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We prove 2-categorical conservativity for any {0,⊤}-free fragment of MALL over its correspond-

ing intuitionistic version: that is, that the universal map from a closed symmetric monoidal category

to the ∗-autonomous category that it freely generates is fully faithful, and similarly for other doc-

trines. This implies that linear logics and graphical calculi for ∗-autonomous categories can also be

interpreted canonically in closed symmetric monoidal categories.

In particular, every closed symmetric monoidal category can be fully embedded in a ∗-autonomous

category, preserving both tensor products and internal-homs. In fact, we prove this directly first with

a Yoneda-style embedding (an enhanced “Hyland envelope” that can be regarded as a polycategori-

cal form of Day convolution), and deduce 2-conservativity afterwards from Hyland–Schalk double

gluing and a technique of Lafont. The same is true for other fragments of ∗-autonomous structure,

such as linear distributivity, and the embedding can be enhanced to preserve any desired family of

nonempty limits and colimits.

1 Introduction

Of course, classical logic is not conservative over intuitionistic logic. The linear situation is subtler: it

was shown by [Sch91] that classical multiplicative-additive linear logic (MALL) is not conservative over

its intuitionistic variant (IMALL), but if either 0 or ⊸ is removed then conservativity obtains.

For categorical models it is natural to ask for a stronger 2-dimensional conservativity (a.k.a. “abstract

full completeness”), i.e. is the universal functor from a model of IMALL to a model of MALL (or some

fragments thereof) fully faithful? This would imply that the more expressive theory MALL can consis-

tently and unambiguously be used to reason about categorical models of the less expressive IMALL. In

particular, circuit diagrams, proof nets, and term calculi for ∗-autonomous categories (models of MLL),

such as those of [BCST96, CS97a, DP07, Tro92, Red91, Red93], could be used to reason about closed

symmetric monoidal categories (models of IMLL). This would be useful because the ∗-autonomous iso-

morphism A ⊸ B ∼= (A ⊗ B∗)∗1 enables a simple graphical representation of internal-homs using bent

strings, in contrast to the additional “clasps” and “bubbles” (as in [BS11]) that may appear naı̈vely to be

needed.

Note that to have some way to interpret ∗-autonomous graphical calculi in closed symmetric monoidal

categories, it would suffice to show that any category of the latter sort embeds fully-faithfully in some

category of the former sort. But in this case it could happen, in principle, that the interpretation depends

on the embedding chosen. Our 2-conservativity remedies this: because the universal map from a closed

symmetric monoidal category to a ∗-autonomous category is fully faithful, the interpretation obtained

from this universal embedding will necessarily coincide with that obtained from any other embedding.

1Note that the simpler A ⊸ B ∼= A∗ ⊗ B holds only in a compact closed category, and a symmetric monoidal category cannot

be fully embedded in a compact closed one unless it is traced [JSV96].
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Since our proof of 2-conservativity is constructive, it is also possible to see it as a sort of “normal-

ization” theorem: given any syntactic expression for an MLL-morphism between IMLL-types, we can

normalize it to an expression for an IMLL-morphism.

Lafont [Laf88] gave a general method for proving 2-conservativity between intuitionistic doctrines,

using Artin gluing (the semantic form of logical relations) and the Yoneda embedding. When work-

ing with “classical” theories such as MLL, gluing must be replaced by the double gluing construction

of [HS03, Has99], but (contrary to claims in op. cit.) the ordinary Yoneda embedding is also insufficient

in this case. (Double gluing involves logical relations on both objects and their duals, but the Yoneda

embedding carries no information about duals; thus the relevant functor to the gluing construction fails

to preserve internal-homs. See Remark 10.7.)

An appropriate modified Yoneda lemma uses the envelope of [Hyl02], which combines a sort of

“presheaf” on a polycategory with a Chu construction. It can also be thought of as an enhancement of

Isbell duality [Isb66], which uses the hom-functor C (−,−) as a canonical dualizing object ⊥ between

presheaf and copresheaf categories for which all representables are reflexive (i.e. A ∼= (A ⊸ ⊥) ⊸ ⊥),

to a Chu situation where the dualizing object lives in the same category as the objects being dualized.

We modify Hyland’s envelope so that the embedding preserves any desired tensor and cotensor prod-

ucts and nonempty limits and colimits, by adapting the standard trick [FK72, Kel82] for making Yoneda

embeddings preserve colimits. (The limits and colimits must be nonempty, because only nonempty limits

and colimits in closed symmetric monoidal categories are polycategorical.) This yields a Yoneda-type

embedding for polycategories, including closed symmetric monoidal categories. Combining it with dou-

ble gluing and Lafont’s method, we obtain 2-conservativity for any fragments of IMALL and MALL

lacking 0 and ⊤, and other pairs of theories such as MALL and its negation-free fragment (correspond-

ing to linearly distributive categories; see [BCST96]). Thus, ∗-autonomous calculi can be used for closed

symmetric monoidal categories, giving a new perspective on why the same “Kelly-MacLane graphs” (and

enhanced versions incorporating units) appear in coherence for closed symmetric monoidal categories

and for ∗-autonomous categories [KM71, Tri94, Blu91, Blu93, Hug12].

In particular, we obtain a semantic proof of the conservativity of multiplicative linear logic over its

intuitionistic variant, similar to the results of of [Sch91]. Our methods are both more and less powerful

than the syntactic ones of [Sch91]. On one hand, in addition to yielding a 2-categorical statement, our

notion of full-faithfulness is polycategorical rather than multicategorical: syntactically this means that

if any MLL sequent Γ ⊢ ∆ between IMLL types is derivable in MLL, then it is also derivable in IMLL

— and therefore ∆ must consist of only one type. By contrast, the conservativity of [Sch91] is only

multicategorical: the fact that ∆ contains only one type must be assumed at the outset.

On the other hand, sometimes multicategorical conservativity can hold while polycategorical conser-

vativity fails. In particular, combining our results with those of [Sch91], we see that this is the case when

a terminal object ⊤ (but not an initial object 0) is included in MLL and IMLL. We do not know whether

our semantic methods can be adapted to such cases.

2 Adding Duals to Polycategories

To use Lafont’s technique, we require a fully faithful Yoneda-type embedding of a closed symmetric

monoidal category into an ∗-autonomous category. We will construct this by using polycategories.

A symmetric2 polycategory [Sza75] semantically represents the judgmental structure of classical

linear logic, with hom-sets P(Γ;∆) where Γ and ∆ are lists of objects, and compositions such as

2All our multi- and polycategories will be symmetric, so we henceforth drop the adjective.
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P(Γ,A;∆)×P(Σ;Π,A) → P(Γ,Σ;∆,Π). A multicategory can be defined as a polycategory that

is co-unary, i.e. all codomains have one object. In particular, a closed symmetric monoidal category

(C ,⊗,1,⊸) can be regarded as a multicategory that is representable and closed, meaning there are

objects with universal properties:

C (Γ;C)∼= C (Γ,1;C) C (Γ,A,B;C)∼= C (Γ,A ⊗ B;C) C (Γ,A;B)∼= C (Γ;A ⊸ B).

Similarly, a ∗-autonomous category E can be regarded as a representable3 polycategory with duals, i.e.

having objects with universal properties:

E (Γ,A,B;∆)∼= E (Γ,A ⊗ B;∆) E (Γ;∆,A,B)∼= E (Γ;∆,A`B)

E (Γ;∆)∼= E (Γ,1;∆) E (Γ;∆)∼= E (Γ;∆,⊥) E (Γ,A;∆)∼= E (Γ;∆,A∗)

A ∗-polycategory [Hyl02] is a polycategory with specified strictly involutive duals (A∗∗ = A). In partic-

ular, a representable ∗-polycategory is ∗-autonomous.

The forgetful functor from ∗-polycategories to polycategories has a left adjoint P 7→ ˚P . The

objects of ˚P consist of two copies of the objects of P , denoted A and A respectively. The morphisms

are determined by saying that

˚P(Γ,Π;∆,Σ) = P(Γ,Σ;∆,Π).

Composition is inherited from P , perhaps in the other order. For instance, if f ∈ ˚P(A,B;C,D) =
P(A,D;C,B) and g ∈ ˚P(C,X ;B,Y ) = P(C,B; Y,X) then g◦˚P

C f = g◦P
C f and f ◦˚P

B∗ g = g◦P
B f .

Thus P embeds fully-faithfully in ˚P .

Polycategory functors preserve duals, so if P has duals the map P → ˚P is essentially surjective,

hence an equivalence. Thus any ∗-autonomous category is equivalent to a representable ∗-polycategory.4

Any tensor product A ⊗B in P is also one in ˚P , while (A ⊗ B) is a cotensor product A`B in ˚P .

The situation for cotensor products A`B is dual, while that for units and counits is similar. However,

even if P has all tensor and/or cotensor products, ˚P will not in general have A∗ ⊗ B or A∗`B.

If C is a multicategory regarded as a co-unary polycategory, then ˚C (Γ,Π∗;∆,Σ∗) is nonempty just

when |∆∪Π| = 1. (This left adjoint to the forgetful functor from ∗-polycategories to multicategories

appears in [DCH21].) If C is also closed, then A ⊸ B is a cotensor product A∗`B in ˚C , for:

˚C (Γ,Π;∆,Σ,A ⊸ B)∼= C (Γ,Σ;Π,∆,A ⊸ B)

˚C (Γ,Π;∆,Σ,A,B)∼= C (Γ,Σ,A;Π,∆,B)

and both right-hand sides are nonempty only if Π = ∆ = /0, in which case they are naturally isomorphic

by the universal property of A ⊸ B in C . Let Umulti denote the forgetful functor from polycategories to

multicategories; then we have shown:

Theorem 2.1. If C is closed symmetric monoidal, there is a ∗-polycategory ˚C and a fully faithful

functor C → Umulti(˚C ) that preserves tensor products (including the unit) and takes internal-homs

A ⊸ B to cotensor products A`B.

Therefore, to embed C in a ∗-autonomous category preserving both tensor products and internal-

homs, it will suffice to embed the ∗-polycategory ˚C in a ∗-autonomous category preserving those

tensor and cotensor products that exist.

3Note that a representable multicategory is not representable as a co-unary polycategory.
4This was shown by [CHS06] using a right adjoint instead of our left adjoint. In fact ∗-polycategories are both 2-monadic

and 2-comonadic over the 2-category of polycategories, functors, and natural isomorphisms, and the 2-monad and 2-comonad

are pseudo-idempotent [KL97].
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3 Modules

Let P be a polycategory. Following [Hyl02, §5], a P-module is a family of sets U (Γ;∆) with symmet-

ric group actions and left and right actions by P

P(Π;Σ,A)×U (A,Γ;∆)→ U (Π,Γ;Σ,∆) U (Γ;∆,A)×P(A,Π;Σ)→ U (Γ,Π;∆,Σ).

satisfying the same associativity and unit laws as the composition in a polycategory.

Examples 3.1.

(i) The hom-sets P(Γ;∆) form a tautological P-module, denoted P .

(ii) A shifted module U [Π;Σ] is defined by U [Π;Σ](Γ;∆) = U (Γ,Π;∆,Σ).

(iii) For A ∈ P , we have the representable modules5よA = P[ ;A] and A よ= P[A; ].

Theorem 3.2 ([Hyl02, §5.2]). The category ModP of P-modules is closed symmetric monoidal and

complete and cocomplete.

Proof. Let F⊗Umulti˚P be the free symmetric strict monoidal category on the underlying multicategory

of ˚P . Its objects are finite lists of objects and P and their formal duals, but by symmetry each is

isomorphic to one of the form (Γ,∆) where Γ and ∆ consist of objects of P . A P-module U is then

equivalent to an ordinary presheaf on F⊗Umulti˚P defined by (Γ,∆) 7→ U (Γ;∆). But now since ModP

is a presheaf category on a symmetric monoidal domain, it is complete and cocomplete and inherits a

closed symmetric monoidal Day convolution [Day70] monoidal structure.

We will often consider ModP as a multicategory. In this case, a module morphism (U1, · · · ,Un)→
V consists of functions

U1(Γ1;∆1)×·· ·×Un(Γn;∆n)→ V (Γ1, . . . ,Γn;∆1, . . . ,∆n)

that commute with the symmetric group actions and the actions of P . The unit module I is defined by

I ( ; ) = 1 and all other sets empty, so a nullary morphism () → V is just an element of V ( ; ). And in

the internal-hom of modules, (U ⊸ V )(Γ;∆) is the set of module morphisms from U to V [Γ;∆].

We regard ModP as a polycategorical “presheaf category”, justified by Yoneda lemmas:

Theorem 3.3 (Polycategorical Yoneda lemmas). We have natural isomorphisms

ModP(よA;V )∼= V (A; ) ModP(A よ;V )∼= V ( ;A) (3.4)

ModP(Γ,よA;V )∼=ModP(Γ;V [A; ]) ModP(Γ,A よ;V )∼=ModP(Γ;V [ ;A]) (3.5)

(よA ⊸ V )∼= V [A; ] (A よ⊸ V )∼= V [ ;A] (3.6)

Proof. This follows formally from properties of Day convolution, but we can also give an explicit proof.

Since 1A ∈ P(A;A) =よA(A; ), any φ :よA → V induces φ(1A) ∈ V (A; ). Conversely, from x ∈ V (A; )
we define ψx :よA → V by:

(
f ∈よA(Γ;∆) = P(Γ;∆,A)

)
7→

(
x◦A f ∈ V (Γ;∆)

)
.

5The symbolよ is the hiragana kana for “yo”; its use for Yoneda embeddings was introduced in [JFS17].
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The associativity of the P-action on V ensures that this is a P-module morphism. Clearly ψx(1A) =
x◦A 1A = x, while on the other side we have

ψφ(1A)( f ) = φ(1A)◦A f = φ(1A ◦A f ) = φ( f ).

This, and a dual calculation, proves (3.4). For (3.6), we have

(よA ⊸ V )(Γ;∆) =ModP(よA,V [Γ;∆])∼= V [Γ;∆](A; ) = V (A,Γ;∆)∼= V [A; ](Γ;∆)

and dually. Finally, (3.5) follows from (3.6) and the universal property of ⊸.

Corollary 3.7. (よA ⊸ P)∼= A よand (A よ⊸ P)∼=よA.

In particular, both kinds of representable module are “reflexive”: よA
∼= ((よA ⊸ P) ⊸ P) and

A よ∼= ((A よ⊸ P)⊸ P).

Corollary 3.8. There are full embeddings of multicategories

よ : Umulti(P)→ModP and よ: Umulti(P
op)→ModP .

Proof. From Theorem 3.3, we have

ModP(よA1
, . . . ,よAn

;よB)∼=よB(A1, . . . ,An; ) = P(A1, . . . ,An;B)

ModP(A1
よ, . . . ,An

よ;B よ)∼= B よ( ;A1, . . . ,An) = P(B;A1, . . . ,An).

Functoriality is easy to check.

4 The Polycategorical Chu Construction

Let E be a multicategory; a presheaf k on E can be defined equivalently as either:

(i) A module (as in §3) over E qua co-unary polycategory, whose only nonempty values are U (Γ; ).

(ii) An ordinary presheaf on the free symmetric strict monoidal category F⊗E generated by E .

(iii) An extension of E to a co-subunary polycategory (i.e. all morphisms have codomain arity 0 or 1).

(iv) A structured family of sets as in [Shu20, §2]; here we consider only set-valued presheaves.

If k is a module, we sometimes write φ ∈ k(Γ) as φ : Γ → k. This is not very abusive, since by Corol-

lary 3.8 the set k(Γ) is isomorphic to ModE (よΓ;k), whereよA1,...,An
= (よA1

, . . . ,よAn
).

The following multicategorical Chu construction first appeared, to my knowledge, in [Shu20], al-

though [CKS03, Example 1.8(2)] contains a similar construction for bicategories. It explains the Chu

tensor product [Chu79] by a universal property.

Definition 4.1. The Chu construction Chu(E ,k) is the following ∗-polycategory:

• Its objects are triples A = (A+,A−,A) where A+ and A− are objects of E , and A ∈ E (A+,A−;k). We

have (A+,A−,A)∗ = (A−,A+,Aσ), where σ denotes the permutation action.

• Its morphisms f : (A1, . . . ,Am)→ (B1, . . . ,Bn) are families of morphisms in E :

f+j : (A+
1 , . . . ,A

+
m,B

−
1 , . . . , B̂

−
j , . . .B

−
n )−→ B+

j (1 ≤ j ≤ n)

f−i : (A+
1 , . . . , Â

+
i , . . .A

+
m,B

−
1 , . . . ,B

−
n )−→ A−

i (1 ≤ i ≤ m)

f : (A+
1 , . . . ,A

+
m,B

−
1 , . . . ,B

−
n )−→ k

(where hats indicate omitted entries) such that B j ◦B+
j

f+j = f and Ai ◦A−
i

f−i = f (modulo permuta-

tions). If m = n = 0, the only datum is f : ()→ k.
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• The identity of (A+,A−,A) is (1A+ ,1A− ,A); composition is induced from E .

Theorem 4.2. If E is representable and closed with pullbacks, and k =よk is a representable presheaf,

then Chu(E ,k) is a representable polycategory, hence a ∗-autonomous category, and coincides with the

classical Chu construction [Chu78, Chu79].

Proof. The usual formulas 1 = (1,k, ℓ) and A ⊗ B = (A+ ⊗ B+,P,ρ) can be verified to have the correct

universal properties, where P is the pullback

P A+
⊸ B−

B+
⊸ A− (A+ ⊗ B+)⊸ k.

y

In addition, the multicategorical Chu construction itself has a simple universal property, which gener-

alizes and strictifies that of [Pav97]. Let ∗Poly denote the category of ∗-polycategories, and Poly≤1 that

of co-subunary polycategories.

Theorem 4.3. Chu is right adjoint to the forgetful U∗
≤1 : ∗Poly→Poly≤1, and the adjunction is comonadic.

Proof. The counit U∗
≤1Chu(E )→ E extracts A+ from A, f+1 from a morphism f : (A1, . . . ,Am)→ B1, and

f from a morphism f : (A1, . . . ,An)→ (). The unit P → Chu(U∗
≤1(P)) sends an object A to (A,A∗,εA),

where εA ∈ P(A,A∗; ) is the duality counit, and a morphism f ∈ P(Γ;∆) to the family of all its co-

subunary duality images. The coalgebras for the induced comonad are co-subunary ∗-polycategories,

which by [Shu20, §7] are equivalent to ordinary ∗-polycategories.

5 Envelopes

Let P be a polycategory; we now describe Hyland’s Yoneda-type embedding of P .

Definition 5.1 ([Hyl02, §5]). The envelope of P is the Chu construction

EnvP = Chu(ModP ,P).

Thus, an object of EnvP is two modules U , V with a module map (U ,V ) → P . By Theo-

rem 4.2, EnvP is ∗-autonomous, and contains ModP as a symmetric monoidal full subcategory via U 7→
(U ,U ⊸ P,ev). Hence it also contains Umulti(P) as a full sub-multicategory via A 7→ (よA,A よ,γA),
where γA : (よA,A よ)→ P is composition in P . In fact, Hyland showed:

Theorem 5.2 ([Hyl02, §5]). The assignment A 7→ (よA,A よ,γA) extends to a full embedding of polycate-

gories P →֒ EnvP .

Proof. A morphism g : (γA1
, . . . ,γAm

)→ (γB1
, . . . ,γBn

) in EnvP is a compatible family:

g+j :(よA1
, . . . ,よAm

,B1
よ, . . . , B̂ j

よ, . . . ,Bn
よ)→よB j

g−i :(よA1
, . . . ,よ̂Ai

, . . . ,よAm
,B1

よ, . . . ,Bn
よ)→ Ai

よ

g : (よA1
, . . . ,よAm

,B1
よ, . . . ,Bn

よ)→ P.

By (3.5), each of these is equivalent to a morphism (A1, . . . ,Am)→ (B1, . . . ,Bn) in P , and the compatibil-

ity conditions say they all correspond to the same such morphism. Functoriality is straightforward.
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Thus, any polycategory P embeds fully-faithfully in a ∗-autonomous category, and indeed in a

Chu construction. An explicit way to extract a morphism in P from a morphism g : (γA1
, . . . ,γAm

) →
(γB1

, . . . ,γBn
) is to evaluate the component

よA1
(A1;)×·· ·×よAm(Am;)× B1

よ(;B1)×·· ·× Bn よ(;Bn)→ P(A1, . . . ,Am;B1, . . . ,Bn)

of g at the identities (1A1
, . . . ,1Am

,1B1
, . . . ,1Bn

).

Remark 5.3. If P is an ordinary category regarded as a unary co-unary polycategory, then the cate-

gories [Pop,Set] and [P,Set] are equivalent to the categories of modules whose only nonempty values

have the form U (A; ) and U ( ;A), respectively. The functor (−) ⊸ P restricts to Isbell conjugation

interchanging these two subcategories, and the Hyland envelope contains the Isbell envelope [Isb66].

6 Preserving Tensors and Cotensors

Hyland’s envelope does not preserve any tensor or cotensor products that exist in P , but we can modify

it to do so along the lines of [FK72] and [Kel82, §3.12].

Suppose P is equipped with a set J of tensor and cotensor products that exist (potentially including

the nullary cases of a unit and/or counit), which we call distinguished. Our intended example is P =
˚C from §2, with the tensor products and unit coming from C , and the cotensor products (A`B) =
(A ⊸ B).

Definition 6.1. A (P,J )-module is a module that respects the distinguished tensor and cotensor prod-

ucts. E.g. if (A ⊗ B)∈J , the induced maps such as U (Γ,A ⊗ B;∆)→U (Γ,A,B;∆) are isomorphisms.

Let Mod(P,J ) ⊆ModP consist of the (P,J )-modules. Of course, P is a (P,J )-module, as is

any shift of a (P,J )-module; thusよA,A よ∈Mod(P,J ).

Theorem 6.2. The embeddingよ : Umulti(P)→Mod(P,J ) preserves distinguished tensor products. Du-

ally, the embedding よ: Umulti(P
op) → Mod(P,J ) takes distinguished cotensor products (which are

tensor products in Pop) to tensor products.

Proof. Let U be a (P,J )-module and Γ a list of (P,J )-modules. Then by (3.5) and the assumption

on U we have natural bijections:

ModP(Γ,よA,よB ;U )∼=ModP(Γ ;U [A,B; ])∼=ModP(Γ ;U [A ⊗ B; ])∼=ModP(Γ,よA⊗B ;U ).

Thus,よA⊗B is a tensor productよA ⊗よB. The dual statement is similar.

Theorem 6.3. (i) Mod(P,J ) is a reflective subcategory of ModP .

(ii) If U ∈ModP and V ∈Mod(P,J ) then (U ⊸ V ) ∈Mod(P,J ).

(iii) Mod(P,J ) has a closed symmetric monoidal structure such that the reflector is strong monoidal

and the inclusion preserves internal-homs.

Proof. For a list of objects Γ, writeよΓ for the tensor product of all their representable modulesよA,

and similarly Γ よfor the tensor product (not a cotensor product! ModP has no cotensors) of their dual

representables A よ. In particular,よΓ ⊗ ∆ よis the ordinary representable presheaf at the object (Γ,∆) ∈
F⊗Umulti˚P , so by the ordinary Yoneda lemma, a morphismよΓ ⊗ ∆ よ→ U is the same as an element
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of U (Γ;∆). It follows that U respects a tensor product A ⊗ B if and only if every morphismよΓ,A,B ⊗

∆ よ→ U extends uniquely to a morphismよΓ,A⊗B ⊗ ∆ よ→ U :

よΓ,A,B ⊗ ∆ よ U

よΓ,A⊗B ⊗ ∆ よ

∃!

and similarly for cotensor products. Thus, Mod(P,J ) is a small-orthogonality class in ModP , so its

reflectivity follows from a standard “small object argument” iterative construction as in [AR94, 1.36–

1.38]. (Since ModP is locally finitely presentable and the objectsよΓ,A,B ⊗ ∆ よandよΓ,A⊗B ⊗ ∆ よare

finitely presentable, this construction requires only countably many steps and is fully constructive.)

This proves (i). Now by definition

(U ⊸ V )(Γ;∆) =ModP(U ,V [Γ;∆]),

so (ii) follows since V is a (P,J )-module. Finally, (iii) follows formally [Day72]; the tensor product

⊗J of Mod(P,J ) is the reflection of that of ModP .

Example 6.4. By the formula for U ⊗ V on p28 of [Hyl02], any elements u ∈ U (A; ) and v ∈ V (B; )
induce an element of (U ⊗ V )(A,B; ), hence of (U ⊗J V )(A ⊗ B; ) and thence (U ⊗J V )(C; ) for

any C → A ⊗ B in P . Thus we have a map

P(C,A ⊗ B)×U (A; )×V (B; )−→ (U ⊗J V )(C; )

showing that ⊗J is similar to Day convolution [Day70].

Definition 6.5. Given (P,J ), its envelope is the Chu construction

Env(P,J ) = Chu(Mod(P,J ),P).

Theorem 6.6. Env(P,J ) is ∗-autonomous, contains P as a full sub-polycategory, and the inclusion

preserves the distinguished tensor and cotensor products.

Proof. Since Mod(P,J ) is a full sub-multicategory of ModP , Env(P,J ) is a full sub-polycategory of

EnvP . Since it contains the image of P , which is a full sub-polycategory of EnvP by Theorem 5.2, the

inclusion P →֒ Env(P,J ) is also full.

Now the embedding of Mod(P,J ) in Env(P,J ), like that of any monoidal category in its Chu con-

struction, preserves tensor products. Since the embedding of Umulti(P) in Mod(P,J ) preserves distin-

guished tensor products by Theorem 6.2, so does the composite Umulti(P) →֒Mod(P,J ) →֒ Env(P,J ).

Dually, the composite embedding Umulti(P) →֒Mod
op

(P,J ) →֒ Env(P,J ) preserves distinguished coten-

sor products, and by Corollary 3.7 the two embeddings coincide.

Combining Theorems 2.1 and 6.6, we obtain our first new embedding theorem.

Theorem 6.7. Any closed symmetric monoidal category C can be fully embedded in a ∗-autonomous

category by a strong symmetric monoidal closed functor.

Proof. By Theorem 2.1, C embeds fully in ˚C preserving tensor products and taking A ⊸ B to A`B.

Let J consist of these tensor and cotensor products, and embed ˚C in the ∗-autonomous category

Env(˚C ,J ), which by Theorem 6.6 preserves these tensor and cotensor products.
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Remark 6.8. The use of ˚C is not strictly necessary: we have Mod˚C ≃ModC , and the preservation

of cotensors A`B can be expressed directly in terms of a C -module as a preservation of internal-homs,

U (Γ;∆,A ⊸ B)∼= U (Γ,A;∆,B). However, it is convenient to prove Theorem 6.6 by separate reduction

to Theorem 6.2 and its dual, which requires expressing internal-homs as cotensor products.

7 Preserving Limits and Colimits

By a limit in a polycategory P we mean a cone of unary morphisms such that

P(Γ;∆, limi Ai)→ limi P(Γ;∆,Ai)

is always an isomorphism. A colimit is a limit in Pop. Since limits of modules are pointwise,

よ(limi Ai)
∼= limi(よAi

) and (colimi Ai) よ
∼= limi(Ai

よ),

but in ModP or Mod(P,J ) we can say nothing aboutよ(colimi Ai) or (limi Ai) よ. Now let (P,J ) be as in

§6, and K a set of distinguished limit and colimit cones in P .

Remark 7.1. We have been ignoring size, but P should everywhere be a small polycategory, and K
should be a small set. (J is automatically small once P is.)

Definition 7.2. A (P,J ,K )-module is a (P,J )-module that in addition respects the distinguished

limits and colimits in K , i.e. the map

U (Γ;∆, limi Di)→ limi U (Γ;∆,Di)

is an isomorphism for all distinguished limit cones, and dually for colimits.

The tautological module P is a (P,J ,K )-module, as is any shift of a (P,J ,K )-module; hence

so areよA and A よ. Let Mod(P,J ,K ) ⊆ModP consist of the (P,J ,K )-modules.

Theorem 7.3.

(i) Mod(P,J ,K ) is a reflective subcategory of ModP .

(ii) If U ∈ModP and V ∈Mod(P,J ,K ) then (U ⊸ V ) ∈Mod(P,J ,K ).

(iii) Mod(P,J ,K ) has a closed symmetric monoidal structure such that the reflector is strong monoidal

and the inclusion preserves internal-homs.

(iv) The embeddingよ : Umulti(P) → Mod(P,J ,K ) preserves distinguished tensor products. Dually,

the embedding よ: Umulti(P
op) → Mod(P,J ,K ) takes distinguished cotensor products to tensor

products.

(v) The embeddingsよ and よpreserve distinguished limits and colimits.

Proof. Parts (i)–(iv) are essentially just like Theorems 5.2 and 6.3. To express respect for a limit as an

orthogonality property, we use colimits of modules as in the original [FK72]. Note that if the limits and

colimits in K are finite, then these colimits of modules are still finitely presentable, so that the iterative

reflection construction requires only countably many steps and is constructive.
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For (v), it remains to show thatよ preserves distinguished colimits and よpreserves distinguished

limits (i.e. takes them to colimits). To see this, let U be a (P,J ,K )-module; then we have

Mod(P,J ,K )(Γ,よ(colimi Ai);U )∼=Mod(P,J ,K )(Γ;U [colimi Ai ; ])

∼=Mod(P,J ,K )(Γ; limi U [Ai ; ])

∼= limiMod(P,J ,K )(Γ;U [Ai ; ])

∼= limiMod(P,J ,K )(Γ,よAi
;U )

∼=Mod(P,J ,K )(Γ,colimi(よAi
);U ),

using the assumption on U in the second step. The claim about よis dual.

Definition 7.4. Given (P,J ,K ), its envelope is the Chu construction

Env(P,J ,K ) = Chu(Mod(P,J ,K ),P).

Theorem 7.5. Env(P,J ,K ) is a complete and cocomplete ∗-autonomous category, contains P as a full

sub-polycategory, and the inclusion preserves the distinguished tensor and cotensor products and the

distinguished limits and colimits.

Proof. Just like Theorem 6.6 except for the final claim, which follows from the formulas for limits and

colimits in a Chu construction and Theorem 7.3(v):

limi(A
+
i ,A

−
i ,ei) = (limi A+

i ,colimi A−
i , )

colimi(A
+
i ,A

−
i ,ei) = (colimi A+

i , limi A−
i , )

We want to combine this with Theorem 2.1 as before, but there is a complication. For any limit cone

in a closed symmetric monoidal category C , we might expect

¿ ˚C (Γ,Π;∆,Σ, limi Ai) = C (Γ,Σ;∆,Π, limi Ai)
∼= limi C (Γ,Σ;∆,Π,Ai)

= limi ˚C (Γ,Π;∆,Σ,Ai) ?

yielding a limit in ˚C . However, the isomorphism in the second line is only valid if ∆ = Π = /0, whereas

to have a limit in ˚C the composite isomorphism must hold for all ∆ and Π. Of course, if ∆ ∪ Π

is nonempty, then ˚C (Γ,Π;∆,Σ, limi Ai) is empty, as is each ˚C (Γ,Π;∆,Σ,Ai) — but the latter only

implies that their limit is empty if the diagram is nonempty! And indeed, a terminal object in C need

not be terminal in ˚C : the latter requires ˚C (Γ,Π;∆,Σ,1) = 1 always, but the former only ensures this

when Π = ∆ = /0. Similar considerations apply for colimits, so the best enhancement of Theorem 6.7 we

can manage is:

Theorem 7.6. Any closed symmetric monoidal category C can be fully embedded in a ∗-autonomous

category by a strong symmetric monoidal closed functor, which preserves any chosen family of nonempty

limits and colimits that exist in C .

With other choices of (P,J ,K ), we can embed other kinds of structures into ∗-autonomous cate-

gories as well. For instance:

• Any linearly distributive category can be fully embedded in a ∗-autonomous category, preserving

tensors, cotensors, and any set of colimits that are preserved in each variable by ⊗ and limits that

are preserved in each variable by `.
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• Any ordinary category can be fully embedded in a ∗-autonomous category preserving any set of

nonempty limits and colimits. (By Remark 5.3, this is closely related to the Isbell envelope.)

Remark 7.7. In the special case when C is cartesian closed, of course the terminal object 1 is also the

monoidal unit. Since the embedding C →֒Env(˚C ,J ,K ) preserves the monoidal unit, the image of 1∈C
in Env(˚C ,J ,K ) is again the monoidal unit, but it will no longer be terminal. And if we include binary

products in K , then this embedding preserves both tensor products and binary cartesian products, which

coincide in C ; hence tensor products and binary cartesian products of objects in the image of C also

coincide in Env(˚C ,J ,K ). However, Env(˚C ,J ,K ) is not itself cartesian monoidal: tensor products and

cartesian products of objects not in the image of C need not coincide.

8 Conservativity

Since closed symmetric monoidal and ∗-autonomous categories model intuitionistic and classical linear

logic, respectively, Theorem 7.6 implies a (1-)conservativity result.

Theorem 8.1. Classical linear logic with (−)⊥,⊗,`,1,⊥,⊸,&,⊕ is conservative over intuitionistic

linear logic with ⊗,1,⊸,&,⊕ (but not 0,⊤).

Proof. Let MA
−
LL and IMA

−
LL denote the given fragments, and let T be a theory in IMA

−
LL. By

imposing an appropriate equivalence relation on proofs from T in IMA
−
LL and MA

−
LL respectively, we

obtain a closed symmetric monoidal category CT and a ∗-autonomous category DT , both with binary

products and coproducts, and each freely generated by a model of T .

By Theorem 7.6, CT embeds fully in EnvCT
preserving all the structure. Since EnvCT

is a ∗-auto-

nomous model of T , this embedding factors up to isomorphism through DT . Now any sequent in the

language of IMA
−
LL over T that is provable in MA

−
LL yields a morphism in DT between objects in the

image of CT . Hence such a morphism also exists in EnvCT
, and thus also in CT .

Similarly, we can show that MA
−
LL is conservative over any smaller fragment of IMA

−
LL, and that

full MALL is conservative over any of its fragments. (IMALL is not a fragment of MALL in this sense,

since its judgmental structure is different.)

Perhaps surprisingly, Theorem 8.1 is almost best possible. By [Sch91], classical linear logic with 0

and ⊸ is not conservative over intuitionistic linear logic with the same connectives: the sequent

C ⊸ ((0 ⊸ X)⊸ A), (C ⊸ B)⊸ 0 ⊢ A

is provable in the former but not the latter. Thus, not every closed symmetric monoidal category with

initial object embeds monoidally into a ∗-autonomous category preserving the initial object.

Conservativity of MA
−
LL over IMA

−
LL says we can use the former to reason about the latter without

changing the theorems that are provable. Semantically, this means that we can assume a closed symmetric

monoidal poset (with binary meets and joins) is ∗-autonomous (and hence use the syntax of classical

linear logic) without changing the inequalities between objects of the original poset.

To a certain extent, Theorem 7.6 allows us to similarly use syntaxes for ∗-autonomous categories

(e.g. term syntaxes for linear logic, or graphical calculi such as proof nets and circuit diagrams—see the

references cited in §1) to reason about a closed symmetric monoidal category C . For instance, since

C →֒ EnvC is faithful and isomorphism-reflecting, if two morphisms in C can be proven equal using

∗-autonomous syntax, they were already equal in C , and if a morphism in C can be proven invertible

using ∗-autonomous syntax, it was already invertible in C .
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Since C →֒EnvC is full, we can also construct morphisms in C in this way; but a priori the particular

morphism in C that we obtain might depend on the particular embedding of C into its envelope. And

while the envelope seems “canonical”, it is by no means the unique closed monoidal embedding of any

given C in a ∗-autonomous category (for instance, if C has a zero object, then C →֒ Chu(C ,0) suffices).

As noted in the introduction, the most sensible way to avoid this is to show that the universal functor

Φ : C → D from C to a ∗-autonomous category is fully faithful, which we call 2-conservativity. In this

case, since any fully faithful embedding of C in a ∗-autonomous category factors through the universal

one, all interpretations of ∗-autonomous syntax in C must coincide.

Theorem 7.6 implies that Φ is faithful and conservative, since C →֒ EnvC factors through it. We

cannot show full-faithfulness of Φ in the same way, but we can use a general technique introduced by

Lafont [Laf88] that combines Artin gluing along a restricted Yoneda embedding (a.k.a. a “Kripke logical

relation”), as generalized to the ∗-autonomous case by [Tan98, HS03, Has99] using double gluing.

9 Double Gluing

The name “double gluing” presumably refers to the appearance of two “logical relation” families, but

fortuitously it can also be expressed using double categories. Recall that a (strict) double category is a

category internal to Cat; by a poly double category we mean a category internal to Poly. For example,

any polycategory P induces a poly double category QP consisting of the following structure:

• The objects and the horizontal poly-arrows are those of P .

• The vertical arrows are the unary and co-unary morphisms of P . (Note that the vertical arrows in

any poly double category are only an ordinary category.)

• The 2-cells are “commutative squares” in P of the form

(A1, . . . ,Am) (B1, . . . ,Bn)

(C1, . . . ,Cm) (D1, . . . ,Dn)

f

umu1 · · · vnv1 · · ·

g

i.e. the assertion that g◦ (u1, . . . ,um) = (v1, . . . ,vn)◦ f .

Now since the functor Chu is a right adjoint, it preserves internal categories. Thus any multicategory

E with a presheaf k has a double Chu construction [Shu20]

Chu(E ,k) := Chu(Q(E ,k)).

This is a poly double category described as follows.

• Its objects and horizontal poly-arrows are those of Chu(E ,k).

• A vertical arrow u : A → B is a pair (u+ : A+ → B+,u− : A− → B−) such that B◦ (u+,u−) = A.

• A 2-cell

(A1, . . . ,Am) (B1, . . . ,Bn)

(C1, . . . ,Cm) (D1, . . . ,Dn)

f

umu1 · · · ⇓µ vnv1 · · ·

g
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consists of a family of commuting squares in E :

(A+
1 , . . . ,A

+
m ,B

−
1 , . . . , B̂

−
j , . . .B

−
n ) B+

j

(C+
1 , . . . ,C+

m ,D−
1 , . . . , D̂

−
j , . . .D

−
n ) D+

j

f+j

···(u+1 ,...,u+m ,v−1 ,...,v̂−j ,...,v
−
n )··· v+j

g+j

(A+
1 , . . . , Â

+
i , . . .A

+
m ,B

−
1 , . . . ,B

−
n ) A−

i

(C+
1 , . . . ,Ĉ+

i , . . .C+
m ,D−

1 , . . . ,D
−
n ) C−

i

f−i

···(u+1 ,...,û+i ,...u+m ,v−1 ,...,v−n )··· u−i

g−i

(A+
1 , . . . ,A

+
m ,B

−
1 , , . . .B

−
n ) ⊥⊥

(C+
1 , . . . ,C+

m ,D−
1 , , . . .D

−
n ) ⊥⊥

f

···(u+1 ,...,u+m ,v−1 ,...,v−n )···

g

(the last follows from the others unless m = n = 0, when it is the only condition).

Now let D be a polycategory, and Λ : D → Chu(E ,k) a functor, whose action on objects we write

as Λ(A) = (L(A),K(A),λA). On underlying 1-categories, L and K are functors D → E and D → E op

respectively.

Example 9.1. If D and E are representable multicategories and k= 1 is terminal, then Λ reduces to the

input data of [HS03, §4.2.1]. For applying Λ to the universal morphism (A,B)→ A ⊗ B yields

m : L(A)⊗ L(B)→ L(A ⊗ B) k : L(A)⊗ K(A ⊗ B)→ K(B) k′ : L(B)⊗ K(A ⊗ B)→ K(A)

of which k and k′ determine each other by symmetries. Applying Λ to units and triple tensors makes m

a lax symmetric monoidal structure on L and k a “contraction” as in [HS03, §4.2.1], and this determines

Λ.

Example 9.2. By Theorem 4.3, if D is a ∗-polycategory and ⊥⊥ = 1, a ∗-polycategory functor Λ : D →
Chu(E ,1) is uniquely determined by L : Umulti(D) → E , with K(A) := L(A∗). If D and E are repre-

sentable (hence D is ∗-autonomous), L is just a lax symmetric monoidal functor; thus Λ reduces to the

input data of [HS03, §4.3.1]. Up to isomorphism, the same holds when D is ∗-autonomous without strict

duals.

Definition 9.3. Let ψ : k1 → k2 be presheaf map and Λ : D → Chu(E ,k2). The double gluing Gl(Λ,ψ)
is a comma object in the 2-category of poly double categories and vertical transformations:

Gl(Λ,ψ) Chu(E ,k1)

D Chu(E ,k2).

⇓ ψ

Λ

Here D and Chu(E ,k1) are regarded as vertically discrete poly double categories. Hence so is

Gl(Λ,ψ), i.e. it is a plain polycategory. Its objects consist of

• An object A1 ∈ D .

• An object (A+,A−,A) of Chu(E ,k1).

• A vertical morphism (A+,A−,ψ ◦ A) → (L(A1),K(A1),λA) in Chu(E ,k2), consisting of A+ →

L(A1) and A− → K(A1) in E such that the composites (A+,A−) → k1
ψ
−→ k2 and (A+,A−) →

(L(A1),K(A1))
λ
−→ k2 agree.
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Similarly, a morphism (A1, . . . ,Am)→ (B1, . . . ,Bn) in Gl(Λ,ψ) consists of

• A morphism f : (A1
1, . . . ,A

1
m)→ (B1

1, . . . ,B
1
n) in D .

• A morphism ( f+j , f−i , f ) in Chu(E ,k1).

• The following squares commute:

( A+
1 , . . . , A+

m , B−
1 , . . . , B̂−

j , . . . B−
n ) B+

j

(L(A1
1), . . . ,L(A

1
m),K(B1

1), . . . , K̂(B1
j), . . .K(B1

n)) L(B1
j)

f+j

· · ·· · ·

Λ( f )+j

(9.4)

( A+
1 , . . . , Â+

i , . . . A+
m , B−

1 , . . . , B−
n ) A−

i

(L(A1
1), . . . , L̂(A

1
i ), . . .L(A

1
m),K(B1

1), . . . ,K(B1
n)) K(A1

i )

f−i

· · · · · ·

Λ( f )−i

(9.5)

( A+
1 , . . . , A+

m , B−
1 , . . . , B−

n ) k1

(L(A1
1), . . . ,L(A

1
m),K(B1

1), . . . ,K(B1
n)) k2

f

· · ·· · · ψ

Λ( f )

(9.6)

(the last follows from the others unless m = n = 0, when it is the only condition).

Theorem 9.7. Suppose E is representable and closed with pullbacks, and k1 and k2 are either both

terminal (k1 = k2 = 1) or both representable (k1 =よk1
and k2 =よk2

). Then tensor products, cotensor

products, duals, and internal-homs exist in Gl(Λ,ψ) insofar as they do for the relevant underlying objects

in D . In particular, if D is ∗-autonomous, so is Gl(Λ,ψ).

Proof. When k1 and k2 are terminal, we use the formulas from [HS03, §4.2]. When they are repre-

sentable, we modify the formulas slightly; for tensor products we have

(A ⊗ B)+ = A+ ⊗ B+ → L(A1)⊗ L(B1)→ L(A1 ⊗ B1)

and the limit of the following diagram (drawn in the middle):

(A+⊗B+)⊸k1

A+
⊸B− (A⊗B)− B+

⊸A−

A+
⊸K(B1) L(A1)⊸K(B1) K(A1⊗B1) L(B1)⊸K(A1) B+

⊸K(A1).

The unit consists of 1
+ = 1 → L(1) and the pullback

1
− k1

K(1) 1 ⊗ K(1) L(1)⊗ K(1) k2.

y

∼= λ
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The dual of (A1,A+,A−,A) is ((A1)∗,A−,A+,Aσ), and for the internal-hom we have

(A+⊗B−)⊸k1

A+
⊸B+ (A⊸B)+ B−

⊸A−

A+
⊸L(B1) L(A1)⊸L(B1) L(A1

⊸B1) K(B1)⊸K(A1) B−
⊸K(A1).

and

(A ⊸ B)− = A+ ⊗ B− → L(A1)⊗ K(B1)→ K(A1
⊸ B1).

We leave cotensor products to the reader.

Example 9.8. Double gluing is usually described only when k1 = k2 = 1, but our more general version

appears implicitly in at least one place. Specifically, consider Example 9.1 with L = C (1,−) and K =
C (−,J) for some J, as in [HS03, §4.2.2]. Then every object Λ(A) = (LA,KA) comes with a pairing LA×
KA = C (1,A)×C (A,J)→ C (1,J), which is respected by every morphism in the image of Λ; thus the

codomain of Λ lifts to Chu(Set,k2) where k2 = C (1,J). Now for any F ⊆ C (1,J) we can take ψ : k1 =
F →֒ C (1,J) = k2, and the resulting Gl(Λ,ψ) coincides (modulo a restriction to monomorphisms) with

the slack orthogonality category of the focused orthogonality on Gl(Λ,1) determined by F as in [HS03,

§5].

10 2-Conservativity

Let P be a polycategory with J as in §6, and let Φ : P →D be its universal functor to a ∗-autonomous

category. That is, Φ is a polycategory functor preserving the tensor and cotensor products in J (up to

isomorphism), and such that any polycategory functor P → Q that preserves J and where Q is ∗-

autonomous factors through Φ, uniquely up to unique isomorphism. This “up to isomorphism” version

is categorically “correct”, and seems necessary since the functor Ξ below does not preserve J strictly.

Theorem 10.1. The universal Φ : P → D from (P,J ) to a ∗-autonomous category is fully faithful.

Proof. Following Lafont’s technique, we will construct the (double) gluing of D along the restricted

(polycategorical) Yoneda embedding of Φ, and then lift Φ to a functor Ξ landing in this gluing category

that preserves J . By the universal property of D , it will follow that this gluing category has a section,

a “logical relations” functor that assigns in particular to each morphism in D a unique morphism in P
that maps onto it, showing full-faithfulness of Φ.

For any D-module U , we write U [Φ] for the P-module with U [Φ](Γ;∆) = U (Φ(Γ);Φ(∆)). This

defines a functor (−)[Φ] : ModD → ModP ; and if U respects the tensor and cotensor products of D ,

then U [Φ] is a (P,J )-module since Φ preserves J . Now we let Λ be the composite polycategory

functor

D
(よ, よ,γ)
−−−−→ EnvD = Chu(ModD ,D)

(−)[Φ]
−−−−→ Chu(ModP ,D [Φ]),

where (ModD ,D)→ (ModP ,D [Φ]) is induced by Φ. Thus on objects we have

Λ(R) = (L(R),K(R),λR) = (D [ ;R][Φ],D [R; ][Φ],γΦR). (10.2)
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Note that Λ lands in Chu(Mod(P,J ),D [Φ]). Now Φ also induces a map φ : P → D [Φ] in Mod(P,J ).

By Theorem 9.7, the double gluing category Gl(Λ,φ) is ∗-autonomous.

By the universal property of comma objects, to define a functor Ξ : P → Gl(Λ,φ) it suffices to give

the following diagram in poly double categories (most of which are vertically discrete):

P Env(P,J ) Chu(Mod(P,J ),P)

D Chu(Mod(P,J ),D [Φ])

(よ, よ,γ)

Φ ⇓ φ

Λ

The necessary 2-cell has componentsよA →よΦA[Φ] and A よ→ ΦA よ[Φ], which we take to be the action

of Φ on hom-sets. Thus Ξ(A) consists of ΦA ∈ D , (よA,A よ,γA) ∈ Chu(Mod(P,J ),P), and the maps

よA = P[ ;A]→ D [Φ][ ;A] = D [ ;ΦA][Φ] =よΦA[Φ] (10.3)

A よ= P[A; ]→ D [Φ][A; ] = D [ΦA; ][Φ] = ΦA よ[Φ] (10.4)

We claim that Ξ preserves the tensor and cotensor products in J . For the tensors, we use that Φ andよ

preserve them, and also need to calculate the limit

(よA⊗よB)⊸P

よA⊸B よ • よB⊸A よ

よA⊸K(ΦB) K(ΦA⊗ΦB) よB⊸K(ΦA).

Using (10.2) and (3.6), this becomes

P[A,B; ]

P[A,B; ] • P[A,B; ]

D [ΦB; ][Φ][A; ] D [ΦA⊗ΦB; ][Φ] D [ΦA; ][Φ][B; ]

D [Φ][A,B; ] D [Φ][A,B; ] D [Φ][A,B; ]

∼= ∼= ∼=

whose limit is P[A,B; ]∼= A⊗B よ. For a unit, we instead consider the pullback

• P

D [Φ1; ][Φ] D [Φ].

y

But the bottom map is an isomorphism, hence the pullback is isomorphic to P , which is isomorphic to

P[1; ] = 1 よ. Cotensors are dual.
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Now, since the composite P
Ξ
−→ Gl(Λ,P) → D is equal to Φ, we can extend Ξ by the universal

property of D to a functor Ξ′ : D → Gl(Λ,P).

Gl(Λ,P)

P D D .
Φ

Ξ

Ξ′

By the universal property of Gl(Λ,P), this means we have a diagram

P Env(P,J ) Chu(Mod(P,J ),P)

D Chu(Mod(P,J ),D [Φ])

Φ

(よ, よ,γ)

⇓µ φΞ′

Λ

where µΦ equals (10.3)–(10.4). This determines the components of µ on objects ΦA; its naturality on all

morphisms in D between such objects then entails multiple commuting squares like (9.4)–(9.6). Those

like (9.6) imply that the quadrilateral involving Ξ′ in the following diagram commutes:

P(A1, . . . ,Am;B1, . . . ,Bn) Mod(P,J )(よA1
, . . . ,よAm ,B1

よ, . . . ,Bn よ, . . . ;P)

D(ΦA1, . . . ,ΦAm;ΦB1, . . . ,ΦBn) Mod(P,J )(よA1
, . . . ,よAm ,B1

よ, . . . ,Bn よ;D [Φ])

Mod(P,J )(D [Φ][;A1], . . . ,D [Φ][;Am],D [Φ][B1; ], . . . ,D [Φ][Bn; ];D [Φ])

Φ

∼=

Ξ′

∼=

Now the two horizontal arrows are isomorphisms by Theorem 3.3. Thus, by the 2-out-of-6 property for

isomorphisms, the left-hand vertical map Φ is also an isomorphism; i.e. Φ is fully faithful.

Remark 10.5. Most of the proof would work using the traditional Gl(Λ,1) instead of our Gl(Λ,φ). When

showing that Ξ preserves J , we would omit (よA ⊗よB)⊸ P from the diagram, changing the limit to

the kernel-pair of P[A,B; ] → D [Φ][A,B; ]; but since Theorem 7.6 implies Φ is faithful, this morphism

is monic, so its kernel pair is just its domain. Also, the squares like (9.6) would carry no information;

but we could use (9.4)–(9.5) instead as long as J includes a unit or counit, so that we can ignore the

m = n = 0 case. However, our proof seems cleaner and easier to to generalize.

Corollary 10.6. Let C be a closed symmetric monoidal category and Φ : C → D its universal functor

to a ∗-autonomous one. Then Φ is fully faithful.

Proof. A closed symmetric monoidal functor from C to a ∗-autonomous category factors essentially

uniquely through (˚C ,J ). Thus Φ′ : ˚C →D is the universal functor from (˚C ,J ) to a ∗-autonomous

category; now apply Theorem 10.1.

To emphasize how this proof deals with the internal-homs, we check explicitly that the induced
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Ξ : C → Gl(Λ,φ) preserves them. We must inspect the limit

(よA⊗B よ)⊸˚C

よA⊸よB • B よ⊸A よ

よA⊸D [;B][Φ] D [;A⊸B][Φ] B よ⊸D [A; ][Φ].

which by (10.2) and (3.6) becomes

˚C [A;B]

˚C [A;B] • ˚C [A;B]

D [;ΦB][Φ][A; ] D [;Φ(A⊸B)][Φ] D [ΦA; ][Φ][;B]

D [Φ][A;B] D [Φ][A;B] D [Φ][A;B],

∼= ∼= ∼=

whose limit is ˚C [A;B]∼= ˚C [;A⊸B] =よA⊸B. We also need to check that

よA ⊗ B よ→ D [;ΦA ⊸ ΦB][Φ] is isomorphic to A⊸B よ→ D [;Φ(A ⊸ B)][Φ].

But by Theorem 6.2, we have A⊸B よ= A`B よ∼= A よ⊗ B よ∼=よA ⊗ B よ. This is the crucial point: the

polycategorical dual Yoneda embedding よmaps internal-homs to tensor products.

Remark 10.7. It is claimed in [HS03, Has99] that Corollary 10.6 can be proven using double gluing into

an ordinary presheaf category, but it seems that this does not work. An ordinary Yoneda embedding

has no dual like よ, so the “dual parts” of Ξ have to be chosen “tautologically”; but then Ξ fails to

preserve the internal-homs. In the notation of [Has99, §4.5], (PA ⊸ PB)t(X) is the set of morphisms

IX → IA ⊗ (IB)⊥ in C1 that factor as (I f ⊗ g) ◦ Ih for some h ∈ C0(X ,Y ⊗ Z), f ∈ C0(Y,A), and

g ∈C1(IZ,(IB)
⊥), whereas (PA⊸B)t(X) is the set of all morphisms in C1(IX ,IA ⊗ (IB)⊥). There seems

no reason why every such morphism should factor in that way.

Theorem 10.1 also specializes to other polycategorical structures. For instance, we have the following

result (shown in [BCST96] by cut-elimination).

Corollary 10.8. The universal functor from any linearly distributive category to a ∗-autonomous one is

fully faithful.

Proof. By [CS97b], a linearly distributive category can be regarded as a representable polycategory. Now

apply Theorem 10.1 with all tensors and cotensors in J .

We can also include a family K of limits and colimits by double gluing with Mod(P,J ,K ) instead.

The formulas in [HS03, Proposition 31] for products and coproducts in double gluing categories still

work, as do similar ones for other limits and colimits, and the functor Ξ preserves them. Of course, as in

§7, only nonempty limits and colimits in a multicategory C induce polycategorical ones in ˚C .
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