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FunnyQT is a model querying and model transformation library for the functional Lisp-dialect Clo-
jure providing a rich and efficient querying and transformation API.

This paper describes the FunnyQT solution to the TTC 2013 Petri-Nets to Statcharts Transfor-
mation Case. This solution has won the best overall solution award and the best efficiency award for
this case.

1 Introduction

FunnyQT1 is a new model querying and transformation approach which is implemented as an API for
the functional, JVM-based Lisp-dialect Clojure. It provides several sub-APIs for implementing differ-
ent kinds of queries and transformations. For example, there is a model-to-model transformation API,
and there is an in-place transformation API for writing programmed graph transformations. FunnyQT
currently supports EMF and JGraLab models, and it can be extended to other modeling frameworks, too.

For solving the tasks of this transformation case2, FunnyQT’s model transformation API has been
used for the initialization transformation, while the reduction transformation has been tackled algorith-
mically using the plain querying and model manipulation APIs. This solution has won the best overall
solution award and the best efficiency award for this case.

2 The Initialization Transformation

The initialization transformation using FunnyQT’s model transformation API is shown in Listing 2. This
API provides an internal DSL [1] for model-to-model transformations similar to ATL [2] or ETL [3].

A transformation is declared with the deftransformation macro. It receives the name of the trans-
formation, i.e., initialize-statechart, a vector of input and output models, and arbitrarily many rules.
Here, the argument vector declares that the transformation receives one single input model pn which is
an EMF model, and it receives exactly one output model sc which is also an EMF model. It could also
receive many input and output models, and those could belong to different modeling frameworks as well.

The transformation consists of two rules: place2basic-and-or, and transition2hyperedge. The
former receives an input Place and creates an OR and a Basic in the output model. It also sets the new
basic’s name to the name of the place and assigns it as content of the new OR. Finally, it sets the basic’s
rnext and next references to the value of applying transition2hyperedge to any pre-transition or post-
transition of the input place3. place2basic-and-or is a top-level rule meaning it’s applied automatically

1The FunnyQT homepage: https://github.com/jgralab/funnyqt
2This FunnyQT solution is available at https://github.com/tsdh/ttc-2013-pn2sc and on SHARE (image

TTC13::Ubuntu12LTS_TTC13::FunnyQT.vdi)
3map takes a function f and a collection c. It applies f to the items of c returning the sequence of results.

http://dx.doi.org/10.4204/EPTCS.135.11
https://github.com/jgralab/funnyqt
https://github.com/tsdh/ttc-2013-pn2sc
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to all matching elements while the non-top-level rule transition2hyperedge has to be called explicitly
from other rules.

1 (deftransformation initialize-statechart [[pn :emf] [sc :emf]]
2 (^:top place2basic-and-or [p]
3 :from ’Place
4 :to [o ’OR, b ’Basic]
5 (eset! b :name (eget p :name))
6 (eset! b :rcontains o)
7 (eset! b :rnext (map transition2hyperedge (eget p :pret)))
8 (eset! b :next (map transition2hyperedge (eget p :postt))))
9 (transition2hyperedge [t]

10 :from ’Transition
11 :to [he ’HyperEdge]
12 (eset! he :name (eget t :name))))

Listing 1: The initialization transformation

When a rule gets called and is applicable with respect to its declared :from type (and optional :when
constraint), it creates the elements declared in :to in the target model, and evaluates its body. In case
there is just one new element declared in :to, it returns just that. If there are many new elements, it
returns them as a vector in their declaration order. Furthermore, a traceability mapping is created from
the source element to the rule’s return value. If a rule gets called multiple times for a single element, the
second and all following calls just return the result of the first invocation.

3 The Reduction Transformation

The reduction transformation is implemented algorithmically based on FunnyQT’s querying and model
manipulation APIs. It consists of four rules (functions):

1. The AND-rule as discussed in the case description [4],
2. the OR-rule as discussed in the case description,
3. an additional, extension rule assigning hyperedges to the nearest Compound state containing all

their predecessor and successor Basic states,
4. and a rule creating a Statechart with an AND top-state if the reduction could be completed suc-

cessfully.
In this section, only the AND- and OR-rule are discussed. The main reduction function simply

applies them as long as possible, then invokes the hyperedge assignment rule followed by the statechart
creating rule. The complete reduction transformation is printed in Appendix B.

Reduction Helper Functions. Before discussing the rules, some helper functions need to be intro-
duced. Those are pret and postt returning the sets of pre-/post-transitions for a given place. Likewise,
prep and postp return the sets of pre-/post-places for a given transition.

The AND Rule. The AND rule is depicted in Listing 3. In contrast to the Figure 2 in the case descrip-
tion [4], it doesn’t delete all places q1 to qn to create a new place p, but instead it reuses q1 as p and
deletes only q2 to qn, which is consistent with Louis Rose’s EOL solution.
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The rule function receives the source Petri-net model pn, the target statechart model sc, either the
function prep or postp as prep-or-postp, and the traceability map place2or gathered from the initial-
ization transformation mapping input places to output OR states wrapped in a Clojure atom4.

1 (defn and-rule [pn sc prep-or-postp place2or]
2 (loop [ts (eallobjects pn ’Transition), applied false]
3 (if (seq ts)
4 (let [t (first ts), preps-or-postps (prep-or-postp t)]
5 (if (> (count preps-or-postps) 1)
6 (let [p (first preps-or-postps), prets (pret p), postts (postt p)]
7 (if (forall? #(and (= prets (pret %))
8 (= postts (postt %)))
9 (rest preps-or-postps))

10 (let [new-or (ecreate! sc ’OR), new-and (ecreate! sc ’AND)]
11 (eset! new-and :contains (mapv @place2or preps-or-postps))
12 (eadd! new-or :contains new-and)
13 (swap! place2or assoc p new-or)
14 (doseq [op (rest preps-or-postps)]
15 (edelete! op))
16 (recur (rest ts) true))
17 (recur (rest ts) applied)))
18 (recur (rest ts) applied)))
19 applied)))

Listing 2: The AND rule

The rule iterates over all transitions5 in the petri-net model pn using a local tail-recursion (loop and
recur). Lines 5 to 9 check the preconditions of the rule: If the transition t has more than one pre-/post-
place, all of them must have the same set of pre- and post-transitions. If that’s the case, a new AND and
a new OR state is created. The new AND contains all existing OR states being the pre- or post-places of the
transition t, and the new OR contains the new AND. Furthermore, the traceability map atom is updated in
line 13 so that the first pre-/post-place p now maps to the new OR. Lastly, all other pre-/post-places are
deleted6.

The OR Rule. The OR rule is depicted in Listing 3. In contrast to the case description, it doesn’t delete
the places (or corresponding OR states) q and r to create a new place (or corresponding OR state) p, but
instead it reuses q as p and only deletes r.

The or-rule gets the Petri-net model pn, the statechart model sc, and the traceability map atom
place2or.

Like the AND-rule, it iterates all transitions in the petri-net model. Lines 5 to 9 check the precon-
ditions of the rule: If the transition t has exactly one pre-place q and one post-place r, and if q and r
are identical or q and r are not connected by other transitions, then the rule matches. In that case, the OR
corresponding to r is merged with the OR corresponding to q, and the transition t is deleted.

4All Clojure data structures are immutable. An atom is a mutable reference to some immutable data structure that can be
swapped atomically. This is important here in order to update the traceability mapping when the AND-rule matches.

5seq takes a collection and returns a sequential view on it or nil if the collection is empty. Therefore, it is the canonical
non-emptiness check in Clojure.

6doseq is equivalent to Java’s extended for loop.
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1 (defn or-rule [pn sc place2or]
2 (loop [ts (vec (eallobjects pn ’Transition)), applied false]
3 (if (seq ts)
4 (let [t (first ts), preps (prep t), postps (postp t)]
5 (if (= 1 (count preps) (count postps))
6 (let [q (first preps), r (first postps)]
7 (if (or (identical? q r)
8 (and (not (member? r (adjs q :pret :postp)))
9 (not (member? r (adjs q :postt :prep)))))

10 (let [merger (@place2or q), mergee (@place2or r)]
11 (when-not (identical? q r)
12 (eaddall! q :pret (eget-raw r :pret))
13 (eaddall! q :postt (eget-raw r :postt))
14 (edelete! r)
15 (eaddall! merger :contains (eget-raw mergee :contains))
16 (edelete! mergee))
17 (edelete! t)
18 (recur (rest ts) true))
19 (recur (rest ts) applied)))
20 (recur (rest ts) applied)))
21 applied)))

Listing 3: The OR rule

Extensions. Two extensions were implemented for this task. Firstly, there is an additional rule
assign-hyperedges that assigns each hyperedge to the nearest compound state which contains all basic
states connected by the hyperedge. Secondly, a validation tool7 has been implemented that uses Fun-
nyQT to check result statechart models against their expected outcome in terms of a very detailed unit
test suite.

4 Evaluation

In this section, the solution is evaluated according to the evaluation criteria listed in the case descrip-
tion [4].

Transformation correctness. The validation project that has been implemented as an extension to this
case allows for testing the result statechart models. For the main test cases, every important aspect of the
result models including the containment hierarchy and the predecessors and successors of hyperedges
are checked, and for the performance test cases, only the number of instances of every metamodel class
is checked. All tests pass for the result models of this solution. Similarly, all tests pass for the result
models created by the reference GrGen.NET solution.

The validation project has also been tested with intentionally slightly wrong models, e.g., some next
link is missing at some hyperedge, there’s some additional element, or an element is contained by the
wrong Compound state. In all those cases, an assertion of the validation project failed. So there’s a high
confidence that if the result models pass the tests, the transformation producing them is correct.

7https://github.com/tsdh/ttc-2013-pn2sc-validation

https://github.com/tsdh/ttc-2013-pn2sc-validation
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Transformation performance. This FunnyQT solution is by far the most efficient of all submitted
solutions, especially for large models, so it has won the best efficiency award for this case. For the
performance test models sp5000 and sp10000 the complete transformation (initialization and reduction)
takes about one and two seconds, which is about as fast as the second fastest solution. But with the
sp40000/sp200000 model, the FunnyQT solution is already three/twelve times faster than the second
fastest solution, taking 11 and 114 seconds, respectively.

Transformation understandability. Although the solution requires some understanding of Clojure, it
shouldn’t be hard to get a grasp on it. The initialization transformation uses a FunnyQT facility allowing
to specify typical model transformations with a syntax and semantics similar to ATL or ETL, so people
knowing these languages should feel right at home.

The reduction transformation is a bit more complex, but the application conditions of the rules and
the actions that are performed are taken quite literally from the case description with the exception that
some elements are preserved and merged instead of replaced.

One important aspect with respect to understandability is also the fact that the transformations are
very concise. In total, the initialization and the reduction transformation are only 96 lines of code.

Bonus criteria. The bonus tasks dealing with verification, simulation support, change propagation,
and reversing the transformation haven’t been tackled.

Proper debugging support is also not yet ready for prime-time in the Clojure world. There are some
attempts at debuggers allowing to set breakpoints and examine the lexical extent around the breakpoint,
but those are not too usable right now. Another difficulty with functional languages involving some
kind of laziness is that errors might be signaled at a location very different to where the bug is actually
manifested in the source code. Nevertheless, FunnyQT has rather good model visualization tools that
have been used while programming the reduction rules in order to visualize the matching elements when
a rule has been applicable.
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A The complete Initialization Transformation
1 (deftransformation initialize-statechart [[pn :emf] [sc :emf]]
2 (^:top place2basic-and-or [p]
3 :from ’Place
4 :to [o ’OR, b ’Basic]
5 (eset! b :name (eget p :name))
6 (eset! b :rcontains o)
7 (eset! b :rnext (map transition2hyperedge (eget p :pret)))
8 (eset! b :next (map transition2hyperedge (eget p :postt))))
9 (transition2hyperedge [t]

10 :from ’Transition
11 :to [he ’HyperEdge]
12 (eset! he :name (eget t :name))))
13

14 (defn init-statechart [pn]
15 (let [sc (new-model)
16 trace (initialize-statechart pn sc)]
17 [sc
18 (apply hash-map (mapcat (fn [[p [o b]]] [p o])
19 (:place2basic-and-or trace)))
20 (apply hash-map (mapcat (fn [[p [o b]]] [p b])
21 (:place2basic-and-or trace)))
22 (:transition2hyperedge trace)]))

B The complete Reduction Transformation
1 (defn refs-as-set [ref elem]
2 (set (eget-raw elem ref)))
3

4 (def postt (partial refs-as-set :postt))
5 (def pret (partial refs-as-set :pret))
6 (def postp (partial refs-as-set :postp))
7 (def prep (partial refs-as-set :prep))
8

9 (defn and-rule [pn sc prep-or-postp place2or]
10 (loop [ts (eallobjects pn ’Transition), applied false]
11 (if (seq ts)
12 (let [t (first ts), preps-or-postps (prep-or-postp t)]
13 (if (> (count preps-or-postps) 1)
14 (let [p (first preps-or-postps), prets (pret p), postts (postt p)]
15 (if (forall? #(and (= prets (pret %))
16 (= postts (postt %)))
17 (rest preps-or-postps))
18 (let [new-or (ecreate! sc ’OR), new-and (ecreate! sc ’AND)]
19 (eset! new-and :contains (mapv @place2or preps-or-postps))
20 (eadd! new-or :contains new-and)
21 (swap! place2or assoc p new-or)
22 (doseq [op (rest preps-or-postps)]
23 (edelete! op))
24 (recur (rest ts) true))
25 (recur (rest ts) applied)))
26 (recur (rest ts) applied)))
27 applied)))
28
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29 (defn or-rule [pn sc place2or]
30 (loop [ts (vec (eallobjects pn ’Transition)), applied false]
31 (if (seq ts)
32 (let [t (first ts), preps (prep t), postps (postp t)]
33 (if (= 1 (count preps) (count postps))
34 (let [q (first preps), r (first postps)]
35 (if (or (identical? q r)
36 (and (not (member? r (adjs q :pret :postp)))
37 (not (member? r (adjs q :postt :prep)))))
38 (let [merger (@place2or q), mergee (@place2or r)]
39 (when-not (identical? q r)
40 (eaddall! q :pret (eget-raw r :pret))
41 (eaddall! q :postt (eget-raw r :postt))
42 (edelete! r)
43 (eaddall! merger :contains (eget-raw mergee :contains))
44 (edelete! mergee))
45 (edelete! t)
46 (recur (rest ts) true))
47 (recur (rest ts) applied)))
48 (recur (rest ts) applied)))
49 applied)))
50

51 (defn assign-hyperedges [sc]
52 (doseq [e (eallobjects sc ’HyperEdge)]
53 (eset! e :rcontains
54 (first (apply clojure.set/intersection
55 (map #(reachables % [p-+ --<>])
56 (concat (eget e :next) (eget e :rnext))))))))
57

58 (defn create-top [sc]
59 (let [top-ors (filter #(not (eget % :rcontains)) (eallobjects sc ’OR))]
60 (when (= 1 (count top-ors))
61 (let [statechart (ecreate! sc ’Statechart), top (ecreate! sc ’AND)]
62 (eset! statechart :topState top)
63 (eset! top :contains top-ors)))))
64

65 (defn create-statechart [pn]
66 (let [[sc place2or _ _] (init/init-statechart pn)
67 place2or (atom place2or)]
68 (iteratively (fn []
69 (let [r (and-rule pn sc prep place2or)
70 r (or (and-rule pn sc postp place2or) r)
71 r (or (or-rule pn sc place2or) r)]
72 r)))
73 (create-top sc)
74 (assign-hyperedges sc)
75 sc))
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