] converges to z.

Definition 2.9 (Behaviours Composed by Connectives). For any name a ∈ A with ar(a) = n and any

negative a-behaviours N1, . . . ,Nn, we define the set a〈N1, . . . ,Nn〉 of negative c-designs as the set of all

c-designs of the form x0|a〈N1, . . . ,Nn〉 such that Ni ∈ Ni holds for any i with 1≤ i≤ n.

Let α be an arbitrary n-ary connective. For any positive a-behaviours P1, . . . ,Pn and any negative a-

behaviours N1, . . . ,Nn, we define the positive a-behaviour αE〈N1, . . . ,Nn〉 and the negative a-behaviour

α I(P1, . . . ,Pn) as follows:

• αE〈N1, . . . ,Nn〉 := (
⋃

ai(~xi)∈αE ai〈N(i,1), . . . ,N(i,k)〉)
⊥⊥, and

• α I(P1, . . . ,Pn) :=
⋂

ai(~xi)∈α I(ai〈P
⊥
(i,1), . . . ,P

⊥
(i,k)〉

⊥).

Note that we use αE and α I to define αE〈N1, . . . ,Nn〉 and α I(P1, . . . ,Pn), respectively. This is the

main difference between the definition above and [21, Definition 4.11].
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Example 2.10. Consider a ternary connective γ =(x1,x2,x3,{a(x1,x2),b(x3)},{c(x1),d(x2,x3)}). More-

over, let P1,P2,P3 be arbitrary positive a-behaviours. Then, if P |= Γ,x1 : P1,x2 : P2 and Q |= Γ,x3 : P3

hold, we have a(x1,x2).P+b(x3).Q |= Γ,γ I(P1,P2,P3). This fact corresponds to the γ-introduction rule

with behaviour assignment expressed as the leftmost rule below. On the other hand, the set γE gives the

γ-elimination rules with behaviour assignment expressed as the remaining rules below.

P |= Γ,x1 : P1,x2 : P2 Q |= Γ,x3 : P3

a(x1,x2).P+b(x3).Q |= Γ,γ I(P1,P2,P3)

N1 |= Γ,P⊥1

x|c〈N1〉 |= Γ,x : γE〈P⊥1 ,P
⊥
2 ,P

⊥
3 〉

N2 |= Γ,P⊥2 N3 |= ∆,P⊥3

x|d〈N2,N3〉 |= Γ,∆,x : γE〈P⊥1 ,P
⊥
2 ,P

⊥
3 〉

These examples show that the sequence x1,x2,x3 in γ fixes the arity of γ and that the occurrences of x1,x2

and x3 in negative actions of α I (resp. αE ) determines the premises of the γ-introduction rule (resp. the

γ-elimination rules). To illustrate the role of the order of variable-sequences in connectives, consider the

connective δ = (x1,x2,{a(x1),b(x2)},{c(x2,x1)}), which provides the inference rules

P |= Γ,x1 : P1 Q |= Γ,x2 : P2

a(x1).P+b(x2).Q |= Γ,P1 ⋆P2

N2 |= Γ,P⊥2 N1 |= ∆,P⊥1

x|c〈N2,N1〉 |= Γ,∆,x : P⊥1 ⋆P⊥2
with P⋆Q := δ I(P,Q) and N⋆M := δ E〈N,M〉. In the second rule, the order in which P⊥1 and P⊥2 appear

in P⊥1 ⋆P⊥2 is the reverse of the way they appear in the premises, since c(x2,x1) has the order in which x2

appears first.

2.3 A Reformulation of Harmony

Using our notion of connective, we define the harmony condition in Computational Ludics.

Definition 2.11 (Harmony Condition). Let α be an n-ary connective. The connective α satisfies the

inversion condition if and only if αE ⊆ α I holds, and α satisfies the recovery condition if and only if

α I ⊆ αE holds. We say that the connective α satisfies the harmony condition if and only if α satisfies

both the inversion condition and the recovery condition.

Notice that the connectives γ and δ in Example 2.10 do not satisfy this harmony condition and so

they are “bad” connectives in this sense.

The inversion condition above is a reformulation of Prawitz’s inversion principle in the following

sense. Let α be an n-ary connective, then the inversion condition for α is equivalent to the following

condition (see Proposition 2.12.(1) below):

(β ) for any α I-indexed family {Pa j
}a j(~x j)∈α I of positive total c-designs, any ai(x(i,1), . . . ,x(i,k)) in αE

and any negative c-designs N1, . . . ,Nk, the c-design (∑α I a j(~x j).Pa j
)|ai〈N1, . . . ,Nk〉 reduces to the

c-design Pai
[N1/x(i,1), . . . ,Nk/x(i,k)] with Pai

[N1/x(i,1), . . . ,Nk/x(i,k)] 6= Ω.

This condition means that any application of an α-elimination rule after the α-introduction rule restores

one of the subdesigns that are premises of the latter rule; that is, the β -reduction is always available for

α . Therefore, our inversion condition corresponds to Prawitz’s inversion principle via its equivalence to

(β ). Furthermore, our inversion condition makes precise and straightforward the idea of containment:

αE is contained in α I in the set-theoretic sense.

Next, to explain the recovery condition, the η-expanded form of a negative c-design N with re-

spect to a connective α is defined as the negative c-design ∑α I a j(~x j).(N|a j〈x( j,1), . . . ,x( j,k j)〉) such that

{x( j,1), . . . ,x( j,k j)} and fv(N) are disjoint for any α j(~x j) ∈ α I , where bound variables in α are renamed if

necessary. This expanded form can be depicted as the following tree:

{a j(~x j)}a j(~x j)∈α I

a1

N x(1,1) · · · x(1,k1)

am

N x(m,1) · · · x(m,km)

· · ·

a1

❨❨❨❨❨❨❨❨❨❨❨❨❨❨

❱❱❱❱❱❱❱❱❱❱❱❱
■■■

❤❤❤❤❤❤❤❤❤❤

am
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡

❱❱❱❱❱❱❱❱❱❱❱
■■■

❤❤❤❤❤❤❤❤❤
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If we take a unary name λ and put @ := λ , then the η-expansion in λ -calculus can be expressed as the

expansion of N to λ (x).(N|@〈x〉) and so the expanded form above is a generalisation of η-expansion

in λ -calculus. Then, the following condition is equivalent to our recovery condition (see Proposition

2.12.(2) below):

(η) there is a function f mapping each negative action a j(x( j,1), . . . ,x( j,k)) in α I to a k-ary negative

action c f ( j)(~y f ( j)) ∈ αE such that for any negative c-design N, the η-expanded form of N with

respect to α and the c-design ∑α I a j(x( j,1), . . . ,x( j,k)).(N|c f ( j)〈x( j,1), . . . ,x( j,k)〉) are equal.

This condition says that the η-expansion can be performed for α , hence our recovery condition corre-

sponds to the recovery principle via the condition (η) because the recovery principle means the avail-

ability of η-expansion in natural deduction. In particular, note that our recovery condition is literally the

converse of the inversion condition: α I is contained in αE . The following proposition summarises the

correspondence between our inversion/recovery conditions and the inversion/recovery principles:

Proposition 2.12. Let α be an n-ary connective. (1) The connective α satisfies the inversion condition

if and only if α satisfies the condition (β ). (2) The connective α satisfies the recovery condition if and

only if α satisfies the condition (η).

Proof. (1) The “only if” direction is obvious. Conversely, suppose that αE * α I holds, and take a

negative action ai(~xi) in αE \α I . Moreover, let {Pa j
}a j(~x j)∈α I be an α I-indexed family of positive total c-

designs and ~Ni be arbitrary negative c-designs. Then, we have (∑α I a j(~x j).Pa j
)|ai〈~Ni〉 −→ Pai

[~Ni/~xi] = Ω

because Pai
= Ω holds, contradiction.

(2) The “only if” direction is obvious. Suppose that there is a negative action a j(x( j,1), . . . ,x( j,k)) in

α I \αE . By the definition of connectives, we have a j 6= ai for any k-ary negative action ai in αE , hence

∑α I a j(x( j,1), . . . ,x( j,k)).(N|c f ( j)〈x( j,1), . . . ,x( j,k)〉) cannot be the η-expanded form. Contradiction.

Our notion of connective is a generalisation of the notion of logical connective defined in [21, 2, 3].

In our framework, we define that a connective α is logical if α satisfies the harmony condition. Below we

abbreviate a logical connective (~z,{a1(~x1), . . . ,an(~xn)},{a1(~x1), . . . ,an(~xn)}) as (~z,{a1(~x1), . . . ,an(~xn)}).
Then, it is obvious that logical connectives in our sense coincide with ones in the sense of [21, 2, 3]. The

connectives of the linear fragment MALLP of polarised linear logic are defined in [21] as instances of

logical connectives. For example, the connective &, which is called With, can be defined as the logical

connective (x1,x2,{π1(x1),π2(x2)}}), and this gives the following inference rules:

P |= Γ,x1 : P1 Q |= Γ,x2 : P2

π1(x1).P+π2(x2).Q |= Γ,&I(P1,P2)

N |= Γ,P⊥1

x|π1〈N〉 |= Γ,x : &E〈P⊥1 ,P
⊥
2 〉

M |= Γ,P⊥2

x|π2〈M〉 |= Γ,x : &E〈P⊥1 ,P
⊥
2 〉

If we put N1⊕N2 := &E〈N1,N2〉 as in [21] and write P1 &P2 instead of &I(P1,P2), then the rules above

are exactly the &-rule and the ⊕-rules in one-sided sequent calculus. This is compatible with our expla-

nations of &I as the introduction rule and &E as the elimination rules, because the &-introduction rule

corresponds to the &-right rule in sequent calculus and the &-elimination rules correspond to the⊕-right

rules via the De Morgan equivalence between (A & B)⊥ and A⊥⊕B⊥. Another pair of examples from

MALLP-connectives is the pair of lifting operators: consider the logical connective ˆ = (x1,{ˆ(x1)}),
then we have the inference rules

P |= Γ,x1 : P

ˆ(x1).P |= Γ,ˆP

N |= Γ,P⊥

x|ˆ〈N〉 |= Γ,x : ´P⊥
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where ˆP := ˆI(P) and ´N := ˆE〈N〉.

As explained in [3], a logical connective of the form

(x(1,1), . . . ,x(1,k1), . . . ,x(m,1), . . . ,x(m,km),{a1(x(1,1), . . . ,x(1,k1)), . . . ,am(x(m,1), . . . ,x(m,km))})

induces the following inference rules (here we suppress the term-information):

Γ,P(1,1), . . . ,P(1,k1) · · · Γ,P(m,1), . . . ,P(m,km)

Γ,
˘

1≤i≤m

˙
1≤ j≤ki

P(i, j)

Γ1,P
⊥
(1,1) · · · Γk1

,P⊥(1,k1)

Γ1, . . . ,Γk1
,
⊕

1≤i≤m

⊗
1≤ j≤ki

P⊥(i, j)

Γ1,P
⊥
(m,1) · · · Γkm

,P⊥(m,km)

Γ1, . . . ,Γkm
,
⊕

1≤i≤m

⊗
1≤ j≤ki

P⊥(i, j)

where
˘

1≤i≤n is the n-ary With and
˙

1≤i≤n is the n-ary multiplicative disjunction (Par) with their duals⊕
1≤i≤n,

⊗
1≤i≤n. This shows that logical connectives in Computational Ludics include synthetic con-

nectives ([4]) such as the combination of & and ` (or ⊕ and ⊗) but they do not cover the combination

of connectives of opposite polarities such as ⊗ and `. Therefore, Acclavio-Maieli’s generalised con-

nectives in [1] are not subsumed under logical connectives of Computational Ludics, because the former

covers the combination of ⊗ and `. Moreover, we conjecture that Computational Ludics cannot deal

with non-decomposable logical connectives (i.e. logical connectives which cannot be decomposed into

standard MALL connectives), which are studied in [1]. On the other hand, logical connectives of Com-

putational Ludics subsume additive connectives, synthetic connectives and the units ⊥,⊤,0,1, and we

conjecture that the framework of [1] cannot deal with these connectives and units.6

While logical connectives are the connectives satisfying the harmony condition, there are inharmo-

nious connectives, as we have seen some of them in Example 2.10. The failure of the harmony condition

can be sometimes tricky. Consider a connective α0 = (x1,x2,{a(x1),b(x2)},{c(x1),b(x2)}). Neither the

inversion condition nor the recovery condition are satisfied by α0, but α0 has the negative action b(x2)
which is a common element of both α I

0 and αE
0 . This means that some β -reduction steps are defin-

able for α0, although not all of the β -reduction steps are. Indeed, for any positive c-designs P and Q

with P 6= Ω 6= Q, we have a(x1).P+b(x2).Q|b〈N〉 −→Q[N/x2] 6= Ω but a(x1).P+b(x2).Q|c〈N〉 −→Ω.

Hence, though the connective α0 is not a logical one, it is a connective that is not deprived of any mean-

ing. More precisely, it is not completely deprived of any computational meaning, as it allows some

β -reduction steps.

3 Two Characterisations of Harmony Condition

In this section, we give two conditions each of which is equivalent to the harmony condition defined in the

previous section. This will show that the harmony condition is in fact equivalent to a form of complete-

ness which is proper to the Ludics point of view: the absence of any fundamental distinction between

derivations and models is what makes it possible to pass from one to another, and vice versa (as to this

viewpoint, see Section 2.1). In Section 3.1, we propose the first condition called the dual decomposabil-

ity of connectives. Informally, a connective α is dually decomposable if the “introduction” behaviour

6As to our connectives not satisfying the harmony condition, they have the following difference from Acclavio-Maieli’s

generalised connectives: the latter connectives always satisfy a form of the inversion principle, because these connectives are

designed to satisfy cut reduction, which is indeed nothing but the sequent calculus counterpart of detour reduction in natural

deduction.
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α I(P1, . . . ,Pn) (resp. the “elimination” behaviour αE〈N1, . . . ,Nn〉) is decomposed into P1, . . . ,Pn (resp.

N1, . . . ,Nn) via the negative actions in αE (resp. α I). Specifically, we will have αE〈N1, . . . ,Nn〉 =⋃
ai(~xi)∈α I ai〈N(i,1), . . . ,N(i,k)〉 ∪ {z} in the case of the “elimination” behaviour. Following [9, p. 409],

one can see a form of completeness here: if the set E =
⋃

ai(~xi)∈αE ai〈N(i,1), . . . ,N(i,k)〉 is treated as a set

of derivations composed from N1, . . . ,Nn by αE , E⊥ serves as a set of models which are orthogonal to

any derivation in E. Then, the biorthogonal E⊥⊥ corresponds to the set of derivations validated by these

models, and E⊥⊥ is equal to αE〈N1, . . . ,Nn〉 by definition. The dual decomposability of connectives

says that the derivations in E⊥⊥ except z are already included in
⋃

ai(~xi)∈α I ai〈N(i,1), . . . ,N(i,k)〉, which

is a set of derivations composed from N1, . . . ,Nn by α I . In this sense,
⋃

ai(~xi)∈α I ai〈N(i,1), . . . ,N(i,k)〉 is

“complete”.

In Section 3.2, we propose the second condition which is equivalent to the harmony condition. We

call this condition the dual decomposability of visitable paths. A visitable path is a sequence of actions

induced by the interaction between the elements of an orthogonal pair of a c-design and an anti-design.

In other words, a visitable path is an observable trace in the interaction between some c-design and anti-

design (i.e. some programs), even if these programs are treated as black boxes (for a detailed discussion

on the observability in Ludics, see [6]). As remarked in [7, 13, 14], visitable paths are closely related to

the notion of interaction in game semantics. The dual decomposability of visitable paths says that one can

find the decomposability and the completeness mentioned above not only in c-designs but also in these

observable traces. Consider, for instance, a visitable path induced by some c-design T in αE〈N1, . . . ,Nn〉
and some anti-design against T . Typically, such a visitable path has an action x0|ai〈~xi〉 with ai(~xi) ∈
α I as its first element, and the remaining sequence is obtained by “shuffling” some visitable paths in

N(i,1), . . . ,N(i,k).

3.1 Dual Decomposability of Connectives

To formulate the intuition behind the dual decomposability of connectives precisely, we define counter

sets by adapting the definition of αc〈N1, . . . ,Nn〉 and αc(P1, . . . ,Pn) in [21, p. 2068] to our setting.

Definition 3.1 (Counter Sets). Let α be an n-ary connective. For any positive a-behaviours P1, . . . ,Pn

and any negative a-behaviours N1, . . . ,Nn, we define the counter set α I(P1, . . . ,Pn)
C for α I(P1, . . . ,Pn)

and the counter set αE〈N1, . . . ,Nn〉
C for αE〈N1, . . . ,Nn〉 as follows.

• α I(P1, . . . ,Pn)
C :=

⋃
ai(~xi)∈α I ai〈P

⊥
(i,1), . . . ,P

⊥
(i,k)〉, and

• αE〈N1, . . . ,Nn〉
C is defined as the set of all negative c-designs N of the following form: for some

ai(~xi) ∈ αE , some x(i,l) ∈ {~xi} and some Q ∈ N⊥(i,l),

N = ai(~xi).Q[x(i,l)/x0]+b1(~xb1
).z+ · · ·+bm(~xbm

).z,

where αE \ {ai(~xi)} = {b1(~xb1
), . . . ,bm(~xbm

)} holds. Below we use the following abbreviation:

ai(~xi).Q[x(i,l)/x0]+zαE := ai(~xi).Q[x(i,l)/x0]+b1(~xb1
).z+ · · ·+bm(~xbm

).z.

For any negative a-behaviours N1, . . . ,Nn, we define

[N1/x1, . . . ,Nn/xn] := {[N1/x1, . . . ,Nn/xn] : Ni ∈ Ni for any i with 1≤ i≤ n}.

Definition 3.2 (Dual Decomposability of Connectives). Let α be an n-ary connective. Then, α is dually

decomposable if and only if α satisfies the following conditions:

1. αE〈N1, . . . ,Nn〉= α I(N⊥1 , . . . ,N
⊥
n )

C∪{z}, and
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2. ∑a(~xa).Pa ∈ α I(P1, . . . ,Pn) holds if and only if Pai
∈ [P⊥(i,1)/x(i,1), . . . ,P

⊥
(i,k)/x(i,k)]

⊥ holds for any

ai(x(i,1), . . . ,x(i,k)) in αE .

For any logical connective α = (~z,α0), the dual decomposability of α is essentially equivalent to

the internal completeness of α formulated in [21, § 4.4] because α I(P1, . . . ,Pn)
C and αE〈N1, . . . ,Nn〉

C

are equal to αc〈P⊥1 , . . . ,P
⊥
n 〉 and αc(N⊥1 , . . . ,N

⊥
n ) in [21], respectively. By using this equivalence, one

can prove Lemma 3.3 and Proposition 3.4 below in a manner similar to the proof of [21, Lemma 4.13,

Theorem 4.14] because any connective satisfying the harmony condition is a logical connective. We

will prove Lemma 3.3 for readers’ convenience, but omit a proof of Proposition 3.4. Note that in [21],

c-designs in behaviours may include cuts and so head normal c-designs are used in [21, Lemma 4.13].

Here, instead, any c-design in behaviours is cut-free; we thus need not use head normal c-designs.

Lemma 3.3. Let α = (~z,α0) be an n-ary logical connective. We have the following assertions:

1. (α0〈N1, . . . ,Nn〉
C)⊥ ⊆ (

⋃
ai(~xi)∈α0

ai〈N(i,1), . . . ,N(i,k)〉)∪{z}.

2. α0〈N1, . . . ,Nn〉 ⊆ (α0〈N1, . . . ,Nn〉
C)⊥.

3. If ∑a(~xa).Pa ∈ (α0(P1, . . . ,Pn)
C)⊥ holds then for any ai(x(i,1), . . . ,x(i,k)) ∈ α0, we have

Pai
∈ [P⊥(i,1)/x(i,1), . . . ,P

⊥
(i,k)/x(i,k)]

⊥.

4. α0(P1, . . . ,Pn) = (α0(P1, . . . ,Pn)
C)⊥.

Proof. (1.) Assume that P ∈ (α0〈N1, . . . ,Nn〉
C)⊥ holds. The case of P = z is trivial, so let P be

x0|b〈M1, . . . ,Mm〉. By assumption, b = ai holds for some ai(~xi) ∈ α0. Fix an arbitrary x(i,l) and an

arbitrary Q ∈N⊥(i,l), then we have P⊥ai(~xi).Q[x(i,l)/x0]+zα0
. Therefore, Q⊥Ml holds for any Q ∈N⊥(i,l).

It follows that each Ml belongs to N(i,l), hence P ∈
⋃

ai(~xi)∈α0
ai〈N(i,1), . . . ,N(i,k)〉 holds.

(2.) Consider P ∈ α0〈N1, . . . ,Nn〉 and N = ai(~xi).Q[x(i,l)/x0] +zα0
∈ α0〈N1, . . . ,Nn〉

C. We show

P⊥N, and it suffices to verify that N ∈ (
⋃

ai(~xi)∈α0
ai〈N(i,1), . . . ,N(i,k)〉)

⊥ holds. This holds by the defini-

tion of α0〈N1, . . . ,Nn〉
C.

(3.) Assume that ∑a(~xa).Pa ∈ (α0(P1, . . . ,Pn)
C)⊥ holds, and consider an arbitrary ai(~xi)∈ α0. Then,

for any N1 ∈ P⊥(i,1), . . . ,Nk ∈ P⊥(i,k), we have Q := x0|ai〈N1, . . . ,Nk〉 ∈ ai〈P
⊥
(i,1), . . . ,P

⊥
(i,k)〉, hence ∑a(~xa).Pa

and Q are orthogonal. Therefore, we have

Pai
[N1/x(i,1), . . . ,Nk/x(i,k)]−→z

and so Pai
∈ [P⊥(i,1)/x(i,1), . . . ,P

⊥
(i,k)/x(i,k)]

⊥ holds.

(4.) This follows from
⋂

ai(~xi)∈α0
(ai〈P

⊥
(i,1), . . . ,P

⊥
(i,k)〉

⊥) = (
⋃

ai(~xi)∈α0
ai〈P

⊥
(i,1), . . . ,P

⊥
(i,k)〉)

⊥.

By the lemma above, we have the following proposition. The converse of this proposition will be

obtained by Proposition 3.24 below, which finishes not only the first characterisation of the harmony

condition but also the second.

Proposition 3.4. If a connective α satisfies the harmony condition, then α is dually decomposable.
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3.2 Dual Decomposability of Visitable Paths

In this subsection, we discuss our second characterisation of the harmony condition. There are three

notions that are crucial for this characterisation: interaction sequences, visitable paths and the regularity

of behaviours. We follow [13, 14] in defining these notions. We first introduce several notions concerning

sequences of actions, in order to define interaction sequences.

Definition 3.5 (Located Actions). A located action is one of the following expressions: (1) Daimon

z, (2) an expression x|a〈x1, . . . ,xn〉 containing a variable x and a proper positive action a followed by

x1, . . . ,xn such that ar(a) = n holds and x,x1, . . . ,xn are pairwise distinct, (3) an expression ax(x1, . . . ,xn)
which consists of a variable x and a proper negative action a(x1, . . . ,xn) with x 6∈ {x1, . . . ,xn}.

In the definition above, we made a slight modification of the notations in [13, 14]: we denote negative

located actions by ax(x1, . . . ,xn) instead of ax(x1, . . . ,xn). The empty sequence is denoted by ε . In

addition, we use the following variables: κ for located actions, κ+ for positive located actions and κ−

for negative located actions. Hereafter, the word “actions” always means located actions. When κ is of

the form x|a〈x1, . . . ,xn〉 or ax(x1, . . . ,xn), we say a is the name of κ , x is the address of κ and x1, . . . ,xn

are the arguments of κ . Located actions except z are called proper located actions.

The basic entities in this subsection are the following sequences of actions.

Definition 3.6 (Alternated Justified Sequences). A finite sequence s= κ1 · · ·κn of actions is an alternated

justified sequence (in short, aj-sequence) if and only if s satisfies all of the following conditions:

• Alternation: the polarity of κi is the opposite of the polarity of κi+1 for any i with 1≤ i≤ n.

• Linearity: each variable occurring in s is the address of at most one action in s.

• Daimon: if z appears in s then z= κn holds.

• Justification: for any proper action κi in s, either (1) there is a unique action κ j of the opposite

polarity such that j < i holds and the arguments of κ j includes the address of κi or (2) there is no

κ j in s such that the arguments of κ j includes the address of κi. We say that κi is justified by κ j

and denote κ j by just(κi) if (1) holds, otherwise we say κi is initial.

We say that x is free in an aj-sequence s if and only if x occurs in s only as the address of some action in

s, and that x is bound in s if and only if x occurs in s as an argument of some action in s.

Note that the empty sequence ε is trivially an aj-sequence and that we adopted Barendregt’s variable

convention (cf. § 2). We identify two aj-sequences s1 and s2 that are identical modulo renaming of

bound variables of s1 and s2. For example, (x|a〈y1,y2〉)(ay1
(z1,z2)) and (x|a〈v1,v2〉)(av1

(w1,w2)) are

the same aj-sequence. If κ = x|a〈x1, . . . ,xn〉 (resp. κ = ax(x1, . . . ,xn)) holds, we write ax(x1, . . . ,xn)
(resp. x|a〈x1, . . . ,xn〉) as κ . If s = κ1 · · ·κn is a non-empty sequence of proper actions, we denote κ1 · · ·κn

by s. Moreover, we put ε := ε . Let s = κ1 · · ·κn be a finite sequence of actions (n ≥ 0) such that κn is

the only occurrence of z if z occurs in s. We define the dual s̃ of s as follows: if z occurs in s then

s̃ := κ1 · · ·κn−1, otherwise s̃ := sz. We in particular have z̃= ε , ε̃ =z and ˜̃s = s.

Next, we define paths, which subsume some interaction sequences as typical examples. But we first

define views and anti-views of aj-sequences to introduce the notion of path.

Definition 3.7 (Views and Anti-Views of Alternated Justified Sequences). Let s be an aj-sequence. We

define the view psq of s by induction. (1) If s = ε holds, then psq := ε . (2) If s = s′κ+ holds, then

psq := ps′qκ+. (3) Let s be s′κ−. If κ− is initial, then psq := κ−, otherwise psq := ps0qκ− where s0 is

the prefix of s such that κ− is justified by the last action of s0.

The anti-view xsy of s is defined as xsy := p̃s0q with s0 = s̃.
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Definition 3.8 (Paths). A path is an aj-sequence s satisfying 1. and 2. below.

1. Proponent-visibility: For any prefix s0κ+ of s with κ+ proper, if κ+ is justified in s0 then just(κ+)
occurs in ps0q.

2. Opponent-visibility: For any prefix s0κ− of s, if κ− is justified in s0 then just(κ−) occurs in xs0y.

A non-empty path is called positive (resp. negative) if its first action is positive (resp. negative), and

the empty path ε is defined as a negative path. When D is a set of sequences of actions and κ is a proper

action, we denote the set {κs : s ∈D} of sequences by κD.

One can also consider views and paths occurring in c-designs or anti-designs, where c-designs and

anti-designs are treated as trees or forests formed by views (see Figure 1). These notions of views and

paths are used in our proof too.

Definition 3.9 (Views and Paths of C-Designs and Anti-Designs). Let P be a positive c-design and N be

a negative c-design with x 6∈ fv(N), and assume that both P and N are cut- and identity-free. We define

the two sets V(P) and V(N)x of sequences of actions simultaneously:

• V(Ω) := /0, V(z) := {z} and V(x|a〈~N〉) := {κ+
a }∪

⋃
i≤ar(a) κ+

a V(Ni)yi
, where ~y = y1, . . . ,yk are

fresh and κ+
a = x|a〈~y〉 holds,

• V(N) := V(N)x0
, V(∑a(~xa).Pa)x := {ε}∪

⋃
{κ−a V(Pa)∪{κ

−
a } : Pa 6= Ω} with κ−a = ax(~xa).

A sequence s of actions is a view of P (resp. a view of [N/x]) if and only if s ∈ V(P) (resp. s ∈ V(N)x)
holds. A path p is a path of P (resp. a path of [N/x]) if and only if for any non-empty prefix s (resp. any

prefix s) of p, psq is a view of P (resp. a view of [N/x]).

A view of a cut-free anti-design [G] is a view of some member of [G]. A path of a cut-free anti-design

[G] against positives (resp. a cut-free anti-design [G] against negatives) is a negative path (resp. a

positive path) s such that for any prefix s0 (resp. any non-empty prefix s0) of s, ps0q is a view of [G].

Intuitively, a view of a c-design T is a branch (or one of its prefixes) of Pavaux’s tree-representation

T (T ) of the c-design T (for the details, see [13, § 3.1] and [14, § 1.2]). Then, a path of T is a sequence

in T (T ) traced by proceeding along possibly several branches from the root. For instance, in this

representation of c-designs, the positive c-design P and the anti-design [N/x0] with

P = x0|a
〈

b(x1).(x1|c〈〉),b(x2).(x2|c〈〉)
〉
, N = a(y1,y2).

(
y1|b

〈
c().

(
y2|b〈a(y5,y6).z+ c().z〉

)〉)

are depicted as the left-hand tree and the right-hand tree in Figure 1, respectively. The two aj-sequences

x0|a〈y1,y2〉 by1(x1) x1|c〈〉 and x0|a〈y1,y2〉 by2(x2) x2|c〈〉

are views of P, namely the left-hand branch and the right-hand branch of P. The aj-sequence

x0|a〈y1,y2〉 by1(x1) x1|c〈〉 by2(x2) x2|c〈〉

is a path of P. Notice that views and paths of some c-design are indeed views and paths in the sense of

Definitions 3.7 and 3.8.

As a further step toward the definition of interaction sequences, we define multi-designs, which were

introduced in [14]. Multi-designs are generalisations of both c-designs and anti-designs. For the need of

multi-designs in defining interaction sequences, see [14, p. 41].
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x0|a〈y1,y2〉

by1(x1) by2(x2)

x1|c〈〉 x2|c〈〉=P

❄❄❄❄
⑧⑧⑧⑧

ax0(y1,y2)

y1|b〈y3〉

cy3()

y2|b〈y4〉

ay4(y5,y6) cy4()

z z

= N

❄❄❄❄ ⑧⑧⑧⑧

Figure 1: Examples of Pavaux’s tree representation of c-designs

Definition 3.10 (Multi-Designs). (1) A negative multi-design is a finite set {(x1,N1), . . . ,(xk,Nk)} of

pairs of a variable and a negative design such that fv(N1), . . . , fv(Nk) are pairwise disjoint and fv(Ni)∩
{x1, . . . ,xk} is empty for any i with 1 ≤ i ≤ k. (2) A positive multi-design is a finite set {P,(~x,~N)} such

that P is a positive design, {(~x,~N)}= {(x1,N1), . . . ,(xk,Nk)} is a negative multi-design, fv(P) and fv(Ni)
are disjoint for any i with 1≤ i≤ k and fv(P)∩{x1, . . . ,xk} is empty.

For any multi-design D, we define the normal form [[D]] of D as

[[D]] := {(x, [[N]]) : (x,N) ∈D}∪{[[P]] : P ∈D}.

A multi-design D is called standard if any c-design in D is standard. For any (x,N) in some multi-

design D, we denote (x,N) by [N/x]. Moreover, when D = {[N1/x1], . . . , [Nk/xk]} is a negative multi-

design, we denote the result of substituting Ni for xi in a multi-design E for each i by E[D]. Note that

for any positive c-design P, {P} is a multi-design and that any anti-design is a multi-design. A view of

a multi-design D is a view of some c-design in D. A path of a multi-design D is a path s of the same

polarity as D such that for any prefix s0 of s, ps0q is a view of D. For any multi-design D, we denote

the set
⋃

T∈D fv(T ) of free variables in D by fv(D), and the set {x : [N/x] ∈D for some N} of negative

places of D by np(D).
For example, in Figure 2, the singleton D of the rightmost tree and the set E of the remaining trees

are multi-designs. In the λ -term-style notations, D is {y1|b〈c().(y2|b〈a(y5,y6).z+ c().z〉)〉}, and E

is {(y1,b(x1).(x1|c〈〉)),(y2,b(x2).(x2|c〈〉))}. Though E is also an anti-design, D is not an anti-design,

because D contains a non-atomic positive c-design. Notice that D∪E is not a multi-design, because the

free variables y1,y2 in D belong to np(E).
The following definition provides some necessary conditions for the interaction between multi-

designs.

Definition 3.11 (Compatibility and Quasi Closed Compatibility). Two multi-designs D and E are com-

patible if and only if

• both fv(D)∩ fv(E) and np(D)∩np(E) are empty, and

• either they are negative and there is a variable x ∈ np(D)∪ np(E) such that x 6∈ fv(D)∪ fv(E)
holds, or they are of opposite polarities.

Two multi-designs D and E are quasi closed compatible if and only if they are of opposite polarities,

compatible and satisfy the condition that fv(D)⊆ np(E) and fv(E)⊆ np(D) hold.
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by1(x1) by2(x2)

x1|c〈〉 x2|c〈〉

y1|b〈y3〉

cy3()

y2|b〈y4〉

ay4(y5,y6) cy4()

z z

❄❄❄❄ ⑧⑧⑧⑧

Figure 2: Examples of Pavaux’s tree representation of multi-designs

We can apply a cut to any two compatible multi-designs. Though the notion of cut is not used in the

definition of interaction sequences, this notion will be used to define the orthogonality on multi-designs

and formulate Proposition 3.16 below.

Definition 3.12 (Cut of Multi-Designs). For any two compatible multi-designs D and E, the cut CutD|E of

D and E is defined by induction on the number of elements in E: if E is empty then we define CutD|E :=D.

Let E be non-empty.

1. If P ∈ E holds, we put S := {[M/y] ∈D : y ∈ fv(P)} and define CutD|E := Cut(D\S)∪{P[S]} |E\{P}.

2. If [N/x] ∈ E holds, we put S := {[M/y] ∈D : y ∈ fv(N)} and define

(a) CutD|E := Cut(D\S)∪{[N[S]/x]} |E\{[N/x]} , if x 6∈ fv(D) holds,

(b) CutD|E := Cut(D\S)[N[S]/x] |E\{[N/x]} , if x ∈ fv(D) holds.

The cut CutD|E of multi-designs D,E is well-defined above because CutD|E is determined uniquely

regardless of the order to apply 1, 2.(a) and 2.(b). We say that two quasi closed compatible multi-

designs D and E are orthogonal and write D⊥E if z ∈ [[CutD|E]] holds. Note that this definition of

the orthogonality between two multi-designs is broader than the one in [14, Definition 2.1.8], though

this broader notion is in fact used in the proof of [14, Proposition 2.2.12]. The reason why we used the

broader definition is that we want two multi-designs such as D = {z} and E = {[N/x]} with N closed

to be orthogonal but they are not in the sense of [14, Definition 2.1.8].

On the basis of the definitions above, we define the notion of interaction sequence.

Definition 3.13 (Interaction Sequences). For any two standard multi-designs D and E such that they are

quasi closed compatible, the interaction sequence 〈D← E〉 of D with E is defined as follows: let P be

the unique positive design in D∪E.

• Let P =z be the case. We define 〈D← E〉 :=z if P ∈D holds, otherwise 〈D← E〉 := ε .

• If P = Ω holds then we define 〈D← E〉 := ε .

• Assume that P = x|a〈~M〉 holds. If P ∈D holds then there is a unique negative design N such that

[N/x] ∈ E holds, otherwise there is a unique negative design N such that [N/x] ∈D. Let N be of

the form ∑b(~yb).Pb, and we define

〈D← E〉 :=

{
x|a〈~ya〉〈(D\{P})∪{[~M/~ya]} ← (E\{[N/x]})∪{Pa}〉, if P ∈D,

ax(~ya)〈(D\{[N/x]})∪{Pa} ← (E\{P})∪{[~M/~ya]}〉, else.
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During the construction of interaction sequences, one usually decomposes a multi-design. For exam-

ple, consider the c-designs P and N in Figure 1 again. Then, the interaction sequence 〈{P}← {[N/x0]}〉
is defined, where the first step for constructing it shortens N to the rightmost tree in Figure 2 and decom-

poses P into the remaining trees in Figure 2. In addition, note that the path

x0|a〈y1,y2〉 by1(x1) x1|c〈〉 by2(x2) x2|c〈〉

of P is equal to 〈{P}← {[N/x0]}〉. Since 〈D← E〉= ˜〈E←D〉 holds for any orthogonal pair of standard

multi-designs D,E (see [14, Lemma 2.2.5]) and the pair of P,N is orthogonal, the path

ax0(y1,y2) y1|b〈x1〉 cx1() y2|b〈x2〉 cx2() z

of N is equal to ˜〈{P} ← {[N/x0]}〉= 〈{[N/x0]} ← {P}〉.
Next, we define visitable paths, which are interaction sequences induced by some orthogonal pair of

a c-design and an anti-design. When T is a positive c-design (resp. a negative c-design), we abbreviate

〈{T} ← [G]〉 (resp. 〈{(x0,T )} ← [G]〉) as 〈T ← [G]〉, and 〈[G]← {T}〉 (resp. 〈[G]← {(x0,T )}〉) as

〈[G]← T 〉.

Definition 3.14 (Visitable Paths). Let T be a set of standard c-designs of the same polarity, and G be a

set of standard anti-designs of the same polarity and base.

• A path p is visitable in T if and only if for some T ∈ T and [G] ∈ T⊥, 〈T ← [G]〉= p holds.

• A path p is visitable in G if and only if for some T ∈G⊥ and [G] ∈G, 〈[G]← T 〉= p holds.

We denote the set of all visitable paths in T (resp. G) by V (T) (resp. V (G)).

We have the following lemma and proposition, which will be used in the proofs of Lemma 3.23.(2)

and Proposition 3.24. One can prove the assertions 1, 2 and 3 of the lemma below in the same way to

Lemma 2.2.6, Lemma 2.2.10 and Lemma 3.1.5 in [14], respectively.

Lemma 3.15. We have the following assertions:

1. Let D,E be multi-designs with 〈D← E〉 defined. If D is positive then any non-empty prefix of

〈D← E〉 is a path of D, otherwise any prefix of 〈D← E〉 is a path of D. In particular, if 〈D← E〉
is finite, then it is a path of D.

2. Assume that a positive multi-design D with Ω 6∈D and a multi-design E are cut-free and satisfy the

following two conditions: (i) D and E are quasi closed compatible and have a finite interaction,

and (ii) for any path sκ+ of D (resp. E) such that κ+ is proper and s is a path of E (resp. D),
sκ+ is a path of E (resp. D). Then, D⊥E holds.

3. Let B be an arbitrary a-behaviour. If p ∈ V (B) holds, then for any positive-ended prefix (resp.

negative-ended prefix) s of p, we have s ∈V (B) (resp. sz ∈V (B)).

When s = κ1 · · ·κn is a sequence of actions, a subsequence of s is a sequence κi1 · · ·κik with 1≤ i1 <
· · · < ik ≤ n, and we denote by s ↾ s′ the subsequence of s any of whose actions occurs in a sequence

s′. Moreover, when p is a path of a multi-design D and E is a multi-design with E ⊆D, we denote the

longest subsequence of p that is a path of E by p ↾ E. For a proof of the following proposition, see [14,

Proposition 2.2.12].

Proposition 3.16 (Associativity for Paths). For any cut-free multi-designs D,E and F such that E∪F
is a multi-design with E and F disjoint, if D⊥(E∪F) holds, then 〈E← [[CutF|D]]〉 = 〈E∪F←D〉 ↾ E
holds.
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To define regular behaviours, we first define the stable and observational orderings, intersection and

incarnation.

Definition 3.17 (Stable Ordering and Observational Ordering). The stable ordering ⊑ on c-designs is

defined as the largest binary relation on c-designs such that if T ⊑U holds then one of the following

conditions holds:

1. T =z=U,

2. T = Ω and U ∈D+,

3. T = N0|a〈N1, . . . ,Nn〉, U = M0|a〈M1, . . . ,Mn〉 and Nk ⊑Mk for any k with 0≤ k ≤ n,

4. T = x =U,

5. T = ∑a(~ya).Pa, U = ∑a(~ya).Qa and Pa ⊑ Qa for any a ∈ A.

The observational ordering � on c-designs is defined as the largest binary relation on c-designs such

that if T �U holds then one of 1, 2, 4 above and the following conditions 3’ and 5’ holds:

3’. T = N0|a〈N1, . . . ,Nn〉 and either U = M0|a〈M1, . . . ,Mn〉 and Nk �Mk for any k with 0 ≤ k ≤ n or

U =z,

5’. T = ∑a(~ya).Pa, U = ∑a(~ya).Qa and Pa � Qa for any a ∈ A.

Definition 3.18 (Intersection). The intersection T ∩U of c-designs T and U is defined by corecursion:

1. z∩z=z,

2. Ω∩P = P∩Ω = Ω,

3. x | a〈N1, . . . ,Nk〉 ∩ x | a〈M1, . . . ,Mk〉 = x | a〈N1 ∩M1, . . . ,Nk ∩Mk〉 if Ni∩Mi is defined for each i

with 1≤ i≤ k,

4. ∑a(~xa).Pa∩∑a(~xa).Qa = ∑a(~xa).Pa∩Qa if Pa∩Qa is defined for each a ∈ A.

5. In other cases, T ∩U is not defined.

The stable ordering T ⊑U means that U is more defined than T . On the other hand, the observational

ordering T �U means that U is more likely to converge than T when they interact with other c-designs.

The intersection T ∩U corresponds to the common part of T and U delineated by Ω if T ∩U is defined.

Definition 3.19 (Incarnation). Let T be a behaviour. The incarnation |U |T of U in T is defined as

|U |T :=
⋂
{U ′ ∈ T : U ′ ⊑U}. We say U is material in T if and only if U = |U |T holds, and denote the

set of all material designs in T by |T|.

Note that |U |T is the minimal c-design U ′ in T such that U ′ ⊑U holds. Next, we define the shuffle

of two paths, which is a set of paths made by interleaving the actions in p and q. Shuffling two paths is a

key ingredient for the regularity of behaviour.

Definition 3.20 (Shuffles). The shuffle of two paths and the shuffle of two sets of paths are sets of paths

defined as follows:

1. Let p and q be paths. The shuffle p�q of p and q is defined by distinguishing cases:

• If p and q are negative paths, then p� q is the set of all paths r such that any action in r

occurs in p or q and both of r ↾ p = p and r ↾ q = q hold,

• if p and q are positive paths of the same first action κ+, that is, p = κ+p′ and q = κ+q′ hold,

then p�q is the set of all paths r such that r = κ+u holds for some u ∈ p′�q′, and

• otherwise, p�q is not defined.
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2. Let D and D′ be sets of paths. The shuffle D�D′ of D and D′ is defined as the set of all paths q

such that for some p ∈D and p′ ∈D′ with p� p′ defined, q ∈ p� p′ holds.

For instance, the shuffle of x1|b〈y1,y2〉 ay1(y3) y3|c〈〉 and x1|b〈y1,y2〉 ay2(y4) y4|d〈〉 is

{
(

x1|b〈y1,y2〉 ay1(y3) y3|c〈〉 ay2(y4) y4|d〈〉
)
,
(

x1|b〈y1,y2〉 ay2(y4) y4|d〈〉 ay1(y3) y3|c〈〉
)
}.

Note that ε ∈ D�D′ holds if and only if ε belongs to both of D and D′. We omit parentheses in

consecutive application of� because p�q and D�D′ are associative.

Definition 3.21 (Regular Behaviours). An a-behaviour B is regular if and only if the following conditions

are satisfied: (1) for any T ∈ |B| and any positive-ended path p of T , p ∈ V (B) holds, (2) for any

T ∈ |B⊥| and any positive-ended path p of T , p ∈ V (B⊥) holds, and (3) both V (B) and V (B⊥) are

closed under �.

Roughly speaking, a behaviour B is regular if B is atomic and any positive-ended path of its material

c-designs belongs to V (B), which is closed under �, and a similar condition holds for B⊥. When N is

a negative a-behaviour, we denote by V (x,N) the set of all paths obtained by replacing the address x0

of the first actions of paths in V (N) with x. Inspired by the results in [14, § 3.2], we define the second

condition equivalent to the harmony condition as follows. This condition says that visitable paths made

by a connective α from regular behaviours are dually decomposable as in our first condition.

Definition 3.22 (Dual Decomposability of Visitable Paths). Let α be an n-ary connective. Visitable

paths of α are dually decomposable if and only if for any negative regular behaviours N1, . . . ,Nn and

any positive a-behaviours P1, . . . ,Pn, we have

• V (αE〈N1, . . . ,Nn〉) = {z}∪
⋃

ai(~xi)∈α I x0|ai〈~xi〉(V (x(i,1),N(i,1))� · · ·�V (x(i,k),N(i,k))),

• V (α I(P1, . . . ,Pn)) = {ε}∪
⋃

ai(~xi)∈αE a
x0

i (~xi)V ([(P(i,1))
⊥/x(i,1), . . . ,(P(i,k))

⊥/x(i,k)]
⊥).

For any connective α = (~z,α I,αE), we denote the connective (~z,β I ,β E) with β I = αE and β E = α I

by α⊥. Intuitively, α⊥ is a connective whose introduction and elimination rules are harmonious with αE

and α I , respectively. When p is a path of a c-design T , let pc be the c-design obtained by replacing with

z any positive subdesign P of T such that P = Ω holds or the first action of elements of V(P) does not

occur in p. Note that pc is a unique �-maximal c-design U such that p is a path of U . We define the

bi-view 〈s〉 of an aj-sequence s as 〈ε〉 := ε , 〈sz〉= 〈s〉z and

〈sκ〉 :=

{
κ , if κ is initial in s and κ 6=z,

〈s0〉κ , if κ is justified by the last action of s0 and κ 6=z.

The main lemma for our second characterisation of the harmony condition is as follows:

Lemma 3.23. We have the following assertions:

1. If a connective α is dually decomposable, then α⊥ is dually decomposable.

2. For any negative regular behaviours N1, . . . ,Nn, we have

V ([N1/x1, . . . ,Nn/xn]) =V (x1,N1)� · · ·�V (xn,Nn).

Proof. (1.) Assume that α is dually decomposable. We have

(α⊥)
I(P1, . . . ,Pn) =

⋂

ai(~xi)∈αE

(ai〈P
⊥
1 , . . . ,P

⊥
n 〉
⊥) = (

⋃

ai(~xi)∈αE

ai〈P
⊥
1 , . . . ,P

⊥
n 〉)
⊥

= αE〈P⊥1 , . . . ,P
⊥
n 〉
⊥ = (α I(P1, . . . ,Pn)

C∪{z})⊥

= (α I(P1, . . . ,Pn)
C)⊥∩{z}⊥ = (α I(P1, . . . ,Pn)

C)⊥

=
⋂

ai(~xi)∈α I

(ai〈P
⊥
1 , . . . ,P

⊥
n 〉
⊥) =

⋂

ai(~xi)∈(α⊥)E

(ai〈P
⊥
1 , . . . ,P

⊥
n 〉
⊥),
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so the one half of the dual decomposability of α⊥ holds. On the other hand, we have

(α⊥)
E〈N1, . . . ,Nn〉 = (

⋃

ai(~xi)∈α I

ai〈N1, . . . ,Nn〉)
⊥⊥ = (

⋂

ai(~xi)∈α I

(ai〈N1, . . . ,Nn〉
⊥))⊥

= α I(N⊥1 , . . . ,N
⊥
n )
⊥.

It is obvious that (
⋃

ai(~xi)∈αE ai〈N1, . . . ,Nn〉)∪{z} ⊆ α I(N⊥1 , . . . ,N
⊥
n )
⊥ holds, because α is dually de-

composable. Conversely, assume that P ∈ α I(N⊥1 , . . . ,N
⊥
n )
⊥ holds. If P = z holds then the assertion

is obvious, so let P = x0|b〈M1, . . . ,Mm〉 be the case. By the dual decomposability of α again, we have

∑ai(~xi)∈αE .z ∈ α I(N⊥1 , . . . ,N
⊥
n ). There is a negative action a j(~x j) ∈ αE with P = x0|a j〈M( j,1), . . . ,M( j,k)〉

because P⊥∑ai(~xi)∈αE .z holds. Moreover, for any Q ∈ N⊥( j,l), N := a j(~x j).Q[x( j,l)/x0] + b1(~xb1
).z+

· · ·+ bm(~xbm
).z belongs to α I(N⊥1 , . . . ,N

⊥
n ), where αE \ {a j(~x j)} = {b1(~xb1

), . . . ,bm(~xbm
)} holds. We

have P[N/x0] −→ Q[M( j,l)/x( j,l)] −→ z by P⊥N, hence M( j,l) ∈ N( j,l) holds for any l with 1 ≤ l ≤
k. Therefore, P ∈

⋃
ai(~xi)∈αE ai〈N1, . . . ,Nn〉 holds. Now we have (

⋃
ai(~xi)∈αE ai〈N1, . . . ,Nn〉)∪ {z} =

α I(N⊥1 , . . . ,N
⊥
n )
⊥, so it follows that (α⊥)

E〈N1, . . . ,Nn〉= (α⊥)
I(N⊥1 , . . . ,N

⊥
n )

C∪{z} holds.

(2.) Put G := [N1/x1, . . . ,Nn/xn].

(⊆) Let p∈V (G) be the case. If p = ε holds then the assertion is obvious, so let p be non-empty. By

definition, p= 〈[G]←P〉 holds for some [G] = [N1/x1, . . . ,Nn/xn]∈G and some c-design P∈G⊥. Fix an

arbitrary i with 1≤ i≤ n, and put [G′] := [G]\ [Ni/xi]. By the definition of Cut, we have P[G′] ∈ Cut[G′]|P
whether fv(P) = {x1, . . . ,xn} holds or fv(P)⊂ {x1, . . . ,xn} holds. Then, by Proposition 3.16, we have

p ↾ [Ni/xi] = 〈[G]← P〉 ↾ [Ni/xi] = 〈[Ni/xi]← [[Cut[G′]|P]]〉= 〈[Ni/xi]← [[P[G′]]]〉.

On the other hand, we have [[[[P[G′]]][M/xi]]] = [[[[P[G′]]][[[M]]/xi]]] = [[P[G′][M/xi]]] =z for any M ∈ Ni

by Theorem 2.3, hence [[P[G′]]] ∈ N⊥i holds. Moreover, the address of the first action of p ↾ [Ni/xi] is xi

because 〈[Ni/xi]← [[P[G′]]]〉 is a path of [Ni/xi] by Lemma 3.15.(1). Therefore, p ↾ [Ni/xi] = 〈[Ni/xi]←
[[P[G′]]]〉 ∈V (xi,Ni) holds for any i, so p belongs to V (x1,N1)� · · ·�V (xn,Nn).

(⊇) Let p ∈V (x1,N1)� · · ·�V (xn,Nn) be the case, and assume that we have shown p̃c ∈ G⊥. By

p ∈V (x1,N1)� · · ·�V (xn,Nn), p is a path of [~N] for some [~N] ∈G. Then, p ∈V (G) holds because one

can show p = 〈[~N]← p̃c〉. Therefore, it suffices to verify that p̃c ∈G⊥ holds.

We suppose that p̃c 6∈ G⊥ holds and deduce a contradiction. By p̃c 6∈ G⊥, [~N]⊥ p̃c does not hold

for some [~N] = [N1/x1, . . . ,Nn/xn] ∈G. The interaction of [~N] and p̃c cannot be infinite because p̃c is a

completion by means of z and p is a shuffle of some visitable paths. By Lemma 3.15.(2), there are a path

t of [~N] and a negative action κ− such that tκ− is a path of p̃c and tκ− is not a path of [~N]. Therefore,

there is a path t satisfying the following property (∗): for some anti-design [~N] ∈G, (i) [~N]⊥ p̃c does not

hold, (ii) t is a path of [~N] and (iii) for some negative action κ−, tκ− is a path of p̃c and tκ− is not a path

of [~N]. Choose a minimal path t with respect to length such that t satisfies the property (∗). We show the

following claims (a)–(d), and the claim (d) contradicts the property (∗) of t.

(a) t̃ c ∈G⊥ holds,

(b) t ∈V (x1,N1)� · · ·�V (xn,Nn) holds,

(c) for any v∈V (x1,N1)� · · ·�V (xn,Nn) and any κ−1 such that vκ−1 is a path of p̃c, we have vκ−1 z∈
V (x1,N1)� · · ·�V (xn,Nn),

(d) tκ− is a path of [~N].
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(a) Suppose that t̃ c 6∈G⊥ holds, hence [~N1]⊥t̃ c does not hold for some [~N1]∈G. By Lemma 3.15.(2),

there are a path t0 and a negative action κ−2 such that t0 is a path of [~N1], t0κ−2 is a path of t̃ c and t0κ−2
is not a path of [~N1]. One can see that t0κ−2 is a path of p̃c, because views of t̃ c are views of p̃c. Then,

[~N1]⊥ p̃c does not hold, otherwise t0κ−2 would be a prefix of 〈[~N1]← p̃c〉 and so t0κ−2 is a path of [~N1] by

Lemma 3.15.(1). Moreover, t0 is strictly shorter than t because t0κ−2 is a path of t̃ c. This contradicts the

minimality of t with respect to length.

(b) We have t = 〈[~N]← t̃ c〉 because t is a path of [~N] and t̃ is a path of t̃ c. Then, as in the proof of

(⊆) above, we have t ↾ [Ni/xi] ∈V (xi,Ni) for any i by the claim (a).

(c) Let v be an element of V (x1,N1)� · · ·�V (xn,Nn), and κ−1 be a negative action such that vκ−1
is a path of p̃c. By p,v ∈ V (x1,N1)� · · ·�V (xn,Nn), there are p1, . . . , pn and v1, . . . ,vn such that p ∈
p1� · · ·� pn and v ∈ v1� · · ·� vn hold and we have pi,vi ∈V (xi,Ni) for any i with 1≤ i≤ n. Assume

that κ−1 is an action in p j. It suffices to show v jκ
−
1 z ∈V (x,N j). By the definition of bi-views, we have

〈v jκ
−
1 〉= 〈vκ−1 〉. Moreover, for the prefix p′κ−1 of p, 〈vκ−1 〉= 〈p

′κ−1 〉 holds because vκ−1 is a path of p̃c.

We have 〈p′κ−1 〉= 〈p
′
jκ
−
1 〉 for the prefix p′jκ

−
1 of p j by the definition of bi-views again, hence 〈v jκ

−
1 〉=

〈p′jκ
−
1 〉 holds. We have p′jκ

−
1 z ∈V (x j,N j) by p j ∈V (x j,N j) and Lemma 3.15.(3). Then, 〈v jκ

−
1 z〉 is

a path of some N j ∈ |N j| because 〈v jκ
−
1 〉 = 〈p

′
jκ
−
1 〉 holds, hence we have 〈v jκ

−
1 z〉 ∈ V (x j,N j) by the

regularity of N j. Then, v jκ
−
1 z ∈ v j� 〈v jκ

−
1 z〉 holds, so we have v jκ

−
1 z ∈V (x j,N j) by the closedness

of V (x j,N j) under �.

(d) By the claim (b), we have t ∈ V (x1,N1)� · · ·�V (xn,Nn). Moreover, tκ− is a path of p̃c by

the property (∗) of t, hence tκ−z ∈V (x1,N1)� · · ·�V (xn,Nn) holds by the claim (c). Then, we have

tiκ
−z ∈V (xi,Ni) for some Ni and some ti. The sequence ti is a path of Ni ∈ Ni, so tiκ

− is a prefix of a

path of Ni. Therefore, ptκ−q is a view of Ni because we have ptκ−q= ptiκ
−q. The sequence t is a path

of [~N], hence tκ− is a path of [~N].

By the lemma above, we have the following proposition:

Proposition 3.24. (1) If a connective α is dually decomposable, then visitable paths of α are dually

decomposable. (2) if visitable paths of a connective α are dually decomposable, then α satisfies the

harmony condition.

Proof. (1.) First, we show

V (αE〈N1, . . . ,Nn〉) = {z}∪
⋃

ai(~xi)∈α I

x0|ai〈~xi〉(V (x(i,1),N(i,1))� · · ·�V (x(i,k),N(i,k))).

(⊆) Assume that p ∈V (αE〈N1, . . . ,Nn〉) holds. If p =z holds then the assertion is trivial and so let

p 6=z be the case. By the dual decomposability of α , p = 〈P← N〉 holds for some ai(~xi) ∈ α I , some

P = x0|ai〈N(i,1), . . . ,N(i,k)〉 with N(i, j) ∈ N(i, j) for any j, and some N = ∑b(~yb).Pb ∈ αE〈N1, . . . ,Nn〉
⊥.

Therefore, by the definition of interaction sequences and the renaming of bound variables if necessary, p

is equal to x0|ai〈~xi〉p
′ with p′ ∈V ([N(i,1)/x(i,1), . . . ,N(i,k)/x(i,k)]). By Lemma 3.23.(2), we have

p ∈ x0|ai〈~xi〉(V (x(i,1),N(i,1))� · · ·�V (x(i,k),N(i,k))).

(⊇) The case of z is obvious. Assume that p ∈ x0|ai〈~xi〉(V (xi(1),Ni(1))� · · ·�V (xi(k),Ni(k)) holds

for some ai(~xi) ∈ α I . Then, we have p = x0|ai〈~xi〉〈[G]← P〉 for some

[G] = [N1/x(i,1), . . . ,Nk/x(i,k)] ∈G := [N(i,1)/x(i,1), . . . ,N(i,k)/x(i,k)]
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and some P ∈ G⊥ by Lemma 3.23.(2). Define Q := x0|ai〈N1, . . . ,Nk〉, then Q ∈ α I(N⊥1 , . . . ,N
⊥
n )

C holds

and so we have Q ∈ αE〈N1, . . . ,Nn〉 by the dual decomposability of α . On the other hand, define M :=
ai(~xi).P+∑β .z with β = α I \{ai(~xi)}, then we have M ∈ αE〈N1, . . . ,Nn〉

⊥ by the dual decomposability

again. By p = 〈Q←M〉, the assertion holds.

Next, we show

V (α I(P1, . . . ,Pn)) = {ε}∪
⋃

ai(~xi)∈αE

a
x0

i (~xi)V ([(P(i,1))
⊥/x(i,1), . . . ,(P(i,k))

⊥/x(i,k)]
⊥).

(⊆) Assume that p∈V (α I(P1, . . . ,Pn)) holds. If p= ε holds then the assertion obviously holds, so let

p be non-empty. By definition, we have p = 〈N← P〉 with N ∈ α I(P1, . . . ,Pn) and P ∈ α I(P1, . . . ,Pn)
⊥.

By the dual decomposability of α , N = ∑a(~ya).Pa holds and Pai
∈ [P⊥(i,1)/x(i,1), . . . ,P

⊥
(i,k)/x(i,k)]

⊥ holds

for any ai(~xi) ∈ αE . We have the following equation (∗)

α I(P1, . . . ,Pn)
⊥ = (

⋃

ai(~xi)∈α I

ai〈P
⊥
(i,1), . . . ,P

⊥
(i,k)〉)

⊥⊥ = (α⊥)
E〈P⊥1 , . . . ,P

⊥
n 〉= (α⊥)

I(P1, . . . ,Pn)
C∪{z}

by the dual decomposability of α and Lemma 3.23.(1), hence P = x0|ai〈N1, . . . ,Nk〉 holds for some

ai(~xi)∈ αE and N j ∈P⊥(i, j) holds for any j. Therefore, p∈ a
x0

i (~xi)V ([(P(i,1))
⊥/x(i,1), . . . ,(P(i,k))

⊥/x(i,k)]
⊥)

holds by the definition of interaction sequences.

(⊇) It suffices to consider the case of non-empty sequences. Assume that

p ∈
⋃

ai(~xi)∈αE

a
x0

i (~xi)V ([(P(i,1))
⊥/x(i,1), . . . ,(P(i,k))

⊥/x(i,k)]
⊥)

holds and put G := [(P(i,1))
⊥/x(i,1), . . . ,(P(i,k))

⊥/x(i,k)]. By definition, there are P ∈G⊥ and

[H] = [N1/x(i,1), . . . ,Nk/x(i,k)] ∈G

such that p = a
x0

i (~xi)〈P← [H]〉 and ai(~xi) ∈ αE hold. Define N := ai(~xi).P +∑β .z with β = αE \
{ai(~xi)} and Q := x0|ai〈N1, . . . ,Nk〉. By the dual decomposability of α , we have N ∈ α I(P1, . . . ,Pn).
Moreover, by Q ∈ (α⊥)

I(P1, . . . ,Pn)
C, we have Q ∈ α I(P1, . . . ,Pn)

⊥ by the equation (∗) in the previous

case. Therefore, we have p ∈V (α I(P1, . . . ,Pn)) because p = 〈N← Q〉 holds.

(2.) Assume that α does not satisfy the harmony condition. We suppose that visitable paths of α is

dually decomposable, and deduce a contradiction. If there is a negative action ai(xi) ∈ α I \αE , consider

a path

p = x0|ai〈~xi〉p
′ ∈

⋃

a j(~x j)∈α I

x0|a j〈~x j〉(V (x( j,1),N( j,1))� · · ·�V (x( j,k),N( j,k))).

We have p ∈V (αE〈N1, . . . ,Nn〉), so p = 〈Q←M〉 holds for some Q ∈ αE〈N1, . . . ,Nn〉. The c-design Q

is of the form x0|ai〈N(i,1), . . .N(i,m)〉 with ai(xi) ∈ α I \αE because p is a path of Q, hence one can find

N ∈ αE〈N1, . . . ,Nn〉
⊥ = (

⋃

a j(~x j)∈αE

a j〈N( j,1), . . . ,N( j,k)〉)
⊥

such that Q⊥N does not hold. Contradiction.

If there is a negative action ai(xi) ∈ αE \α I , consider a path

p = a
x0

i (~xi)p′ ∈
⋃

a j(~x j)∈αE

a
x0

j (~x j)V ([(P( j,1))
⊥/x( j,1), . . . ,(P( j,k))

⊥/x( j,k)]
⊥).
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We have p ∈ V (α I(P1, . . . ,Pn)), so p = 〈M ← Q〉 holds for some Q ∈ α I(P1, . . . ,Pn)
⊥. The dual p̃ =

〈Q←M〉 is a path of Q, hence Q is of the form x0|ai〈N(i,1), . . .N(i,m)〉 with ai(xi) ∈ αE \α I . Therefore,

one can find

N ∈ α I(P1, . . . ,Pn)
⊥⊥ =

⋂

a j(~x j)∈α I

a j〈P
⊥
( j,1), . . . ,P

⊥
( j,k)〉

⊥

such that Q⊥N does not hold. Contradiction.

Our two characterisations of the harmony condition are obtained by Propositions 3.4 and 3.24.

Corollary 3.25 (Characterisation of Harmony). Let α be a connective. The following three assertions

are equivalent: (1) α satisfies the harmony condition, (2) α is dually decomposable and (3) visitable

paths of α is dually decomposable.

4 Concluding Remarks and Future Work

By means of Computational Ludics, we have first reformulated the inversion principle and the recovery

principle into the harmony condition. Then, we have shown that the harmony condition is equivalent to

both the dual decomposability of connectives and the dual decomposability of visitable paths.

However, a thorough analysis of the fundamental features of proof-theoretic semantics by means of

the Computational Ludics tools is far from being definitely achieved. First, the proof-theoretic semantics

literature has considered other principles such as deducibility of identicals or the uniqueness (see [11])

to capture the necessary condition that a set of rules has to satisfy to define a meaningful and logical

connective. Examining how these principles can be reformulated in Computational Ludics would be a

crucial step for future works. Second, as shown in [3], in Computational Ludics it is possible to have

a logical connective (i.e. a connective satisfying the harmony condition) for the non-linear case, which

does not enjoy the internal completeness. To fully appreciate the relationship between the logicality and

the internal completeness, we will explore the non-linear case.

Concerning the philosophical scope of our work, let us remark that, as we mentioned in the in-

troduction, proof-theoretic semantics has been traditionally developed within the framework of natural

deduction. However, as noted in [19, § 1.2], natural deduction is somehow “biased towards intuitionistic

logic”. The possibility of associating each connective to a set of introduction rules and then justifying

a corresponding set of elimination rules by means of detour reduction works straightforwardly when

the intuitionistic rules are considered (on the contrary, the classical rule of reductio ad absurdum, or

of indirect proof, cannot be easily classified as an introduction rule nor as an elimination rules, and

this makes it difficult to define a suitable notion of detour for it; see [10]). A monistic point of view

is thus often associated with proof-theoretic semantics, according to which intuitionistic logic is the

only right and meaningful logic. The analysis of harmony that we have offered here aims to show that

when the notion of proof is formalised within a framework different from natural deduction, then other

connectives—different from the intuitionistic ones—can be justified. We took here Computational Lu-

dics as an alternative framework to natural deduction, and we showed that this choice allows for the

justification of linear connectives. In this sense, our work can eventually be seen as a contribution to the

idea that proof-theoretic semantics is compatible with a pluralistic rather than a monistic view of logic.

We also claim that our use of Computational Ludics as an alternative framework to natural deduction is

legitimised by the fact that it allows us to obtain a more perspicuous formulation of harmony than the

one that is usually proposed in the case of (intuitionistic) natural deduction.
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