Solving the Petri-Netsto Statecharts Transfor mation Case
with UML-RSDS

K. Lano, S. Kolahdouz-Rahimi, K. Maroukian
Dept. of Informatics, King’s College London, Strand, Longdt/K*

This paper provides a solution to the Petri-Nets to stateslcase using UML-RSDS. We show how
a highly declarative solution which is confluent and inietican be given using this approach.

Keywords:. Petri-Nets; Statecharts; UML-RSDS.

1 Introduction

This case studyl [4] is an update-in-place transformatioichvBimultaneously modifies (by deletion
and simplification) an input Petri-Net model, and (by camstion and elaboration) an output statechart
model. We provide a specification of the transformation sthtML-RSDS language [5] and show that
this is terminating, confluent and invertible.

UML-RSDS is a model-based development language and toolath specifies systems in a
platform-independent manner, and provides automated gexeration from these specifications to ex-
ecutable implementations (in Java® &nd C++). Tools for analysis and verification are also predid
Specifications are expressed using the UML 2 standard lgegudass diagrams define data, use cases
define the top-level services or functions of the system, goetations can be used to define detailed
functionality. Expressions, constraints, pre and postitimms and invariants all use the standard OCL
notation of UML 2.

For model transformations, the class diagram expressemét@models of the source and target
models, and auxiliary data can also be defined. Use caseg dedéirmain transformation phases of the
transformation: each use case has a set of pre and postooadithich define its intended functionality.

The Petri Net to statecharts transformation can be se@lignfiecomposed into three subtransfor-
mations: aninitialise transformation, which copies the essential structure efRhtri Net to an initial
statechart, followed by the majgn2sc reduction/elaboration transformation. A firdéanuptransfor-
mation removes elements which do not contribute to the taigecture.

Figure[1 shows the source and target metamodels of the dramsion, and the three use cases
representing the sub-transformations.

We extend[]4] by asserting thaameis unique forHyperEdgeBasicandOR

HyperEdge-isUnique&name
Basic—~isUniquéname
OR—isUniqu&name

This means that object indexing by name can be used for thee ypes: ORs| denotes the or-state
with names: String for example, if such a state exists.

*Research supported by the HORTMoDA EPSRC project

Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.):
Sixth Transformation Tool Contest (TTC 2013)
EPTCS 135, 2013, pp. 1d1=105, d0i:10.4204/EPTCS.135.13

http://dx.doi.org/10.4204/EPTCS.135.13

102 Petri-Nets to Statecharts Case with UML-RSDS

contains

NamedElement

name: String { identity }

041rcontains

Comgoundl
= =

Feratate 1AND OR
E— orld: String { identity }

Figure 1: PN 2 SC metamodels

2 Initialisation transformation

This has the precondition that the statechart is unpopllatatesize= 0, Statecharsize= 0, and
thatnameis unigue forNamedElemest There are four postconditions, which define the intentze s
at termination of the transformation. These postconditiane also interpreted as definitions of the
transformation steps.

Postconditionl 1 applies to elements éflaceto map them tBasicandOR states:

Basic—exist§ b | b.name = name &

OR—exist§ 0 | o.name = name& b : o.contains))
Logically this can be read as “for gilin Place there existd in Basicwith b.name= p.name andoin OR
with o.name= p.nameandb in o.contains. The inverse linkrcontainsis set implicitly © : b.rcontaing.

Postcondition 2 applies toTransitiors to map them télyperEdgs:

HyperEdgeexist§ e | ename = name)

I3 sets up the next/rnext links between hyperedges and basés $ased upon the corresponding

postt/prep links in the Petri Net:

t : postt = HyperEdgé&.namé : Basidname.next

applied toPlace (“if t is a post-transition of self, then the hyperedge correspgntb t is in the next
states of the basic state corresponding to self”).

14 sets up the next/rnext links between basic states and égges based upon the corresponding
postp/pret links in the Petri Net:

p : postp = Basidp.name : HyperEdgéname.next
applied toTransition

This transformation uses the ‘Map objects before linkstgyat[1] to separate mapping of elements
and their links. It avoids the need for recursive processaegch ofl1, ...,14 can be implemented by
a linear iteration over their source domains. This impletagon is generated automatically by UML-
RSDS as a Java program.

Termination, confluence and invertibility of such transfiations follows by construction [1]. The
computational complexity is linear inNamedElemergize The transformation establishes
Basic—~isUniqu&name, HyperEdge-isUniqugnamg andOR—isUniqugname because of the unique-
ness of names of named elements. Indeed these propertiesarants ofinitialise.

K. Lano, S. Kolahdouz-Rahimi, K. Maroukian 103

3 Main transformation

This has as its preconditiong, 12, 13, 14, together with the uniqueness propertiesiamefor Basiq
HyperEdgeandOR, and thatAND is empty. An invariantnv asserts that for all places, there is a unique
OR state with the same name:

Place—forAll(p | OR—existd (o | 0.name= p.namg)

This ensures that there is an injective functenuiv: Place— OR In our notation,OR[p.name is
equivp) for p: Place

The unigueness propertiesrmefor Basig HyperEdgeandORare also invariantlnv is established
by initialise because of postconditidil and the uniqueness nameon OR.

The highest priority rule (postcondition)Postl, which performs the OR-reduction of [4] dnansition
instances:

prepsize = 1 & postpsize = 1 &

q : prep & r @ postp &

(g.pret N r.pret)—sizd) = 0 &

(g.postt N r.post)—sizd) = 0 =

OR—exist§ p | p.name = g.name + “_OR” 4+ r.name &

p.contains = OR[g.name.contains U OR[r.name.contains &
g.name = p.name) &
g.pret—includesAl(r.pret) &
g.postt—includesAl(r.post) &
r—isDeleted) &
self—isDeleted)

This follows very closely the specification inl [4], witlelf : Transitionplaying the role ot. The updates
to the Petri-Net are the last five linasreplaces the — self — r structure and is renamed to match the
new OR state, thus maintainitigv.

For AND-reduction there are two postconditions/rules fog symmetric case$20s2 merges pre-
places with equivalent connectivities, and again is aggleeachTransition

pl : prep & prepsize > 1 &
prep—forAll(p2 | pl.pret = p2.pret & pl.postt = p2.postt) =
AND—-exist§ a | OR—existg p |
a : p.contains & a.contains = OR[prepnameé &
p.name = “AND1” + nameé& aname = “al’” 4+ name&
pl.name = “ANDL” + name)) &
(prep — {pl})—isDeleted) &
prep = Sef{pl}
The last three lines define the update to the Petri-Nefpra places ofself are deleted except fql,
which is renamed to match the newly created OR state (therefaintainingnv).
PosB merges post-places with equivalent connectivities, émheapplicabldransition

pl : postp & postpsize > 1 &
postp—forAll(p2 | pl.pret = p2.pret & plpostt = p2.postt) =
AND—exist§ a | OR—existg p |
a : p.contains & a.contains = OR[postpnamé &

104 Petri-Nets to Statecharts Case with UML-RSDS

p.name = “AND2." + name& aname = “a2"” + nameé&
pl.name = “AND2." + name)) &
(postp — {pl})—isDeleted) &

postp = Sefpl}
This maintaindnv for the same reason 8psP.
4 Cleanup transformation
This transformation deletes OR states with empty contents:
containssize= 0 = self—isDeleted)

onOR
Finally, an instancesc: Statechartneeds to be created, wittopStatebeing the unique topmost
AND state produced by the main transformation, if such aestaists:

v = OR—selecfrcontainssize=0) & v.size=1& ox:v =
AND—-existga | a.name=“_TOPSTATE’ & ox: a.containg

and

w = AND—selecfrcontainssize=0) & w.size=1& ax:w =
Statechart>existgsc| sctopState= ax)

This transformation is terminating and semantically attrk®y construction.

5 Reaults

Table[1 gives the test results for the performance testhédava 4 executable in the SHARE environ-
ment, and for the Java 6, C# and C++ executables on a standaddWsé 7 laptop.

Test Transformation execution timdava 4| Java 6 | C# C++
sp200 100ms 15ms 29ms Os
sp500 160ms 31ms 63ms 2s
spl000 | 290ms 94ms 198ms 6s
sp5000 | 3815ms 1670ms| 5069ms | 161s
sp10000| 13713ms 6614ms| 21980ms| —
sp20000| 48s 35s 87s -
sp40000| 258s 177s 468s -
sp80000| 3142s 5619s | 10003s | -

Table 1; Performance test results for Java, C# and C++

The results for the Java 4, C# and Java 6 (which uses Hashsesidhof Vector for sets) implemen-
tations were quite similar, which is in contrast to probldmmIlving uni-directional associations, where
the Java 6 translation is typically 100 times more efficiéaintthe Java 4 version. C++ has efficiency

K. Lano, S. Kolahdouz-Rahimi, K. Maroukian 105

Solution Language Perform.| 5.2.1: | 5.2.2:| 5.2.3: 5.2.4: | 5.2.5: | 5.2.6:

Name (for all optimis- | verifi- | simu- | change-| reverse| debug.| refact-
aspects) ations cation | lation | prop oring

UML-RSDS | UML-RSDS | E |CT |N | N |Y | N | N

Table 2: Solution table

problems for complex collection manipulations as usedimdadhse study. All the versions may be found
athttp://www.dcs.kcl.ac.uk/staff/kcl/uml2web/pn2sc/.

Table[2 shows the summary table completed for our solution.

The optimisation provided (for ruld2ostl, Pos®, PosB) is to omit tests for the truth of the succedent
of the rule (ie., the negative application condition of téej when applying the rule: the system can
detect that a formula such aslf—isDeleted) is inconsistent with the positive application condition of
the rule, and therefore that there is no need to evaluatetheufae before applying the rule.

The transformation can be reversed by reversing the iisii@bn.

References

[1] K. Lano, S. Kolahdouz-Rahim{onstraint-based specification of model transformatjdosirnal of Systems
and Software, to appear, 2012.

[2] K. Lano, S. Kolahdouz-Rahimi, T. ClarkComparison of model transformation verification approaghe
Modevva workshop, MODELS 2012.

[3] SHARE site for solution: http://is.ieis.tue.nl/staff/pvgorp/share/?
page=ConfigureNewSession&vdi=XP-TUe_TTC13: :XP-NMF_Petri_Nets_State_C_pn2scl.vdi,
directory Desktop/pn2scLano/pn2sc/, 2013.

[4] Pieter Van Gorp, Louis Ros&he Petri-Nets to Statecharts Transformation C&igth Transformation Tool
Contest (TTC 2013), 2013, EPTCS, this volume.

[5] UML-RSDS toolset and manualttp://www.dcs.kcl.ac.uk/staff/kcl/uml2web/, 2013.

http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/pn2sc/
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::XP-NMF_Petri_Nets_State_C_pn2sc1.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::XP-NMF_Petri_Nets_State_C_pn2sc1.vdi
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/

	1 Introduction
	2 Initialisation transformation
	3 Main transformation
	4 Cleanup transformation
	5 Results

