A Theorem Prover for Scientific and Educational Purposes

Mario Frank®™ Christoph Kreitz

University of Potsdam, Institute for Computer Science, Potsdam, Germany

{mafrank,kreitz}@uni-potsdam.de

We present a prototype of an integrated reasoning environment for educational purposes. The pre-
sented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing
and planned functionality of the theorem prover and especially the functionality of the educational
fragment. This currently supports working with terms of the untyped lambda calculus and addresses
both undergraduate students and researchers. We show how the tool can be used to support the stu-
dents’ understanding of functional programming and discuss general problems related to the process
of building theorem proving software that aims at supporting both research and education.

1 Introduction

Interactive and automated deduction are important concepts in university education when teaching stu-
dents how to reason about the correctness of software and hardware. But usually, the teaching has to
be limited to the theoretical aspects of theorem proving as there are no proof tools suitable for under-
graduates. Well-known proof assistants like Coq [1]], NuPRL [2], Isabelle [3l], Agda [4] and Idris [5] are
implemented specifically for scientific purposes and in our experience have a learning curve too steep
for beginning students.

Before students can be exposed to advanced deduction topics relevant for reasoning about hardware
and software, such as higher-order logics or type theory, they first need to understand the basics of
computability, functional programming, and constructive logic. Among others, they need to understand
the computational semantics of the (untyped) lambda calculus [6]. While in principle existing proof
assistants could be used for this purpose, solving the issue of the steep learning curve would require a
lot of effort. Thus there is need for proof assistants specifically suited for the needs of undergraduate
students.

In this article we present the educational fragment of a proof assistant that supports the (untyped)
lambda calculus and specifically addresses students. After a brief overview of the existing tools and
approaches we first discuss the broader context of our tool by presenting the existing and planned func-
tionality of the larger theorem proving environment. After that, we review the essential basics of the
untyped lambda calculus and show the various features of our tool and how they can be used. Finally,
we discuss the current state and limitation of our tool as well as possible future extensions.

2 Related Work

There are already some efforts to create educational tools for teaching the basics of deduction. Peter
Sestoft [7]] created a tool that can demonstrate different reduction strategies for the untyped lambda
calculus. It supports multiple strategies and can display all intermediate steps executed by the strategies.
Named terms (abbreviations) are also supported, which introduces the possibility of modularisation. But

*http://orcid.org/0000-0001-8888-7475

P. Quaresma and W. Neuper (Eds.): 6th International Workshop (© M. Frank & C. Kreitz
on Theorem proving components for Educational software (ThEdu’17) This work is licensed under the Creative Commons
EPTCS 267, 2018, pp. 59 doii10.4204/EPTCS.267 .4 Attribution-Noncommercial License.

http://dx.doi.org/10.4204/EPTCS.267.4
http://creativecommons.org
http://creativecommons.org/licenses/by-nc/3.0/
http://orcid.org/0000-0001-8888-7475

60 A Theorem Prover for Scientific and Educational Purposes

users do not apply individual reduction steps themselves and they do not have to apply a-conversions
explicitly as the system does it automatically for them. So the learning outcome is limited. Furthermore,
the tool is not stand-alone since a web server is needed to use it.

The most elaborated lambda simulator is the Penn Lambda Calculator, described in [8]]. It supports
the typed lambda calculus and is specifically designed as educational environment for learning natural
language semantics. It also supports the creation of exercises and a conference mode for e-Learning.
Furthermore, it includes a feature to grade solutions of students. The implementation in Java makes it
platform-independent. The main difference between the Penn Lambda Calculator and our approach is
that our approach is built on top of a theorem prover and aims at getting students used to formal reasoning
tools.

The lambda calculus tracer TILC [9] is able to display lambda terms as trees. It can highlight bound
and free variables, the most inner redex and also mark subterms of a selected lambda term. Where
possible, it can reduce lambda terms to normal form and show all steps of the reduction. But it does not
terminate if a non-normalisable term like (Ax.xx)(Ax.xx) is given as input. Furthermore, the tool seems
to be out of maintenance since after 2009 and there is only an executable for Windows. There are also
some online tool{”ﬂ for lambda term evaluation. While the first does not support named lambda terms,
the latter does. Both are capable of evaluating lambda terms automatically but students do not have the
chance to perform the reductions or a-conversions themselves. There also is no offline version of these
tools. The lambda calculators implemented by Joerg Endrullif] and a student of the University of Sidneyﬂ
are Java based tools. The former shows the lambda terms as graphs and allows -reduction via clicking
and term manipulation via drag and drop. But the source code does not contain a main routine, so the tool
cannot be started successfully. The latter one is text based and does the B-reduction automatically. Carl
Burch implemented multiple tools for educational purposes. One of the toolsﬂ is a lambda simulator both
as online JavaScript version and offline Java version. It supports named terms and reduces the given term
to normal form automatically, if possible. Another non-graphical implementatiorE] of a lambda simulator
was written in Haskell. The typed terms are evaluated automatically, too.

3 The Complete Framework for Theorem Proving

As already pointed out in the introduction, our educational tool for the lambda calculus is part of a larger
project that aims at supporting both interactive and automated theorem proving. Current interactive
theorem provers like Isabelle, Coq, NuPRL, Agda and Idris are successfully used in both scientific and
industrial contexts. Although some interactive theorem provers contain subsystems to delegate proof
obligations to automated theorem provers like Vampire[[10], E[11], iProver[12] and leanCoP[13], those
subsystems have various problems. Sledgehammer[14]] for example is used for many years as interface
between Isabelle and theorem provers like Vampire. But the interfaces to the automated theorem provers
are occasionally unstable and the results from the automated theorem provers are in some cases not
usable. The main problem here is a missing exchange format that is also enforced. While a de facto
standard exists with the TPTP (Thousands of Problems for Theorem Provers)[15] language that also
contains the solution language TSTP (Thousands of Solutions from Theorem Provers), this standards

Ihttps://people.eecs.berkeley.edu/~gongliangl3/lambda/
Zhttps://www.easycalculation.com/analytical/lambda-calculus.php
3http://joerg.endrullis.de/lambdaCalculator.html
4https://github.com/scyptnex/lambda-calculator
Shttp://www.cburch.com/proj/lambda/
https://github.com/sgillespie/lambda-calculus

https://people.eecs.berkeley.edu/~gongliang13/lambda/
https://www.easycalculation.com/analytical/lambda-calculus.php
http://joerg.endrullis.de/lambdaCalculator.html
https://github.com/scyptnex/lambda-calculator
http://www.cburch.com/proj/lambda/
https://github.com/sgillespie/lambda-calculus

M. Frank & C. Kreitz 61

do not require the automated theorem provers to return complete proofs. In many cases, the automated
theorem provers, especially the ones based on resolution or equational reasoning, do not store all proof
steps during proof search, which makes it hard or even impossible to communicate all details. For
example, the use of the axioms of equalities, i.e. symmetry, reflexivity and transitivity, is subsumed
by the inference that the theory of equalities was used. But this information may not be helpful for
interactive theorem provers as the proof cannot be reconstructed easily[14]. In some cases this even
leads to loss of termination during reconstruction like in the case of the subsystem Metis[16]] of Isabelle.
Another problem is the variable replacement by skolemisation that is not communicated. And even if an
automated theorem prover communicates a complete proof, that proof may not be useful for interactive
theorem provers if the proof is not valid in the underlying logic of these provers.

The theorem prover presented here explicitly aims at enforcing complete proofs. Also, it is intended
to provide a framework for prototyping automated proof calculi while offering standard decision proce-
dures like unification (e.g. [[17, 18] and standard methods for optimisation like term indexing[19]]). In a
broader sense, the framework can be seen as a logical framework, but in detail it is more than just that.
While logical frameworks usually provide the most atomic layer of logic, i.e. the standard logical con-
nectives (conjunction, disjunction, negation, and implication) together with a calculus like the sequent
calculus[20]], our framework enriches the standard with multiple layers for specialisation to the proof
domain. In our framework, connectives like equivalence, NAND and NOR are not only defined in terms
of the basic ones but can also be used as atomic connectives without a need for unfolding their defini-
tion. This saves time during proof search and still preserves the possibility of unfolding for the complete
proof.

Synopsis

ul

imp. State

I

planned

~ATP Calculi}

A uses B

Backend/Framework

Figure 1: Architecture of the complete theorem proving environment

Those specialisations will enable our framework to select optimised calculi and decision procedures
for the problem or domain of interest. To allow specialisation while preserving completeness of informa-
tion, a special architecture is needed. A draft architecture is presented in figure[I] The architecture of the

62 A Theorem Prover for Scientific and Educational Purposes

system consists of the framework and the Ul layer. The framework contains a set of decision procedures,
logical transformation procedures, syntax definitions for computational terms, logical formulae along
with inference rule and proof schemes. Also, it has a base component with common utility methods for
term indexing and file I/O and also already existing prototype implementations of ATP calculi. There
are two interfaces that can be accessed externally, i.e. the interactive theorem proving (ITP) and the au-
tomated theorem proving (ATP) layer. Both layers have direct access to the ATP calculi component to be
able providing its functionality. Moreover, the ITP layer also has direct access to the syntax layer in order
to provide it’s functionality while the ATP layer gains access to the syntax component via the ATP calculi
component. The main reason for the distinction in the syntax component access is that the ITP layer must
be able to handle all syntactical definitions directly as it communicates directly with the (graphic) user
interface and is not accessed from external systems. The ATP layer on the other hand is planned to being
accessible via foreign function interfaces. The communication between the ATP component and external
systems is planned to be handled by the base component, especially the theorem prover I/O module.

The most complex part is the syntax component as it needs to enable specialisations. This compo-
nent contains the untyped lambda syntax and rule definitions that are currently used especially for the
educational purpose. Extending these definitions to type theoretical structures, such as the typed lambda
calculus would make a communication with ITP systems possible. Moreover, there are implementations
for logical connectives that shall be used for automated theorem proving. Between those two definitions,
a Curry-Howard-Style transformation is planned, which would make the results from the ATP system
reusable for interactive theorem proving.

We plan to provide access to our framework by strictly defined interfaces, like foreign function
interfaces. The main advantage of using foreign function interfaces is that the communicated data do not
need to be cached in files or in streams but directly forward the syntactical structures to the target system
if the target system itself has some reasonably good interface. But as the interfaces are not necessarily
present, we focus on systems, where a foreign function interface is easily establishable.

The candidates for interfacing are selected by specific criteria. First of all, there must be a reason-
able way to communicate with the theorem provers without passing queries and results as strings via
the shell. So, either foreign function interfaces between the theorem, i.e. the programming languages
must exist, or the theorem provers must have some structured network based communication possibil-
ity, like webservices. This already makes NuPRL and Coq good candidates as the former has network
based interfaces and the latter one has foreign function interfaces between OCaml, it’s implementation
language, and C/C++. Moreover, those candidates are favoured above Isabelle as Isabelle already has
ATP connectivity, although it is text based. For ATP systems, the criterion would make E and Vampire
good candidates as they are implemented in C and C++ respectively which would make a communication
even more easy. OCaml based candidates would also be iProver and Leo[21]]. As already the architecture
shows, many parts of the system are currently in planning phase or only exist as prototypes. Thus, we
focus on the currently usable parts, i.e. the lambda calculus fragment and the IDE.

4 Supported Syntax

The syntax supported by our tool is an extension of the syntax of the untyped lambda calculus.
Definition 1 (Lambda Terms). The inductive definition of lambda terms is as follows:
e Avariablev is a term.

o [fs andt are terms, the application s t is a term.

M. Frank & C. Kreitz 63

e Ifx is a variable and t a term, then the abstraction Ax.t is a term.
o [ftisaterm, then (t) is a term.

Applications are left associative and abstractions bind as far as possible. ¢-conversion substitutes
a bound variable with a variable with a new name, i.e. Ax.r - Ax’.t[x/x] and B-reduction reduces an
application of the form (Ax.t)s to t[x/s]. In order to leverage the understanding of modularisation, we
support named terms, i.e. abbreviations for complex lambda terms. Thus, we add a rule ¢ S de f; where
¢t must be a named term and def; is the definition of the named term.

We also extend the syntax by support for multi-bindings, which, for instance, allows to use Ax,y,z
as abbreviation for Ax.Ay.Az. Both the multi-binding delimiter "," and the normal binding delimiter "."
are configurable. For instance, it is possible to define a whitespace as multi-binding delimiter. This
way the syntax can be made more conformant to the syntax of other proof assistants like Coq where the
whitespace delimits binding parameters. Moreover, the grammar can support multiple variants to write
aA,e.g "\"and "\lambda", which is also configurable. The tool automatically transforms both variants
into the A symbol. There is also automatical renaming of the rules "\alpha", "\beta" and "\equiv" to «, 3
and = respectively.

It is possible to define both unnamed and named terms where the former have the syntax
{Term(— (a|B| =) Term)+} and the latter extend the unnamed term syntax with a leading Name :=
where the name must begin with an upper case symbol. An example for a named term definition would
be True := {Ax.Ay.x}. So, named and unnamed lambda terms are represented as list of terms, delimited
by the rule that was applied in order to generate them.

5 Different Aspects of the Tool

The graphical user interface consists of three parts as shown in figure [2] The left sidebar, i.e. the outline,
shows the names or ids of successfully parsed terms. The center contains the source code editor where
the lambda terms can be written. The right window, i.e. the manipulation view, shows the currently
selected lambda term and its derived terms in a more interactive variant.

‘K TEMPLAR IRE - € 2017 Mario Frank - mafrank@uni-potsdam.de ¥ & &
File Edit Theory Actions Preferences Help
‘.‘."‘ Qutline "‘.‘.‘ Source Code Manipulation View

True 1 True := { = Aa. Ab. a

False 2 Aa. Ab. a

And 3 - K

alse ‘=

or 5 Aa. Ab. b

Not 6

IfThenElse 7 And = {

Impl 8 Ap.Aq. ((((pg)) p))

_0x55cbb7360650 -

_0x§5cbb7374ea0 11 Ap.Ag. ((((pp)) q))

Equiv 12 } ;

13 Not :=

_0x55cbh73e8640 13 Ap. ({ ({pFalse)) True))

ExFalso 15 1

_0x55cbb739a690 16 'fThenElse := { =

Test - NN VPP S DU ST

_0x55chb72a0330 Parsing succeeded

Figure 2: The user interface

Selecting the name or id of a term in the outline sets the lambda term as content of the manipulation

64 A Theorem Prover for Scientific and Educational Purposes

view and signals the code editor to move the cursor to the end of the source code of the term. We will
focus on the functionality and use of the source code editor and the manipulation view.

5.1 The Source Code Editor

The source code editor is the main part of the integrated development resoning environment and supports
usual the functionality common to most integrated development environments. For example, it supports
syntax highlighting, i.e. showing the closing parenthesis for an opening parenthesis on the current cursor
position and highlighting the used named terms in blue if they are defined and in red if they are not.
Also, it is able to show the definition and arity of the named term as tool tip when hovering over
the name (see figure [3). Moreover, the source code editor supports dynamic code completion for named
terms and applicable rules (a-conversion, -reduction and named term expansion =). If a new named
term is defined, it is automatically supported by the code completion. Writing in the text editor is more
or less like in any other text editor except for the automatic rewriting of special keywords. For exam-
ple, when the user writes "->\beta \lambda x. \lambda y. f x y", this is automatically rewritten to
->fB Ax.Ay.fxy while the text is written. But this rewriting is only used for the presentation in the
editor. The file itself contains the written text in plain format, i.e. \lambda. Although the set of rewriting
rules is currently fixed, it is in principle possible to extend it. Enabling users to extend the rules is a part
of the future work. The source code editor does not yet support checking the correctness of f-reduction,
a-conversion and =-expansion that is written. This is currently only supported by the manipulation view.

Source Code

13 Not := {

14 Ap. ((((pFalse)) True))
15 } Named term "False", arity 2
16 Iﬂ.henElse = { Definition: Aa. Ab. b

17 Ap.Aa.Ab. ((((pa)) b))
18 }

Figure 3: Tooltip with detailed information about the named term.

Below the source code editor, the parser output is shown. On error, the line and column of the
erroneous part of the source code is shown.

5.2 The Manipulation View

The manipulation view shows the selected lambda term and its derived terms and supports both informa-
tional actions and rule applications on the terms.

5.2.1 Informational Actions

Informational actions are unlocked by holding the control button pressed. The most relevant informa-
tional actions are the syntax highlighting. Here, clicking on a parenthesis highlights the corresponding
one, and clicking on the name of a variable bound by an abstraction (Ax) highlights all occurrences of
this variable in the subterm. Also, clicking on a bound variable somewhere in the term highlights all
occurrences of it and the location where it is bound, i.e. the abstraction.

Hovering over a named term reference shows its original definition of the named term together with
its arity as it is done in the source code editor. Here, holding the control button pressed is not necessary.

M. Frank & C. Kreitz 65

5.2.2 Rule Application

The rule applications are the most important part of the manipulation view for the students. Rules can be
applied only on the last term shown in the manipulation view.

5.2.2.1 o«-conversion The o-conversion is triggered by double-clicking either on the variable name
of an abstraction or on the A-symbol itself.

X TEMPLARIREDIN () (X)

a-Conversion failed

x a-Conversion (2, |

The variable name a would
either lead to catching an
unbound variable or there is
an abstraction that would bind
the already bound variable!
Did nothing.

New variable name:

[ox |

(a) a-conversion input

(b) at-conversion failure

Figure 4: ¢-conversion

This action opens opens an input field (see figure[a] where the new name can be given for the variable.
If the new name does not bind a previously free variable or catches another bound variable, ¢-conversion
is applied. Both the manipulation view and the source code are updated. Otherwise, a warning message
is shown (see figure D). The input field also has to make sure that the variable naming conventions are
preserved, i.e. no upper case variable names are allowed. A better way of applying the -conversion
whould be to make the double clicking on the variable switching to edit mode and confirming the change
with the return button. This is subject for improvements.

Manipulation View Manipulation View

Ap.Ag. ((Or (Notp)) q) Ap.Ag. ((Or (Notp)) q)
->= Ap. Ag. Or ([(_Ap. p False True)|l) g ->= Ap. Aa. Od[(__(Ap. p False True) p)]q
== = 1/2 > > = = 2/2 >
(a) B-reduction choice 1 (b) B-reduction choice 2

Figure 5: B-reduction choices

5.2.2.2 B-reduction If the last term is not in B-normal form, the -reduction can be applied to it. The
manipulation view shows how many possible -reductions are possible in a navigation bar at the bottom.
A B-reduction option is always shown by highlighting the argument in a black box and the function
where the argument can be inserted in a green box (see [5a). If there are multiple possible reductions,
the focus on the application to be reduced can be changed with the shortcuts CTRL+P for previous and
CTRL+N for next or with the navigation buttons on the bottoms of the manipulation view (see figure [5a]

and [5b).

66 A Theorem Prover for Scientific and Educational Purposes

Currently, applying the B-reduction can be performed either by the keyboard shortcut CTRL+A or
dragging the function of the application and dropping it on the function (see figure [6a)).

Manipulation View
Ap.Aa. ((Or (Notp)) aq)

s e G e e X mevrnenn o @
B-Reduction failed

An unbound variable in the
argument would be caught.
You first have to apply a-
Conversion! Did nothing

| ok |

(a) Dropping the argument on the function
(b) Failing B-reduction

Figure 6: -reduction application

The B-reduction will fail with a warning if it would lead to free variables becoming bound. Figure
|6_B| for example shows that the beta reduction fails as the free variable p (red) would become bound.
This way, the students’ awareness for binding scopes shall be increased. If the term is in normal form,
i.e. irreducible, the background of the manipulation view is coloured green (see 7).

Manipulation View

ha. Ab. a

Figure 7: A-term in normal form

5.2.2.3 =-expansion The =-expansion can be applied on all named term references that have a valid
definition. It is triggered by double-clicking on the named term reference. Also, the =-expansion is
applied automatically to the function of a reducible application if the B-reduction is triggered and the
function is a named term reference.

The manipulation view also supports the undo and redo operations, although there are still improve-
ments needed in this functionality as the undo/redo operations need to be synchronised with the editor
view.

6 Challenges

Concepting a theorem prover as educational tool leads to some problems which do not have to be con-
sidered for pure theorem provers. One of the main problems evolving from didactic considerations is the
necessity of a-conversion. In ordinary theorem proving, no a-conversion is needed if a De Bruijn index
like structure is used, as the variable names are not relevant at all.

But when teaching theory of programming, naming clashes are an important aspect students need to
understand. Thus, the a-conversion should be supported from the didactic point of view. Moreover, even

M. Frank & C. Kreitz 67

if the framework itself does not induce or have to consider naming clashes, the graphic user interface still
may do this. In the context of our tool, the lambda terms are stored internally with a De Bruijn like
representation. Thus, the B-conversion and =-expansion can be completely agnostic about variable
names. But for readibility reasons, the variables become relevant as they have to be shown in the text
editor panel and are also parsed from the raw text. A solution would be to rename variables on clashes
on the fly but then again the didactical gain for students would be smaller as they can just expect the
framework to correct their mistakes. Thus, the user interface needs to address ¢-conversion and the
framework itself must handle naming collisions.

Another challenge in the conception of the tool was the usability, especially the speed of reaction.
As waiting for the result of a B-conversion is not what students expect, the rendering speed of the newly
generated lambda term needed to be improved. The main problem of complexity was that on applying
a rule to the current lambda term, the complete term with all reduction, conversion and expansion steps
was rendered. With big terms, this could take several seconds. Thus, the manipulation view was adopted
to only render the newly created term. But as both the text editor and the manipulation view support
undo/redo, and must be held consistent, they had to share some information. Thus, the lambda terms
were embedded in a document structure that is used both by the editor and manipulation view.

7 Supported Platforms and Future Work

Our tool is implemented in C++ and is available as binary distribution for Linux. An Applmage for
Linux is also available. This bundle contains all dependencies to work with the tool also on older Linux
distributions. A binary distribution for Microsoft Windows is currently under development and could
already be tested successfully in preliminary versions. All versions of the tool are portable, i.e. no
installation is needed. A distribution as online tool is under consideration as the emscripterﬂ plugin for
the C++ compiler supports the translation from C++ to JavaScript. The tool in all its variants is available
athttp://www.cs.uni-potsdam.de/ mafrank/ .

There are many possible small improvements. First of all, a stronger decoupling of the graphic user
interface from the framework is planned. The framework should just apply the rules without checking for
potentially caught variables. The graphic user interface itself should check for those collisions. Also, the
application of the alpha conversion should be improved by replacing the interactive renaming window
with an inline edit mode. Furthermore, the visualisation of the drag and drop mechanism for f-reduction
will be improved. There are still some inconsistencies in the undo/redo functionality of the manipulation
view.

Also, extensions of the tool are planned. This includes a graph view for lambda terms and improve-
ments on the manipulation view. Lifting the tool to the typed lambda calculus is also work in progress.
Moreover, the current representation of the source code as file will be replaced by a database with plain
text export.

8 Conclusion

We presented an educational tool for undergraduate students that has the aim to improve their under-
standing of functional programming while giving them at least some of the features of state of the art
developement environments. Though this tool is work in progress it was successfully used by multiple

"https://github.com/kripken/emscripten

http://www.cs.uni-potsdam.de/~mafrank/
https://github.com/kripken/emscripten

68

A Theorem Prover for Scientific and Educational Purposes

students in first year undergraduate studies. A first release where application was not yet possible with
drag and drop received positive feedback but also some proposals for improvement. Much of the func-
tionality was motivated by this feedback as is also the future work. We hope that this kind of educational
tools will enable the students to get used to formal tools like proof assistants more easily.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

The Coq development team (2004): The Coq proof assistant reference manual. LogiCal Project. Available
athttp://coq.inria.fr. Version 8.0.

Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, Douglas J.
Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki & Scott F. Smith (1986): Implementing
Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ.

Tobias Nipkow, Markus Wenzel & Lawrence C. Paulson (2002): Isabelle/HOL: A Proof Assistant for Higher-
order Logic. Springer-Verlag, Berlin, Heidelberg, doi:10.1007/3-540-45949-9.

UIf Norell (2009): Dependently Typed Programming in Agda. In: Proceedings of the 4th International
Workshop on Types in Language Design and Implementation, TLDI *09, ACM, New York, NY, USA, pp.
1-2, doi:10.1145/1481861.1481862.

Edwin Brady (2013): Idris, a general-purpose dependently typed programming language: Design and im-
plementation. Journal of Functional Programming 23, pp. 552-593, doi:10.1017/S095679681300018X.

Henk P. Barendregt (1984): The Lambda Calculus Its Syntax and Semantics, revised edition. 103, North
Holland.

Peter Sestoft (2001): Demonstrating Lambda Calculus Reduction. Electr. Notes Theor. Comput. Sci. 45, pp.
424-432, doi:10.1016/S1571-0661(04)80973-3. http://www.itu.dk/people/sestoft/lamreduce/.

Lucas Champollion, Joshua Tauberer & Maribel Romero (2007): The Penn Lambda Calculator: Ped-
agogical Software for Natural Language Semantics. Technical Report, University of Konstanz, Ger-
many, KOPS. Available at http://kops.ub.uni-konstanz.de/volltexte/2009/9605/. http://
lambdacalculator.com/.

David Ruiz & Mateu Villaret (2009): TILC: The Interactive Lambda-Calculus Tracer. Electron. Notes Theor.
Comput. Sci. 248, pp. 173-183, doi:10.1016/j.entcs.2009.07.067.

Alexandre Riazanov & Andrei Voronkov (1999): Vampire. In: Automated Deduction - CADE-16, 16th
International Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings, pp. 292-296,
doi:10.1007/3-540-48660-7_26.

Stephan Schulz (2002): E - a brainiac theorem prover. AI Commun. 15(2,3), pp. 111-126.

Konstantin Korovin (2008): iProver — An Instantiation-Based Theorem Prover for First-Order Logic (System
Description). In A. Armando, P. Baumgartner & G. Dowek, editors: Proceedings of the 4th International Joint
Conference on Automated Reasoning, (IJCAR 2008), Lecture Notes in Computer Science 5195, Springer,
pp- 292-298, doi:10.1007/978-3-540-71070-7_24.

Jens Otten (2008): leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical
and Intuitionistic Logic (System Descriptions). In: Proceedings of the 4th international joint conference on
Automated Reasoning, IJCAR °08, Springer-Verlag, Berlin, Heidelberg, pp. 283-291, doii10.1007/978-3-
540-71070-7_23|

Lawrence C. Paulson & Jasmin C. Blanchette (2012): Three years of experience with Sledgehammer, a
Practical Link Between Automatic and Interactive Theorem Provers. In Geoff Sutcliffe, Stephan Schulz &
Eugenia Ternovska, editors: IWIL 2010. The 8th International Workshop on the Implementation of Logics,
EPiC Series in Computing 2, EasyChair, pp. 1-11, do0ii10.29007/36dt. Available at https://easychair.
org/publications/paper/wV.

http://coq.inria.fr
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1016/S1571-0661(04)80973-3
http://www.itu.dk/people/sestoft/lamreduce/
http://kops.ub.uni-konstanz.de/volltexte/2009/9605/
http://lambdacalculator.com/
http://lambdacalculator.com/
http://dx.doi.org/10.1016/j.entcs.2009.07.067
http://dx.doi.org/10.1007/3-540-48660-7_26
http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dx.doi.org/10.29007/36dt
https://easychair.org/publications/paper/wV
https://easychair.org/publications/paper/wV

M. Frank & C. Kreitz 69

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Geoff Sutcliffe (2009): The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts,
v3.5.0. Journal of Automated Reasoning 43(4), pp. 337-362, doi:10.1007/s10817-009-9143-8,

Joe Hurd (2003): First-order proof tactics in higher-order logic theorem provers. In: Design and Application
of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical Reports,
pp- 56-68.

John A. Robinson (1965): A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1), pp.
23-41, doii10.1145/321250.321253.

Alberto Martelli & Ugo Montanari (1982): An Efficient Unification Algorithm. ACM Trans. Program. Lang.
Syst. 4(2), pp. 258-282, doi:10.1145/357162.357169.

Robert M. Colomb (1991): Enhancing unification in PROLOG through clause indexing. The Journal of
Logic Programming 10(1), pp. 23—44, doi:10.1016/0743-1066(91)90004-9.

Gerhard Gentzen (1935): Untersuchungen iiber das logische Schliefien. I. Mathematische Zeitschrift 39(1),
pp- 176-210, doi:10.1007/BF01201353,

Max Wisniewski, Alexander Steen & Christoph Benzmiiller (2014): The Leo-III Project. In Alexander

Bolotov & Manfred Kerber, editors: Joint Automated Reasoning Workshop and Deduktionstreffen, p. 38.
Auvailable athttp://christoph-benzmueller.de/papers/W53.pdfl

http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1016/0743-1066(91)90004-9
http://dx.doi.org/10.1007/BF01201353
http://christoph-benzmueller.de/papers/W53.pdf

	1 Introduction
	2 Related Work
	3 The Complete Framework for Theorem Proving
	4 Supported Syntax
	5 Different Aspects of the Tool
	5.1 The Source Code Editor
	5.2 The Manipulation View
	5.2.1 Informational Actions
	5.2.2 Rule Application

	6 Challenges
	7 Supported Platforms and Future Work
	8 Conclusion

