
Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.):
Sixth Transformation Tool Contest (TTC 2013)
EPTCS 135, 2013, pp. 101–105, doi:10.4204/EPTCS.135.13

Solving the Petri-Nets to Statecharts Transformation Case
with UML-RSDS

K. Lano, S. Kolahdouz-Rahimi, K. Maroukian
Dept. of Informatics, King’s College London, Strand, London, UK∗

This paper provides a solution to the Petri-Nets to statecharts case using UML-RSDS. We show how
a highly declarative solution which is confluent and invertible can be given using this approach.

Keywords: Petri-Nets; Statecharts; UML-RSDS.

1 Introduction

This case study [4] is an update-in-place transformation which simultaneously modifies (by deletion
and simplification) an input Petri-Net model, and (by construction and elaboration) an output statechart
model. We provide a specification of the transformation in the UML-RSDS language [5] and show that
this is terminating, confluent and invertible.

UML-RSDS is a model-based development language and toolset, which specifies systems in a
platform-independent manner, and provides automated codegeneration from these specifications to ex-
ecutable implementations (in Java, C# and C++). Tools for analysis and verification are also provided.
Specifications are expressed using the UML 2 standard language: class diagrams define data, use cases
define the top-level services or functions of the system, andoperations can be used to define detailed
functionality. Expressions, constraints, pre and postconditions and invariants all use the standard OCL
notation of UML 2.

For model transformations, the class diagram expresses themetamodels of the source and target
models, and auxiliary data can also be defined. Use cases define the main transformation phases of the
transformation: each use case has a set of pre and postconditions which define its intended functionality.

The Petri Net to statecharts transformation can be sequentially decomposed into three subtransfor-
mations: aninitialise transformation, which copies the essential structure of the Petri Net to an initial
statechart, followed by the mainpn2sc reduction/elaboration transformation. A finalcleanuptransfor-
mation removes elements which do not contribute to the target structure.

Figure 1 shows the source and target metamodels of the transformation, and the three use cases
representing the sub-transformations.

We extend [4] by asserting thatnameis unique forHyperEdge, BasicandOR:

HyperEdge→isUnique(name)
Basic→isUnique(name)
OR→isUnique(name)

This means that object indexing by name can be used for these entity types:OR[s] denotes the or-state
with names : String, for example, if such a state exists.

∗Research supported by the HoRTMoDA EPSRC project

http://dx.doi.org/10.4204/EPTCS.135.13

102 Petri-Nets to Statecharts Case with UML-RSDS

Figure 1: PN 2 SC metamodels

2 Initialisation transformation

This has the precondition that the statechart is unpopulated: State.size= 0, Statechart.size= 0, and
thatnameis unique forNamedElements. There are four postconditions, which define the intended state
at termination of the transformation. These postconditions are also interpreted as definitions of the
transformation steps.

PostconditionI1 applies to elements ofPlaceto map them toBasicandORstates:

Basic→exists(b | b.name = name &
OR→exists(o | o.name = name & b : o.contains))

Logically this can be read as “for allp in Place, there existsb in Basicwith b.name= p.name, ando in OR
with o.name= p.nameandb in o.contains”. The inverse linkrcontainsis set implicitly (o : b.rcontains).

PostconditionI2 applies toTransitions to map them toHyperEdges:

HyperEdge→exists(e | e.name = name)

I3 sets up the next/rnext links between hyperedges and basic states based upon the corresponding
postt/prep links in the Petri Net:

t : postt ⇒ HyperEdge[t.name] : Basic[name].next

applied toPlace (“if t is a post-transition of self, then the hyperedge corresponding to t is in the next
states of the basic state corresponding to self”).

I4 sets up the next/rnext links between basic states and hyperedges based upon the corresponding
postp/pret links in the Petri Net:

p : postp ⇒ Basic[p.name] : HyperEdge[name].next

applied toTransition.
This transformation uses the ‘Map objects before links’ pattern [1] to separate mapping of elements

and their links. It avoids the need for recursive processing: each ofI1, ..., I4 can be implemented by
a linear iteration over their source domains. This implementation is generated automatically by UML-
RSDS as a Java program.

Termination, confluence and invertibility of such transformations follows by construction [1]. The
computational complexity is linear inNamedElement.size. The transformation establishes
Basic→isUnique(name), HyperEdge→isUnique(name) andOR→isUnique(name) because of the unique-
ness of names of named elements. Indeed these properties areinvariants ofinitialise.

K. Lano, S. Kolahdouz-Rahimi, K. Maroukian 103

3 Main transformation

This has as its preconditionsI1, I2, I3, I4, together with the uniqueness properties ofnamefor Basic,
HyperEdgeandOR, and thatAND is empty. An invariantInv asserts that for all places, there is a unique
OR state with the same name:

Place→forAll(p | OR→exists1(o | o.name= p.name))

This ensures that there is an injective functionequiv : Place→ OR. In our notation,OR[p.name] is
equiv(p) for p : Place.

The uniqueness properties ofnamefor Basic, HyperEdgeandORare also invariant.Inv is established
by initialise because of postconditionI1 and the uniqueness ofnameon OR.

The highest priority rule (postcondition) isPost1, which performs the OR-reduction of [4] onTransition
instances:

prep.size = 1 & postp.size = 1 &
q : prep & r : postp &
(q.pret ∩ r.pret)→size() = 0 &
(q.postt ∩ r.postt)→size() = 0 ⇒

OR→exists(p | p.name = q.name + ‘‘ OR ” + r.name &
p.contains = OR[q.name].contains ∪ OR[r.name].contains &
q.name = p.name) &
q.pret→includesAll(r.pret) &
q.postt→includesAll(r.postt) &
r→isDeleted() &
self→isDeleted()

This follows very closely the specification in [4], withself : Transitionplaying the role oft. The updates
to the Petri-Net are the last five lines,q replaces theq→ self → r structure and is renamed to match the
new OR state, thus maintainingInv.

For AND-reduction there are two postconditions/rules for the symmetric cases:Post2 merges pre-
places with equivalent connectivities, and again is applied to eachTransition:

p1 : prep & prep.size > 1 &
prep→forAll(p2 | p1.pret = p2.pret & p1.postt = p2.postt) ⇒

AND→exists(a | OR→exists(p |
a : p.contains & a.contains = OR[prep.name] &
p.name = ‘‘ AND1 ” + name & a.name = ‘‘ a1 ” + name &
p1.name = ‘‘ AND1 ” + name)) &
(prep − {p1})→isDeleted() &
prep = Set{p1}

The last three lines define the update to the Petri-Net: allprepplaces ofself are deleted except forp1,
which is renamed to match the newly created OR state (therefore maintainingInv).

Post3 merges post-places with equivalent connectivities, for each applicableTransition:

p1 : postp & postp.size > 1 &
postp→forAll(p2 | p1.pret = p2.pret & p1.postt = p2.postt) ⇒

AND→exists(a | OR→exists(p |
a : p.contains & a.contains = OR[postp.name] &

104 Petri-Nets to Statecharts Case with UML-RSDS

p.name = ‘‘ AND2 ” + name & a.name = ‘‘ a2 ” + name &
p1.name = ‘‘ AND2 ” + name)) &
(postp − {p1})→isDeleted() &
postp = Set{p1}

This maintainsInv for the same reason asPost2.

4 Cleanup transformation

This transformation deletes OR states with empty contents:

contains.size= 0 ⇒ self→isDeleted()

on OR.
Finally, an instancesc : Statechartneeds to be created, withsc.topStatebeing the unique topmost

AND state produced by the main transformation, if such a state exists:

v= OR→select(rcontains.size= 0) & v.size= 1 & ox : v ⇒
AND→exists(a | a.name= “ TOPSTATE” & ox : a.contains)

and

w= AND→select(rcontains.size= 0) & w.size= 1 & ax : w ⇒
Statechart→exists(sc| sc.topState= ax)

This transformation is terminating and semantically correct by construction.

5 Results

Table 1 gives the test results for the performance tests for the Java 4 executable in the SHARE environ-
ment, and for the Java 6, C# and C++ executables on a standard Windows 7 laptop.

Test Transformation execution time: Java 4 Java 6 C# C++
sp200 100ms 15ms 29ms 0s
sp500 160ms 31ms 63ms 2s
sp1000 290ms 94ms 198ms 6s
sp5000 3815ms 1670ms 5069ms 161s
sp10000 13713ms 6614ms 21980ms –
sp20000 48s 35s 87s –
sp40000 258s 177s 468s –
sp80000 3142s 5619s 10003s –

Table 1: Performance test results for Java, C# and C++

The results for the Java 4, C# and Java 6 (which uses HashSet instead of Vector for sets) implemen-
tations were quite similar, which is in contrast to problemsinvolving uni-directional associations, where
the Java 6 translation is typically 100 times more efficient than the Java 4 version. C++ has efficiency

K. Lano, S. Kolahdouz-Rahimi, K. Maroukian 105

Solution Language Perform. 5.2.1: 5.2.2: 5.2.3: 5.2.4: 5.2.5: 5.2.6:
Name (for all optimis- verifi- simu- change- reverse debug. refact-

aspects) ations cation lation prop oring
UML-RSDS UML-RSDS E CT N N Y N N

Table 2: Solution table

problems for complex collection manipulations as used in this case study. All the versions may be found
athttp://www.dcs.kcl.ac.uk/staff/kcl/uml2web/pn2sc/.

Table 2 shows the summary table completed for our solution.
The optimisation provided (for rulesPost1, Post2, Post3) is to omit tests for the truth of the succedent

of the rule (ie., the negative application condition of the rule) when applying the rule: the system can
detect that a formula such asself→isDeleted() is inconsistent with the positive application condition of
the rule, and therefore that there is no need to evaluate the formulae before applying the rule.

The transformation can be reversed by reversing the initialisation.

References

[1] K. Lano, S. Kolahdouz-Rahimi,Constraint-based specification of model transformations, Journal of Systems
and Software, to appear, 2012.

[2] K. Lano, S. Kolahdouz-Rahimi, T. Clark,Comparison of model transformation verification approaches,
Modevva workshop, MODELS 2012.

[3] SHARE site for solution: http://is.ieis.tue.nl/staff/pvgorp/share/?

page=ConfigureNewSession&vdi=XP-TUe_TTC13::XP-NMF_Petri_Nets_State_C_pn2sc1.vdi,
directory Desktop/pn2scLano/pn2sc/, 2013.

[4] Pieter Van Gorp, Louis Rose,The Petri-Nets to Statecharts Transformation Case, Sixth Transformation Tool
Contest (TTC 2013), 2013, EPTCS, this volume.

[5] UML-RSDS toolset and manual,http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/, 2013.

http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/pn2sc/
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::XP-NMF_Petri_Nets_State_C_pn2sc1.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::XP-NMF_Petri_Nets_State_C_pn2sc1.vdi
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/

	1 Introduction
	2 Initialisation transformation
	3 Main transformation
	4 Cleanup transformation
	5 Results

