Saying Hello World with Epsilon — A Solution to the
2011 Instructive Case

2

Louis M. Rose! Antonio Garcia-Dominguez James R. Williams'

Dimitrios S. Kolovos! Richard F. Paige!
Fiona A.C. Polack!

I Department of Computer Science, University of York, UK.
[louis, jw,dkolovos,paige, fiona]@cs.york.ac.uk

2 University of Cédiz, Department of Computer Languages and Systems
C/Chile 1, 11002, Cadiz, Spain

antonio.garciadominguez@uca.es

Epsilon is an extensible platform of integrated and task-specific languages for model management.
With solutions to the 2011 TTC Hello World case, this paper demonstrates some of the key features
of the Epsilon Object Language (an extension and reworking of OCL), which is at the core of Ep-
silon. In addition, the paper introduces several of the task-specific languages provided by Epsilon
including the Epsilon Generation Language (for model-to-text transformation), the Epsilon Valida-
tion Language (for model validation) and Epsilon Flock (for model migration).

1 Introduction

This paper presents a solution to the 2011 TTC Hello World case that uses Epsilon, an extensible platform
of integrated and task-specific languages for model transformation, validation, merging, comparison,
refactoring and migration [1]. To provide an introduction to Epsilon for new users, each part of the
solution is discussed and several of the Epsilon languages are demonstrated. Epsilon is briefly described
below, and then solutions to each of the problems in the case are presented.

1.1 Epsilon

Epsilon is built atop Eclipse, and interoperates seamlessly with several modelling technologies, including
EMF, MDR, CZT and plain XML. Further information on Epsilon can be found on the project websit
and in the Epsilon bookﬂ The Epsilon Object Language (EOL) [2] is at the core of the Epsilon and
provides functionality similar to that of OCL. However, EOL provides an extended feature set, which in-
cludes the ability to update models, access to multiple models, conditional and loop statements, statement
sequencing, and provision of standard output and error streams.

The solutions described in this paper use EOL, as well as the Epsilon Generation Language (EGL) [60]
for model-to-text transformation, the Epsilon Validation Language (EVL) [3] for model validation, and
Epsilon Flock [3] for a specialised form of in-place model-to-model transformation (model migration).
Further languages in the Epsilon platform which were not used for the Hello World case include the Ep-
silon Comparison Language (ECL) for comparing and matching models, the Epsilon Merging Language
(EML) for combining models, and the Epsilon Wizard Language (EWL) for refactoring models.

ttp://www.eclipse.org/gmt/epsilon
Zhttp://www.eclipse.orqg/gmt/epsilon/doc/book

Van Gorp, Mazanek and Rose (Bds.M. Rose, A. Garcia-Dominguez, J.R. Williams, D.S. Kolovos, R.F. Paige & F.A.C. Polack
Fifth Transformation Tool Conlis (dik R0lidgnsed under the
EPTCS 74, 2011, pp. 332~[33£¢?thﬁti1\@:4€2@%5‘ff$21§tﬂ4bﬁ7i0n License.

http://dx.doi.org/10.4204/EPTCS.74.27
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.eclipse.org/gmt/epsilon
http://www.eclipse.org/gmt/epsilon/doc/book

L.M. Rose, A. Garcia-Dominguez, J.R. Williams, D.S. Kolovos, R.F. Paige & F.A.C. Polack 333

2 Task 1: Greeting with EOL and EGL

EOL has been used to instantiate the Hello World metamodels [4, Section 2.1]. In EOL, model elements
are created using the new keyword and a model element’s attributes are accessed with dot notation. The
EOL program in Listing|[T]instantiates the Greet ing metamodel type (line 1) and sets the text feature
of the Greeting (line 2). References are accessed in the same manner as attributes: using dot notation
(see lines 4 and 7 of Listing[2), for example.

EOL is dynamically typed. Consequently, EOL programs do not specify to which metamodel partic-
ular types belong (e.g. Greeting). Instead, the user can specify the models (and hence metamodels)
on which the EOL program operates just before executing the program. When using the Eclipse-based
development tools, for example, the user specifies the name, type, location and metamodel of each model
when creating an Eclipse launch configuration.

1 var g = new Greeting;
2 g.text = "Hello World";

Listing 1: Instantiating the simple Hello World metamodel with EOL.

var g = new Greeting;

1

2

3 g.greetingMessage = new GreetingMessage;
4 g.greetingMessage.text = "Hello";
5
6
7

g.person = new Person;
g.person.name = "TTC Participants";

Listing 2: Instantiating the extended Hello World metamodel EOL.

For model-to-text transformation, Epsilon provides a dedicated task-specific language, the Epsilon
Generation Language (EGL) [6]. EGL is a template-based language that provides dynamic and static
sections. The former contain EOL code which is used to extract data from input models; while the latter
contain plain text which remains constant for varying input models. Dynamic sections can emit text using
the out . print operation. Alternatively, the [$=text %] syntactic shortcut can be used (instead of
[$ out.print (text); %1).

Listing 3| uses three dynamic sections (contained in [$ %] tags) and two static sections (contain-
ing a space and an exclamation mark, respectively, on line 2). The dynamic section on line 1 uses
the all (available on every metamodel type and used to retrieve all of the instances of the that meta-
model type) and first (used to retrieve the first element of a collection) properties to find the sole
instance of Greeting in the input model. The two dynamic sections on line 2 emit the value of the
greetingMessage.text and person.name features of the Greet ing, respectively. Executing
the template in Listing [3|emits a string of the form <text> <name>! (suchas Hello Franz!).

1 [$ var g = Greeting.all.first; %]
2 [%=g.greetingMessage.text%] [%$=g.person.name%]!

Listing 3: A model-to-text transformation with EGL.

3 Task 2: Counting with EOL

The all property (discussed above) returns a collection containing all of the instances of the specified
metamodel type. In EOL, the number of elements in a collection is determined using the size property.
Hence, line 1 of Listing] prints the number of Nodes in the input model. Like OCL, EOL provides a

334 Saying Hello World with Epsilon

number of higher-order operations for collection types. The select operation, for example, returns a
filtered copy a collection containing only those elements that satisfy the specified predicate. Therefore,
line 2 of Listing {4 prints the number of Edges whose src and trg features are equal (i.e. looping
edges). Line 3 performs a similar query for counting isolated nodes using a user-defined operation.

User-defined operations allow existing (primitive or metamodel) types to be enriched with additional
functionality. For example, lines 5-7 of Listing [4] define an operation, isIsolated, for the Node
type. The isIsolated operation returns a Boolean value. The body of the 1 sIsolated operation
uses another of EOL’s higher-order operations for collections, exist s, which implements existential
quantification.

Node.all.size.println();
Edge.all.select(ele.src == e.trg).size.println();
Node.all.select (n|n.isIsolated()) .size.println();

operation Node isIsolated() : Boolean {
return not Edge.all.exists(e|e.src == self or e.trg == self);

1
2
3
4
5
6
7}

Listing 4: Counting nodes, looping edges and isolated nodes with EOL.

Finding patterns of more than one or two model elements in EOL is complicated to specify in terms
of the higher-order operations on collections, and hence imperative programming constructs are typically
used instead. For example, finding cycles of three Nodes involves performing a depth-first search over
the successors of each Node in the model (Listing[5). The successors () operation is not shown, for
brevity, but traverses the outgoing Edges of a Node to identify successor Nodes.

1 wvar results : Sequence;

2

3 for (nodel in Node.all) {

4 for (node2 in nodel.successors()) {

5 if (node2 == nodel) continue;

6 for (node3 in node2.successors()) {

7 if (node3 == node2 or node3 == nodel) continue;
8 if (node3.successors () .contains (nodel)) {

9 results.add (Sequence { nodel, node2, node3 });
10 }

11 }

12 }

13}
14 results.println();

Listing 5: Counting circles of three nodes in EOL.

Section [A.T|describes the optional task of checking for dangling edges.

4 Task 3: Reversing with EOL and Epsilon Flock

Epsilon programs are granted read-only, write-only or read-write access to a particular model by the
user. As such, EOL can be used for querying models (read-only), constructing models (write-only)
or modifying models (read-write). For reversing all of the Edges in a model, EOL has been used to
specify an in-place update transformation (i.e. read-write access) on the input model (Listing [6). The
for construct is used to iterate over the Nodes in the input model. EOL does not support parallel
assignment, so a temporary (temp) is used.

Alternative, an Epsilon Flock [S]] migration strategy can be used to reverse edges. Compared to the
EOL solution (Listing [6), the iteration is performed declaratively (migrate Edge on line 1 of List-
ing [/) rather than imperatively (with a for loop), and no temporary variable is required because Flock

L.M. Rose, A. Garcia-Dominguez, J.R. Williams, D.S. Kolovos, R.F. Paige & F.A.C. Polack 335

for (edge in Edge.all) {

1

2 var temp = edge.src;
3 edge.src = edge.trg;
4 edge.trg = temp;

5)

Listing 6: Reversing edges with EOL.

provides the original and migrated model elements, which are bound to distinct model elements.
Epsilon Flock is discussed further in Section [3]

1 migrate Edge {
2 migrated.src
3 migrated.trg
4}

original.trg.equivalent ();
original.src.equivalent ();

Listing 7: Reversing edges with Flock.

S Task 4: Migrating with Epsilon Flock

Epsilon provides a dedicated task-specific language for performing model migration, Epsilon Flock [5].
Metamodel evolution typically involves changes to a small proportion of a metamodel [7]], and Flock
exploits this by automatically copying model elements that have not been affected by metamodel evolu-
tion. Migration rules are specified only for those model elements that have been affected by metamodel
evolution. For example, the case description describes a metamodel evolution in which the Graph type
merges its nodes and edges reference to form a new gcs reference, and the name property of the
Node class is renamed to text.

Flock migration rules are specified on a particular source metamodel type. Each rule is executed once
for each instance of that type in the source model. In the body of a rule, the original and migrated
variables are bound to an element of the source model and its equivalent element in the target model,
respectively. Listing [§| demonstrates two migration rules: the first (lines 1-4) copies the contents of the
nodes and edges references into the gcs reference for instances of Graph; and the second (lines 6-8)
copies the value of the name feature into the text for instances of Node.

migrate Graph {
migrated.gcs.addAll (original.nodes.equivalent ());
migrated.gcs.addAll (original.edges.equivalent());
}

migrate Node {
migrated.text = original.name;

}

1
2
3
4
5
6
7
8

Listing 8: Migrating to the evolved graph metamodel with Flock.

Section describes the optional task of migrating to the even more evolved graph metamodel.

6 Task 5: Deleting with EOL

As discussed in Section] EOL programs can be used to perform in-place update transformations. Delet-
ing a model element is possible with the delete keyword. Deleting the node with name n1 (Listing[9)

336 Saying Hello World with Epsilon

has been achieved using the selectOne higher-order operation (a shorthand for select followed by
first) to locate the relevant node, and using the delete keyword.

1 delete Node.all.selectOne(n|n.name == "nl");

Listing 9: Deleting a node with EOL.

Section[A.3]describes the optional task of deleting a node and its edges.

7 Opponent Statements

Three opponents were assigned to the Epsilon solution, and their statementsE] are now summarised. Ev-
ery opponent remarked that most of the solutions to the Hello World are very concise and readable when
formulated with Epsilon. However, solutions that required matching complex patterns (such as finding
cycles of three nodes in a graph, Section [3) were less concise and readable due to the use of impera-
tive constructs for specifying patterns. We are investigating the possibility of adding pattern matching
constructs to EOL, via a more declarative style of syntax.

Two of the statements remarked that using a family of task-specific languages enhanced readability
and conciseness of solutions, and the understandability of Epsilon as a whole. One of the statements sug-
gested that learning the similarities and differences between the family of languages might be a challenge
for new users of Epsilon. To smooth and reduce the learning curve for users, Epsilon provides online
documentatiorﬂ including examples of Epsilon programs, tutorial articles, and even a free bookﬂ Finally,
as one of the statements suggests, we are currently working on extending the content assistance provided
by the Epsilon development tools to support, for example, auto-completion for metamodel types.

References

[1] D.S. Kolovos (2009): An Extensible Platform for Specification of Integrated Languages for Model Manage-
ment. Ph.D. thesis, University of York, United Kingdom.

[2] D.S. Kolovos, R.F. Paige & F.A.C. Polack (2006): The Epsilon Object Language (EOL). In: Proc. ECMDA-
FA, LNCS 4066, Springer, pp. 128-142, doi:10.1007/11787044_11.

[3] D.S. Kolovos, R.F. Paige & F.A.C. Polack (2009): On the Evolution of OCL for Capturing Structural Con-
straints in Modelling Languages. In: Rigorous Methods for Software Construction and Analysis, LNCS 5115,
Springer, pp. 204-218, doi:10.1007/978-3-642-11447-2_13|

[4] S. Mazanek (2011): Hello World! An Instructive Case for TTC. In P. Van Gorp, S. Mazanek & L. Rose,
editors: Proc. TTC 201 1: Fifth Transformation Tool Contest, Ziirich, Switzerland, June 29-30 2011, EPTCS.

[5] L.M. Rose, D.S. Kolovos, R.F. Paige & F.A.C Polack (2010): Model Migration with Epsilon Flock. In: Proc.
ICMT, LNCS 6142, Springer, pp. 184—198, doi:10.1007/978-3-642-13688-7_13.

[6] L.M. Rose, R.F. Paige, D.S. Kolovos & F.A.C. Polack (2008): The Epsilon Generation Language. In: Proc.
ECMDA-FA, LNCS 5095, Springer, pp. 1-16, doi:10.1007/978-3-540-69100-6_1.

[7] J. Sprinkle (2003): Metamodel Driven Model Migration. Ph.D. thesis, Vanderbilt University, TN, USA.

3http://planet-research20.orqg/ttc2011/index.php?option=com community& view=
groupsé& task=viewdiscussions& groupid=13& Itemid=150& view=groupsé&
task=viewdiscussions& groupid=13& Itemid=150 (registration required)

“http://www.eclipse.org/gmt/epsilon/doc/

Shttp://www.eclipse.orqg/gmt/epsilon/doc/book

http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1007/978-3-540-69100-6_1
http://planet-research20.org/ttc2011/index.php?option=com_community&view=groups&task=viewdiscussions&groupid=13&Itemid=150&view=groups&task=viewdiscussions&groupid=13&Itemid=150
http://planet-research20.org/ttc2011/index.php?option=com_community&view=groups&task=viewdiscussions&groupid=13&Itemid=150&view=groups&task=viewdiscussions&groupid=13&Itemid=150
http://planet-research20.org/ttc2011/index.php?option=com_community&view=groups&task=viewdiscussions&groupid=13&Itemid=150&view=groups&task=viewdiscussions&groupid=13&Itemid=150
http://www.eclipse.org/gmt/epsilon/doc/
http://www.eclipse.org/gmt/epsilon/doc/book

L.M. Rose, A. Garcia-Dominguez, J.R. Williams, D.S. Kolovos, R.F. Paige & F.A.C. Polack 337

A Optional Tasks

Solutions to the optional tasks of the case are now described.

A.1 Task 2.5: Checking for dangling edges with EVL.

Counting the dangling edges in a model can be formulated in the same manner as counting isolated
nodes (Section [3). However, the Epsilon Validation Language (EVL) [3] can be used to check for — and
reconcile — dangling edges by specifying a validation constraint and a corresponding £ix (an in-place
transformations that reconcile validation problems), as shown in Listing An EVL constraint
(line 2) is specified in the context (line 1) of a particular metamodel type (Edge in Listing[I0). When
the check (line 3) part of a constraint is not satisfied (returns false), the user is presented with the
message part (line 4) of the constraint and can optionally invoke one of the £ix parts (lines 5-11).
The constraint in Listing [I0] provides one £ix, which deletes the dangling edge from the model. EVL
executes the DanglingEdges constraint once for every instance of Edge in the input model.

1 context Edge {

2 constraint DanglingEdges {

3 check: not self.isDangling()

4 message: "The edge " + self + " is dangling."
5 fix {

6 title: "Remove this edge"

7

8

do {
9 delete self;
10 }
11 }
12 }
13}
14
15 operation Edge isDangling() : Boolean {
16 return self.src.isUndefined() or self.trg.isUndefined();

17}

Listing 10: Checking for dangling edges with EVL.

A.2 Task 4.2: Migrating to the even more evolved graph metamodel with Epsilon Flock

The case describes a second metamodel evolution in which edges are specified with reference values
rather than model elements. The evolved metamodel no longer contains an Edge class, and instead the
Node class references itself via the 1inksTo reference. Listing |1 1|demonstrates the way in which this
migration can be specified for Epsilon Flock.

Flock provides an Eclipse extension point for distributing migration strategies to metamodel users.
The current version of Flock (0.9) does not provide built-in support for chaining multiple migration
strategies together, but this could be achieved by using Java to iterate over each migration strategy file,
invoking Flock for each strategy.

migrate Graph {
migrated.nodes = original.gcs.equivalent();

}

migrated.linksTo = original.successors () .equivalent();

1
2

3

4

5 migrate Node ({
6

7}

8

338 Saying Hello World with Epsilon

9 operation Original!Node successors() : Collection (Node) {
10 return self.outgoing() .collect (ele.trqg);

1}

12

13 operation Original!Node outgoing() : Collection (Edge) {
14 return Edge.all.select(e|e.src == self);

15}

Listing 11: Migrating to the even more evolved graph metamodel with Flock.

A.3 Task 5.2: Removing a node and its incident edges with EOL

The delete keyword removes from the model a model element and all model elements contained in
the deleted model element. To delete a Node and its incident Edges, three delete keywords have been
used (Listing because, in the graph metamodel provided by the case, a Node does not contain its
Edges.

var nl : Node = Node.all.selectOne(n|n.name == "nl");

1

2

3 delete nl.incoming();
4 delete nl.outgoing();
5 delete nl;
6

7

8

9

operation Node incoming() : Collection(Edge) {
return Edge.all.select (ele.trg == self);
}
10
11 operation Node outgoing() : Collection(Edge) {
12 return Edge.all.select (e|e.src == self);
13}

Listing 12: Deleting a node and its incident edges with EOL.

Alternatively, a Flock migration strategy can be used to specify the nodes and edges that should not
be copied to the migrated model (Listing[I3). Flock provides the de 1ete construct for specifying model
elements that should not be copied. Deletions are guarded using the when keyword.

1 delete Node when: original.name == "nl"

2

3 delete Edge when: original.src.name == "nl" or
4 original.trg.name == "nl"

Listing 13: Deleting a node and its incident edges with EOL.

A.4 Task 6: Inserting transitive edges with EOL

Inserting transitive edges with EOL is a two-step process (Listing[I4). First, the graph is inspected to cal-
culate the set of new edges to be created (using the calculateTransitiveEdges operation on lines
7-21). The src and t rg Nodes are stored in the set for each transitive edge to be created. Secondly, an
instance of Edge is created for each member of the set (using the calculateTransitiveEdges
operation on lines 23-31). The two steps are separate to ensure that transitive edges are created from only
those edges that existed at the start of the transformation, and not for edges added partway through the
transformation.

Notice that the successors and outgoing operations on (lines 33-36 and 38-41 respectively)
might be called more than once for each Node in the model. Consequently the @cached annotation is
used to indicated that EOL should cache the results of executing these operations. Caching provides a

L.M. Rose, A. Garcia-Dominguez, J.R. Williams, D.S. Kolovos, R.F. Paige & F.A.C. Polack 339

mechanism for increasing execution time when the result of an operation remains constant throughout
the execution of an Epsilon program.

1 var g = Graph.all.first;

2 wvar edgeSpecs = g.calculateTransitiveEdges();

3

4 g.addEdgesFromSpecification (edgeSpecs) ;

5

6

7 operation Graph calculateTransitiveEdges () : Set {

8 var edgeSpecs = new Set;

9

10 for (node in Node.all) {

11 for (successor in node.successors()) {

12 for (grandsuccessor in successor.successors()) {

13 if (not Edge.all.exists(ele.src == node and e.trg == grandsuccessor)) {
14 edgeSpecs.add (Sequence { node, grandsuccessor });
15 }

16 }

17 }

18 }

19

20 return edgeSpecs;

21}

23 operation Graph addEdgesFromSpecification (edgeSpecs : Set) {

24 for (edgeSpec in edgeSpecs) {

25 var edge : Edge = new Edge;

26 edge.src = edgeSpec.first;

27 edge.trg = edgeSpec.second;

28 self.edges.add (edge);

29 (edge.src.name + "->" + edge.trg.name) .println();
30 }

33 @cached

34 operation Node successors() : Collection(Node) {
35 return self.outgoing() .collect (ele.trqg);
36}

38 @cached

39 operation Node outgoing() : Collection (Edge) {
40 return Edge.all.select (e|e.src == self);
41 }

Listing 14: Inserting transitive edges with EOL.

	1 Introduction
	1.1 Epsilon

	2 Task 1: Greeting with EOL and EGL
	3 Task 2: Counting with EOL
	4 Task 3: Reversing with EOL and Epsilon Flock
	5 Task 4: Migrating with Epsilon Flock
	6 Task 5: Deleting with EOL
	7 Opponent Statements
	A Optional Tasks
	A.1 Task 2.5: Checking for dangling edges with EVL
	A.2 Task 4.2: Migrating to the even more evolved graph metamodel with Epsilon Flock
	A.3 Task 5.2: Removing a node and its incident edges with EOL
	A.4 Task 6: Inserting transitive edges with EOL

