
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 325–331, doi:10.4204/EPTCS.74.26

Saying Hello World with UML-RSDS – A Solution to the 2011
Instructive Case

K. Lano, S. Kolahdouz-Rahimi
Dept. of Informatics, King’s College London, Strand, London, UK∗

kevin.lano@kcl.ac.uk

In this paper we apply the UML-RSDS notation and tools to the “Hello World” case studies and
explain the underlying development process for this model transformation approach.

1 Specification of model transformations

In UML-RSDS a transformation specification is written in first-order logic and OCL, and consists of the
following predicates:

1. A global specification,Cons, of a model transformation, expresses in a platform-independent man-
ner the overall effect of the transformation, as a relation between the source and target models. It
is intended to hold true at termination of the transformation.

2. A predicateAsmexpresses the assumptions made about the source and target models at the start
of the transformation, for example, that the target model isempty and that the source model is
syntactically correct wrt the source language.

The specification is therefore independent of any specific model transformation implementation lan-
guage, and can be used as the basis for development in many such languages. By making explicit the
semantic assumptions on source and target models, the specification assists in the verification (formal or
informal) of model transformations.

Conscan often be written inconjunctive-implicative form[3], as a conjunction of constraints of the
form

∀s : S·SCond implies∃ t : T ·Post

whereS is a source language entity andT is a target language entity. This pattern is applicable to re-
expression transformations such as model migrations, and to abstraction and refinement transformations.

The patterns assist in the derivation of explicit PSM designs from the specification, consisting of
a sequence ofphases, which apply specific rules or operations to achieve the specification constraints.
Provided that the updates defined inPostdo not affect the data read inSCondor Post, and that the extent
of S is fixed throughout the transformation(∗), then a constraint of the above form can be implemented
by an iteration

for s : S do s.op()

whereop implements the constraint for a particularSobject.
This iteration constitutes a single phase in the design. Thepossible orderings of phases are deter-

mined by defining a partial order over the target language entities: T1 < T2 if T1 is used inConsto define

∗Research supported by the HoRTMoDA EPSRC project

http://dx.doi.org/10.4204/EPTCS.74.26

326 Hello World Case in UML-RSDS

a feature ofT2 (or a feature of a subclass ofT2). Any phase that createsT2 instances must therefore be
preceded by all phases that createT1 instances.

The restriction(∗) is termed thenon-interferencecondition.
The iterative phase activities derived from the constraints are also terminating and they establish the

truth of their corresponding constraint, by construction.The PSM design is derived from the constraints,
together with an executable Java implementation, using theUML-RSDS toolset [2]. The resulting ex-
ecutable is a stand-alone implementation of the transformation, operating upon simple text format files
defining input and output models.

2 Simple transformation tasks

Here we give the specifications and implementations of the simple transformation tasks in [1]. All of
these tasks satisfy the restrictions described above, so they can be specified and designed directly in
UML-RSDS.

2.1 Hello world transformation

This has the global specification (Conspredicate):

∃g : Greeting·g.text= “Hello” and
∃p : Person·g.whom= p and p.name= “World”

This predicate is coded in UML-RSDS as the only postcondition

Greeting→exists(g | g.text = ‘‘ Hello” &
Person→exists(p | g.whom = p & p.name = ‘‘ World”))

of a use case which represents the transformation. From thisan implementation is automatically gener-
ated in Java.

2.2 Graph properties

Figure 2 shows the basic graph metamodel in the UML-RSDS tools, and the generated design and Java
code of the specification.

We assume that the following constraintAsm0 of the source model holds:

∀g : Graph· g.edges.src ⊆ g.nodes and g.edges.trg ⊆ g.nodes

The queries are simple examples of abstraction transformations, and can be specified as follows:
The constraint

IntResult→exists(r | r.num = nodes→size())

on Graph expresses that for each graph there is a result object recording the number of nodes in the
graph. An operationop1() is generated to implement the constraint.

Likewise for the other queries:

IntResult→exists(r | r.num = edges→select(src = trg & trg 6= {})→size())

counts the number of looping edges in each graph, and is implemented by an operationop2().

K. Lano, S. Kolahdouz-Rahimi 327

IntResult→exists(r | r.num = g.edges→select(src = {} or trg = {})→size())

counts the number of dangling edges and is implemented by an iteration of an operationop3() on graphs.

IntResult→exists(r | r.num = (g.nodes − (g.edges.src ∪ g.edges.trg))→size())

counts the number of nodes that are not the source or target ofany edge.− denotes set subtraction and
∪ set union. This is implemented by an operationop4().

We extend the final query problem by defining an auxiliary entity which records the 3-cycles in the
graph (Figure 1).

GraphEdge

Node ThreeCycle

name : String elements

*

*

cycles*

11

1*
edges

nodes
*src 0..10..1

trg

* *

Figure 1: Extended graph metamodel

The specificationConsof this transformation then defines how unique elements ofThreeCycleare
derived from the graph, and returns the cardinality of this type in the end state of the transformation:

(C1) :
e1 : edges& e2 : edges& e3 : edges&
e1.trg = e2.src & e2.trg = e3.src & e3.trg = e1.src &
(e1.src∪e2.src∪e3.src)→size() = 3 ⇒

ThreeCycle→exists1(tc | tc.elements= (e1.src∪e2.src∪e3.src) & tc : cycles)

(C2) : IntResult→exists(r | r.num= cycles→size())

Both constraints are onGraph.
The order of nodes in a cycle is not distinguished byC1, if this was required thenelementsshould

be ordered (a sequence). Because ofAsm0, each three-cycle will consist of nodes in a single graph. The
unique existential quantifier∃1 specifies that there must exist exactly one object satisfying the quantified
properties, ie, duplicated cycles are not included incycles.

Each constraint is refined by a specific phase in the design. Theexists1 quantifier is implemented by
checking that there is no existingThreeCyclewith the required property, before creating such an element.

An alternative approach would be to evaluate the set of threecycles in a single expression:

edges→collect(e1,e2,e3 | {e1,e2,e3})→asSet()→select(s |
s→size() = 3 & s.src= s.trg)→size()

but we consider that the approach usingThreeCycleis more clear.

328 Hello World Case in UML-RSDS

2.3 Reverse edges

The global specificationConsfor this transformation is:

src= trg@pre& trg = src@pre

on Edge. The suffix @pre denotes the value of the expression at the start of the transformation. This is
the usual style of specification for update-in-place transformations.

2.4 Simple migration

The metamodels for this re-expression transformation are shown in Figure 3, together with extracts from
example input and output models (on the left and right hand sides, respectively).

We make the additional assumptionAsm1 that the target model is empty at the start of the transfor-
mation:

ModelElement2= {}

We can specify this transformation by three constraints, defined as the postconditions of a single use
case of the system:

(C1) : Node2→exists(n2 | n2.id2= id1 & n2.text= name)

(C2) : Edge2→exists(e2 | e2.id2= id1 & e2.text= “” &
e2.src2= Node2[src1.id1] and e2.trg2= Node2[trg1.id1])

C1 is a constraint onNode1, andC2 onEdge1. Node2[src1.id1] denotes the set ofNode2 objects with
primary keyid2 value in the setsrc1.id1.

(C3) : Graph2→exists(g2 | g2.id2= id1 &
g2.gcs= Node2[nodes.id1] ∪ Edge2[edges.id1])

C3 is a constraint onGraph1. A design can be automatically generated from these constraints, this
implements each constraint by a separate phase in a three-phase algorithm. The ordering of the phases
follows from the ordering of the entitiesNode2 < Edge2 < Graph2 in the target language, based upon
the dependencies between these entities in the specification constraints (Edge2 instances depend upon
Node2 instances, etc).

2.5 Delete nodes

The global specification of this update-in-place transformation can be written as:

edges→select(src.name= n1 or trg.name= n1)→isDeleted() &
nodes→select(name= n1)→isDeleted()

on Graph. The predicate also serves as the definition of an operationremove(s : String) of Graph that
implements the transformation. Since edges depend on nodes, edges are deleted before nodes (the reverse
to the ordering used in construction of a model).

K. Lano, S. Kolahdouz-Rahimi 329

2.6 Insert transitive edges

This can be considered as a simple example of a quality-improvement model transformation. Such
transformations are typically update-in-place transformations, and have an associated quality measure
Q : N on the models, used to show termination of the transformation. The transformation aims to reduce
Q to 0 in the target model. In this caseQ is the number of pairs of distinct non-dangling edgese1, e2 of
the source model withe1.trg = e2.src and with no existing edge frome1.src to e2.trg.

Under the assumptionAsm2 that there are not already any duplicate edges in the graph:

∀e1,e2 : Edge·e1.src= e2.src implies e1.trg 6= e2.trg

the specification of this transformation can be written as:

(Cons) :
e1 : edges@pre& e2 : edges@pre&
e1.trg = e2.src & e1.src 6= {} &
e1.trg 6= {} & e2.trg 6= {} ⇒

Edge→exists1(e3 | e3.src= e1.src & e3.trg = e2.trg & e3 : edges)

onGraph. This satisfies the non-interference condition (since the createde3 edges are distinct and are not
included in the sets of edges being iterated over), so permitting an implementation using fixed iterations.
If instead thetransitive closure R+ of R was required,Conswould useedgesinstead ofedges@pre, and
a more complex implementation strategy would be required, using repeated iteration until a fixed point
is reached [3].

3 Conclusion

We have shown that UML-RSDS can specify the case study transformations in a direct manner as high-
level specifications, from which designs and executable implementations can be automatically generated.
UML-RSDS has the advantage of using standard UML and OCL notations to specify transformations,
reducing the cost of learning a special-purpose transformation language. Our method also has the advan-
tage of making explicit all assumptions on models (eg,Asm0 above) and providing global specifications
(Cons, Asm) of transformations, independent of specific rules.

Further work includes linking UML-RSDS to Eclipse/EMF to enable the use of ecore metamodels
and import/export of Eclipse/EMF models.

References

[1] S. Mazanek,Hello World: an instructive case for the Transformation Tool Contest, in [5], 2011.

[2] K. Lano, S. Kolahdouz-Rahimi,Specification and Verification of Model Transformations using UML-RSDS,
IFM 2010.

[3] K. Lano, S. Kolahdouz-Rahimi,Model Transformation Design Patterns, ICSEA 2011.

[4] K. Lano, S. Kolahdouz-Rahimi,Model-Driven Development of Model Transformations, ICMT 2011.

[5] Van Gorp, Pieter, Mazanek, Steffen, and Rose, Louis,TTC 2011: Fifth Transformation Tool Contest, Zürich,
Switzerland, June 29-30 2011, Post-Proceedings, EPTCS, 2011.

330 Hello World Case in UML-RSDS

Appendix A: Transforming specific models

Source and target metamodels are defined using the visual class diagram editor of UML-RSDS (Figures 2 and 3).
Metamodels cannot contain multiple inheritance, and all non-leaf classes must be abstract. Metamodels can be
saved to a file by theSave datacommand.

Figure 2: Graph metamodel and queries in UML-RSDS

Source models can be defined in text files, which are then read by the executable implementation of the
transformation metaclass, in a textual form. For example, atest model of the simple graph metamodel can be
defined as follows:

g : Graph

n1 : Node

n1.name = "n1"

n1 : g.nodes

n2 : Node

n2.name = "n2"

n2 : g.nodes

e : Edge

n1 : e.src

n2 : e.trg

e : g.edges

This defines a single edge from the first to the second node. Alternative models can be defined in a similar way.
The UML-RSDS toolset is located athttp://www.dcs.kcl.ac.uk/staff/kcl/uml2web. UML-RSDS

can be executed by the commandjava UmlTool. The directoryoutput is used to store metamodels, input and
output models, and the generated Java code. The commandLoad dataloads a metamodel from a file (eg,mig2.txt
for the migration metamodel). The commandSynthesis Javagenerates the Java executable of a transformation,
this generated executable is theController.java file in the outputdirectory. This can be compiled and used
independently of the toolset.

K. Lano, S. Kolahdouz-Rahimi 331

Figure 3: Graph migration metamodels

	1 Specification of model transformations
	2 Simple transformation tasks
	2.1 Hello world transformation
	2.2 Graph properties
	2.3 Reverse edges
	2.4 Simple migration
	2.5 Delete nodes
	2.6 Insert transitive edges

	3 Conclusion

