System description: Isabelle/jEdit in 2014

Makarius Wenzel *

Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
CNRS, Orsay, F-91405, France

This is an updated system description for Isabelle/jEdit, according to the official release Isabelle2014
(August 2014). The following new PIDE concepts are explained: asynchronous print functions and
document overlays, syntactic and semantic completion, editor navigation, management of auxiliary
files within the document-model.

1 Introduction

Isabelle/jEdit is a Prover IDE (PIDE) that integrates parallel proof checking (6, 12]] with asynchronous
user interaction [8, [11} [13], based on a document-oriented approach of continuous proof processing
[7, O]. This enables the user to edit whole libraries of formalized mathematics directly in the editor,
with real-time visualization of feedback produced by the prover. Today Isabelle/jEdit is the default user-
interface for Isabelle, but this has required many years of developing the PIDE concepts and getting the
underlying Isabelle/Scala infrastructure into a robust and scalable state. The ultimate goal is to load the
whole Archive of Formal Proofs [3]] into a single IDE session, but that is growing at a high rate and
there are still theory name space problems preventing that.

Although Isabelle/jEdit is the most visible Prover IDE application, and sometimes people erroneously
attach the label “jEdit” to anything coming after the TTY loop and Proof General [[1] in Isabelle, the PIDE
principles are meant to be more general and applicable to other front-ends.

Isabelle/jEdit is an example for a rich-client application that is run on the local machine, with non-
trivial resource requirements: 2—4 CPU cores and 2-4 GB memory minimum. An interesting alternative
is the client-server application Clide [3, 4], which combines Isabelle/Scala/PIDE with recent Web tech-
nology on the JVM, and supports collaborative interactive theorem proving in particular.

Here is a brief historical overview of Isabelle/jEdit so far:

e In 2005 all major CPU manufacturers started to ship multicore systems for the consumer mar-
ket. Ever since the burden of explicit parallelism has been imposed on application developers, in
order to keep up with the changed side-conditions of Moore’s Law, and participate in continued
performance improvements of computing hardware.

e In 2006-2008 Isabelle and its underlying Poly/ML compiler / runtime system have managed to
follow the multicore trend. Isabelle2008 (June 2008) was the first official release to support parallel
proof processing in batch mode by default. At the same time it became apparent that user-interfaces
for parallel proof assistants require significant reworking of the interaction model.

e In 2010 the new Isabelle/PIDE concepts, with the underlying Isabelle/Scala infrastructure, and
Isabelle/jEdit as experimental application, were presented in public at UITP 2010 [8]. That was 2

*Research supported by Project Paral-ITP (ANR-11-INSE-001).
In September 2014, AFP consisted of 196 articles in 2144 source files, comprising 51 MB total. Checking all of that in
batch mode takes approximately 10h CPU time and 1 h elapsed time on a solid 8-core Intel Xeon workstation.

C. Benzmiiller and B. Woltzenlogel Paleo (Eds.): © M. Wenzel
Eleventh Workshop on User Interfaces for Theorem Provers (UITP 2014) This work is licensed under the
EPTCS 167, 2014, pp. 84 doi:10.4204/EPTCS.167.10 Creative Commons|Attribution License.

http://dx.doi.org/10.4204/EPTCS.167.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

M. Wenzel 85

years after the first concrete ideas for it had emerged, but still more than 1 year to go before the
first “stable release” of Isabelle/jEdit with Isabelle2011-1 (October 2011).

e In 2012 that initial release of Isabelle/jEdit was presented as system description and tool demon-
stration at CICM [9]] and some of its concepts were explained at the co-located UITP 2012 [11].

e The subsequent releases of Isabelle/jEdit in May 2012, February 2013, and November/December
2013 have consolidated the PIDE concepts and its implementation. So many new things were
introduced each time, that users have occasionally complained about having to re-learn the Prover
IDE with each Isabelle release.

The current official release Isabelle2014 (August 2014) is available from http://isabelle.in.
tum.de/website-Isabelle2014 for Linux, Windows, Mac OS X. This paper is dedicated to some
of its newly-introduced PIDE concepts; the extended and updated Isabelle/jEdit manual [[10]] provides
further information for end-users. Isabelle/jEdit in Isabelle2014 also includes a new Simplifier Trace
panel with an interactive view of the simplification process; this was contributed by Lars Hupel, see [2].

The Isabelle2014 distribution is notable as Isabelle/jEdit is now the sole user interface by de-
fault: it is the main Isabelle2014 application (specifically for each operating system family). The
isabelle jedit command-line tool may be used as well. The old isabelle emacs tool for Proof
General is not included anymore, but it is still available as optional component that needs to be down-
loaded separately and configured manually. The isabelle tty tool for raw READ-EVAL-PRINT
access to Isabelle/Isar on the terminal has been discontinued altogether.

2 Asynchronous print functions

Asynchronous print functions in the PIDE document model were already introduced in the release of
Isabelle2013-2 (December 2013), and refined further for Isabelle2014 (August 2014). The concept com-
bines user interaction and tool integration as explained for Isabelle2013-2 in [[13]].

The general approach is to continue the reforms of READ-EVAL-PRINT [11] as follows [13} §5]:

e Edits may add or remove PRINT operations, without disturbing the corresponding EVAL tasks.
This principle of monotonicity avoids interruption of tasks that are still active in the document
model, and allows to use long-running or potentially non-terminating tools as print functions.
Typically these are automated provers (via Sledgehammer) or disprovers (Quickcheck, Nitpick).

e Activation or deactivation of PRINT tasks is subject to the document perspective. The whole the-
ory library that is edited might be big, but only small parts are visible in the editor. PIDE document
processing takes the open text windows as indication where to invest resources for continuous pro-
cessing. Various declarative parameters control print functions that are implemented in user-space
of Isabelle/ML: startup delay, time limit, task priority, persistence of results within the document
model.

e Support for explicit document overlays, which are print functions with arguments provided by
some GUI components. This recovers the appearance of direct access to command execution in
the prover, despite the thick layers of asynchronous PIDE protocol between the stateless/timeless
prover and the physical editor.

The screenshots figure[T]and figure 2] illustrate the use of asynchronous print functions and document
overlays in practice.

http://isabelle.in.tum.de/website-Isabelle2014
http://isabelle.in.tum.de/website-Isabelle2014

86 Isabelle/jEdit in 2014

Figure (1| shows the result of Quickcheck, as an example for automatically tried tools that operate
on outermost goal statements (e.g. lemma, theorem), independently of the state of the current proof
attempt. Such tools work implicitly without arguments, but there are global options in Plugin Options
/ Isabelle / General / Automatically tried tools. Results are output as information messages, which are
indicated in the text area by blue squiggles and a blue information sign in the gutter of the text window.
The message content may be shown as for other prover output in a separate window. Some tools produce
output with sendback markup, which means that clicking on certain parts of the message inserts that into
the source in the proper place.

Scratch.thy (modified)

NEdE - & 9¢ XHB @ DB & © €

B Scratch.thy (~f)

datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"

fun tree_of_list :: "'a list = 'a tree" where
"tree_of_list [] = Tip"

| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

fun list_of_tree :: "'a tree = 'a list" where

"list_of_tree Tip = []"
| "list_of_tree (Tree x tl t2) = x # list_of_tree tl1 @ list_of_tree t2"

lemma "list_of_tree (tree_of_list xs) = xs"
by (induct xs) simp_all

©OfLlemma "tree_of_list (list of_ tree t) = t"l
|

[* Auto Quickcheck found a counterexample:

t = Tree ay (Tree a, Tip Tip) Tip

Evaluated terms:
tree_of list (list_of_tree t) =

Tree ay Tip (Tree a1 Tip Tip)
18,42 (476 (isabelle,sidekick,UTF-8-Isabelle) UGIEERIEI 04MB 11:52

Figure 1: Quickcheck as automatically tried tool

Figure [2| shows the Sledgehammer panel, which provides a view on some independent execution
of the Isar command sledgehammer, with process indicator (spinning wheel) and GUI elements for
important Sledgehammer arguments and options. Any number of Sledgehammer panels may be active,
according to the standard policies of jEdit window management. Closing such a dockable window also
cancels the corresponding prover tasks.

Technically, the Sledgehammer panel is a conventional GUI component on the surface, but it is
connected to the PIDE document model by producing some document overlay when the user pushes
the Apply button. This leads to some document edit that attaches a suitable asynchronous print function
(with arguments taken from the GUI panel), and forks some print task on the prover side. Any output
from that task is incrementally shown in the GUI panel. The Cancel button uses the execution id of the
running print operation to interrupt it on demand.

The overall interaction of the PIDE front-end with the prover back-end does not prevent the user
from editing the text nor the prover from checking proofs in parallel. The only impact is some loss of
performance to other tools in the background, but this can be balanced via global system options to adjust
to the available number of cores.

M. Wenzel 87

@00 Seratch.thy (modified)]
TE8dE:-2:-9¢ XOE 3@ 0 B # @ |
m Scratch.thy (~/)
~ |theory Scratch
imports Main
begin

lemma "[x] = [y] — x = y"lby (metis list.inject)

Provers: |e spass z3 - Isar proofs Apply Cancel Locate 100% A

"e"i Try this: by (metis the_elem_set) (6 ms).
"z3": Try this: by (metis list.inject) (7 ms).
"spass": Try this: by (metis list.inject) (11 ms).

B | Sledgehammer |

5,26 (60/83) (isabelle,sidekick,UTF-8-1sabelle) UGHERTIEROMB 11:43
Figure 2: An instance of the Sledgehammer panel

3 Syntactic and semantic completion

Semantic completion, based on authentic information from the proof context, has been a “nice to have”
features over several years. It was not immediately obvious to teach that trick to a traditional LCF-style
proof assistant like Isabelle, which was not made for that 25 years ago.

Even just the editor GUI part of auto completion has turned out much less trivial than anticipated in
200972010 [8]], where the (naive) idea was to connect to an existing completion plugin of jEdit. Over the
last 5 years the completion mechanism in Isabelle/jEdit has changed several times, but various problems
with the timing of GUI events still occur in Isabelle2013-2.

Completion intercepts the regular key event handling of the main text area, and needs to work
smoothly as the user is typing slowly or quickly. The completion popup changes the keyboard focus
to a different component, which can lead to odd effects of loosing key events in a situation where the
user is typing fast, but the graphics display is too slow to catch-up (e.g. due to bad X11 rendering perfor-
mance, which can happen both for local and remote displays).

The lesson learned here is that a Prover IDE is a highly interactive computer-game, with demands of
real-time reactivity that were not present in TTY front-ends from the past.

Both the GUI event handling and the semantic aspects of completion in Isabelle/jEdit have been
significantly reworked for Isabelle2014, according to the following general principles.

e Syntactic completion is based on information that is immediately available in the editor, e.g. key-
word tables for certain sub-languages of Isabelle, like the so-called “outer syntax’ of Isabelle/Isar,
or Isabelle/ML. Completion for Isabelle symbols is an important a special case of this: when the
user types “==>" he normally expects to get “=—>"" within formal text.

e Semantic completion is produced by the prover eventually, after a full round-trip through the
asynchronous PIDE protocol. This information usually arrives with a delay of 100-500 ms and is
then merged with the available syntactic completion, before it is used for GUI rendering (e.g. for
emphasis of text or a popup).

88 Isabelle/jEdit in 2014

e Completion markup may be produced by the prover in any of the following forms:

— Language context guides the syntactic completion. Isabelle is a framework of many sub-
languages, which have different requirements for completion. The language context for some
text range informs the editor about the language name (e.g. to use a different keyword table),
and some common flags like use of Isabelle symbols and antiquotations.

For example, the term language in Isabelle supports symbols, but no antiquotations. In con-
trast, the document language (a semi-formal version of I4TEX) supports antiquotations, but
no symbols. An antiquotation that puts a term inside some document source needs to switch
the language context accordingly, and several such changes of language context can happen
in a small piece of theory source.

This approach already works smoothly for text that is structurally mostly correct, but a special
challenge of PIDE interaction is to treat situations of partial or broken input gracefully. The
expectation of the user versus the system may disagree about the intended structure of some
unfinished text.

— Completion items result from failed name space lookups of formal entities (type names,
term constants, fact names etc). Luckily the prover already has a mostly uniform concept of
name spaces, in order to intern names given by the user to the actual formal entities from the
context. The error situation has been slightly modified to include a list of alternative names
into the error message, as PIDE markup that is not immediately visible, but available to the
completion mechanism.

For performance reasons, it is important to produce completion items only for failed name-
space lookups, which are relatively rare, and not for the majority of successful ones. There
is nonetheless a simple way for the user to request more information: adding a suffix of
underscores to a partial name provokes an error with extra completion information. A double
underscore on its own serves as wildcard to query the whole name space, but output is always
truncated to a reasonable limit for display. Explicit completion requests via underscores are
particularly important for the term language, because undeclared constants alone are accepted
as free variables, without any error nor completion information.

— No-completion zones enable the prover to negate already discovered syntactic completions
of the editor. Such non-monotonic change of the meaning of incremental document content
is always critical, and can lead to erratic behaviour. Here it should be seen as a feature of last
resort, to suppress odd effects when Isar keywords like “:” and should remain like that,

and not be offered as completion candidates for symbols “€” and “V”".

“I”

Spell-checking is another application of the same PIDE infrastructure, which is somewhere in be-
tween syntactic and semantic completion. Based on prover markup for the language context, e.g. to
determine ranges of prose text inside document sources or comments, the editor uses a conventional
dictionary-based spell-checker to propose alternatives to words spotted in the text. This is important
to write books and papers based on Isabelle theory sources, which is in fact the most relevant practical
application of Isabelle over 15 years.

Figure [3| illustrates spell-checking within informal text: the default dictionary does not know about
Hilbert’s, but this is not an error, merely highlighting. Moreover there is semantic completion within
the term language, using an extra underscore to let the prover expose constants from the theory context.

M. Wenzel 89

‘@00 " Roy_Floyd_Warshall.thy (modified))
DEdE & 9¢ X008 @ CBREIE-BX & @ |«

/M Roy_Floyd_Warshall.thy (~/isabelle/repos / AFP/thys /Roy_Floyd_Warshall/)

~ [Lemma
"steps rel (Suc n) =

steps rel n U {(x, y). x € preds (steps rel n) n & y € succs (steps rel n) n}"
by (simp add: preds_def succs_def)

> [|text <
The main function requires an upper bound for the iteration, which
is left unspecified here (via Hilbert's choice).

>

sauoay] PpEPIS uoneRAwnlog 4 0

~ |definition is_bound :: "relation = nat = bool"
@| where "is_bound rel n «—— (¥m € rel. m < n)"

False (constant "HOL.False")
O(definition "transitive_closure rel|giyianE el RS r NS ED)
Func (constant "BNF_Constructions_on_Wellorders.Func")

Func_map (constant "BNF_Constructions_on Wellorders.Func_map")
section <Correctness proof> Finite Set.fold (constant "Finite Set.fold")
Fun.swap (constant "Fun.swap")

~ |subsection <Miscellaneous lemmas>

B~ OQutput Query Sledgehammer Symbols
l57,35(2096f78211 (isabelle,sidekick UTF-8-Isabelle) UGHIF3/393MB 3:55 PM

Figure 3: Spell-checking within informal text and semantic completion within terms

4 Editor navigation

PIDE document content consists of sources that are augmented by semantic markup from the prover, as
explained in [7]. The abstract syntax for the markup follows untyped XML, and the semantics is often
close to hypertext, with occurrences of formal entities in defining or referencing positions. Thus it is
rather obvious to think of standard XML/HTML rendering and browsing of PIDE documents.

In fact, early versions of Isabelle/jEdit (from 2010 to 2012) were using a basic HTML4 rendering
engine, always with the anticipation for the HTMLS5 browser component that was promised by Sun, and
delivered at last by Oracle for Java 7. None of this is used in Isabelle/jEdit today, because it introduces
more problems than it solves: HTML is a very complex collection of standards in many versions and
different implementations. Professional Web designers (and their tools) know how to cope with major
browsers, but exotic HTML components for Java/Swing or JavaFX can hardly be expected to achieve
professional quality.

Already since 2013, Isabelle/jEdit uses a slightly augmented version of the main jEdit text area,
with specific support for active areas. Hyperlinks are an important special case of that: prover markup
is turned directly into familiar clickable spots in the text (via mouse hovering with the CONTROL or
COMMAND modifier key pressed). In 2014 the visual appearance approximates that of major Web
browsers further, e.g. due to change of the mouse pointer. There is now also the long-missing connection
to an existing Navigator plugin from the jEdit repository, which is a rare case of successful re-use of
software components: no special tricks nor reconsideration of the underlying concepts were required, to
make Isabelle/jEdit converge with regular HTML browsers in this respect.

Isabelle/jEdit text areas with markup and hyperlinks are used uniformly wherever that makes sense:
for the main editor buffer, output panels, tooltips etc. The user who sees a printed term somewhere can
follow the implicit links to the definitions of the formal entities shown there, and return easily to the

90 Isabelle/jEdit in 2014

Scratch.thy (modified) o]
I@dE 2:9¢ A0 ER& CE @ & © €=
B Scratch.thy (~/) - _ Back |
~ [theory Scratch -
imports Main
begin

term "x = x"l
|

free variable

]
language: type
free 5 B

class "HOL.type"

5,13 (47/47) (isabelle,sidekick,UTF-8-1sabelle) UGHETE4/403MB 11:57

Figure 4: Browsing PIDE document content via tooltips and hyperlinks

original editor location via the now standard Back button in the toolbar, see figure

S Auxiliary files within the document-model

Ultimately, the main job of an IDE is to manage a collection of sources and the results of processing them
seamlessly, taking implicit and explicit structural dependencies into account. So far the PIDE document
model was based on two levels in the structural hierarchy: an acyclic graph of document nodes (theories),
where each node consists of a list of command spans (like in Proof General [1]]).

Apart from that, it was always possible to refer to auxiliary files as a semi-official feature addition, but
with limited management in the IDE. That unsatisfactory situation has ended, and there is now first-class
support for auxiliary files that appear as arguments to special load commands inside document nodes.
Thus the source text is conceptually extended by so-called text chunks that are stored elsewhere, and may
be edited / loaded / saved independently of the theory itself. The Prover IDE takes care to forward the
correct version of auxiliary file content to the prover as a blob, but without using the global ﬁle—systemE]

This extra file management is particularly relevant for development of Isabelle/HOL itself within
the Prover IDE. According to usual practice of LCF-style proof assistants, the main logical environment
emerges by alternating theory specifications with ML modules. It is now possible to use Isabelle/jEdit to
explore the inner workings of Isabelle/HOL modules and their dependencies on theory content, notably
in conjunction with the navigation support explained above (§4).

For live editing of the Isabelle/HOL sources, the logic session image of Isabelle/jEdit needs to be
set to Pure, which requires a restart of the Prover IDE. Then any of the theories may be opened, e.g.
$ISABELLE_HOME/src/HOL/HOL. thy by using that path notation literally in the jEdit file browser (even
on MS Windows). The ML _file commands in such theories refer to Isabelle/ML modules that are com-
piled on the spot. By default the prover reads the source from the file-system, but by following the
implicit hyperlink of the file argument (or opening files in the jEdit file-browser) the editor takes over the
responsibility for the sources and its subsequent changes.

ZBy-passing the file-system is an important PIDE principle to avoid statefulness and restricting the document-model to a
single version. Here the jEdit buffer management takes over this role: the current editor content is propagated to the prover as
latest version, while further changes may follow.

M. Wenzel

‘@00 |] HOL.thy

| O HOL.thy (SISABELLE_HOME/src/HOL/)

~ |header {* The basis of Higher-Order Logic *}

~ [theory HOL
imports Pure "~~/src/Tools/Code_Generator"
keywords
"try" "solve_direct" "quickcheck" "print_coercions" "print_claset"
"print_induct_rules" :: diag and
"quickcheck_params" :: thy_decl
begin

ML_file "~~/src/Tools/misc_legacy.ML"
ML_file "~~/src/Tools/try.ML"

ML_file "~~/src/Tools/quickcheck.ML"I
ML_file "~~/src/Tools/solve_direct.ML"
ML_file "~~/src/Tools/IsaPlanner/zipper.ML"
ML_file "~~/src/Tools/IsaPlanner/isand.ML"
U|ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML"
U|ML_file "~~/src/Provers/hypsubst.ML"

quickcheck.ML (modified), options

UEdy & 9¢ XN & "HELD HX &# @69

| @ quickcheck.ML ($ISABELLE_HOME/src/Tools /)

(* automatic testing *)

fun try_quickcheck auto state =
let
val ctxt = Proof.context_of state;
val i = 1;
val res =
state
|> Proof.map_context (Config.put report false #> Config.put quiet true)
|> try (test_goal (false, false) ([1, [1) i);
: fun test O]z "FIxvE";
in
(case res of
NONE => (unknownN, state)
| SOME results =>
let
val msg = pretty_counterex ctxt auto (Option.map (the o get_first response_of) results)
in
if is_some results then
(genuineN,
state
|> (if auto then
Proof.goal_message (K (Pretty.mark Markup.information msg))
else
tap (fn _ => Output.urgent_message (Pretty.string_of msg))))
else
(noneN, state)
end)
end
|> " (fn (outcome_code, _) => outcome_code = genuineN);

vd_=Tw¢wLﬂmpmmwm%W,Qm@ﬁﬁﬁmwﬂmﬁﬂmwkhMMLtwjmmmmﬂh
J-B

end; system option "auto_guickcheck"

| O options (SISABELLE_HOMEsrc/HOL/Taols /etc/)

~ public option auto_methods : bool = false
== "try standard proof methods automatically"

hd Eublic option auto_quickcheck : bool = true
== "run Quickcheck automatically"

(S X 1 RN AU I, PP 1 S RO, [S

B ~ Find Output Simplifier Trace Sledgehammer Symbols

4

uonEUBWNIOg

sauoayL HIDPEPIS

| 567,16 (22014/22729) (isabelle-ml,none,UTF-8-lsabelle) UGIEEIEREINE 11:37 AM

Figure 5: Live editing and browsing of Isabelle/HOL ML files

91

92 Isabelle/jEdit in 2014

Thus the user may edit Isabelle/ML source files, without ever saving the content, while the Poly/ML
compiler provides continuous feedback on warnings, errors, name references, inferred types etc. as part
of the PIDE document model (see figure [5). This works reasonably well for source files up to 100 KB
each. The total volume of ML sources contributing to Isabelle/HOL is actually so high that its cumulative
PIDE markup requires more than 2 GB Java heap space. This performance bottle-neck is addressed by
some special tricks with asynchronous print functions (§2) which were introduced in 2013 for quite
different applications. Here the mechanism is re-used as follows: Poly/ML compiler markup is stored in
compact form within the ML process, and only reported to the editor when the corresponding ML file
becomes part of the visible perspective. The document markup is removed from the editor process when
visibility gets lost.

Thus the massive amount of PIDE markup produced by the ML compiler is “swapped-in” and
“swapped-out” on demand, without changing the content of the ML environment itself. Consequently
the full Isabelle/HOL bootstrap environment can be edited with full Poly/ML markup, even on small
computers with only 4-8 GB memory.

As a corollary to this scalable approach to continuous editing and compilation of Isabelle/ML files,
there is also support for official Standard ML via the SML file command. Thus Isabelle/jEdit can be
used as IDE for SML’97, without any connection to theory or proof development. The two ML environ-
ments are managed independently within the same runtime system, but there are also simple means to
exchange toplevel ML bindings, e.g. to re-use the parallel functional programming library of Isabelle/ML
in Standard ML, or to print messages in Standard ML that are recognized by the Prover IDE for its Out-
put panel. The Prover IDE provides some simple examples for that in its Documentation panel, in the
entry for $ISABELLE_HOME/src/Tools/SML/Examples.thy that is only a single click away from di-
rect editing and browsing. Here the enclosing theory is used like a project file for SML modules, with
the possibility to add extra explanations around it.

Thus Standard ML has gained a reasonably modern IDE after some decades of waiting. Naviga-
tion of the sources works as usual (§4)), but semantic completion (§3)) is still missing because Poly/ML
(version 5.5.2) does not provide that information. Also lacking is support for the interactive debugger
of Poly/ML. Such further fine-grained interaction with the ongoing execution process would be quite
useful for other Isabelle languages as well, e.g. to analyse the behaviour of tactical expressions beyond
the single-stepping of outermost commands or adhoc printing of intermediate states.

If that train of thought is continued further, it could meet with recent trends towards “live program-
ming”, as advocated by Bret Victor on his blo for example. This is a revival and continuation of older
ideas from Smalltalk of the 1970s and 1980s, but adapted to the possibilities of the hardware from today.
Interactive theorem proving has always been conceptually close to such “dynamic” development models,
and the removal of the TTY loop in Isabelle/PIDE could help to demonstrate that in reality.

A major difference to Smalltalk and classic object-oriented programming is that Isabelle/PIDE doc-
ument content is immutable and processed monotonically, in a timeless and stateless manner, with func-
tional update of pure data. That used to be costly in the past, but on the multicore hardware of today
immutability is a big asset.

3http://worrydream.com

http://worrydream.com

M. Wenzel 93

6 Conclusion

This paper has covered the main novelties of Isabelle/PIDE and its Isabelle/jEdit application from the
past 2 years. The total lifespan of the project so far has been approx. 6 years. This relatively late stage
is characterized by cumulative and incremental improvements, towards a more and more consolidated
prover interface that users find hard to avoid.

With the “self-application” of the IDE to develop ML modules of Isabelle itself, the name of inte-
grated development environment is really justified. Ambitious users may even invent their own add-on
languages within PIDE documents, and apply the same principles of continuous editing and processing
with rich markup. This can be done with or without connection to the formal content of Isabelle theories,
as demonstrated by the IDE for Standard ML that is now included in Isabelle2014.

Despite the growing size of the system, it is unlikely that it will ever get finished: the more it advances,
the more requests from users to add features. Some important aspects for the future are as follows:

o Full integration of the Isabelle document preparation system into the IDE.

Presently the document sources are edited in Isabelle/jEdit as IATEX chunks within theory files,
while the build process works in batch-mode. This used to be a system shell invocation of
isabelle build, but now also works within the jEdit Console plugin viaBuild.build in Scala.
At the next stage it should be instantaneous within the running PIDE session, without demanding
an extra build job.

e Support for a remote prover process via SSH socket connection.

Veterans of early Proof General may remember the old RSH facility (long before SSH came into
existence), which was important to work on big projects. The prover back-end would run remotely
on a server-class machine, and the editor front-end locally on a normal workstation (or laptop).
This traditional distribution of the workload becomes important again, as the consumer market
stagnates at relatively small number of cores (4—8, maybe 16).

There is also a pending problem of memory size: present mid-range machines are equipped with
8 GB, sometimes 16 GB. This works for medium and big applications, where the prover is still
running tightly in 32 bit mode and 3—4 GB maximum memory. Really large Isabelle applications
already require 64 bit mode, and thus need double memory size before any benefit can happen.
The memory footprint of the Isabelle/jEdit alone is 4-8 GB. This means that 32 GB or more is
required, but it is often seen on remote servers only.

e Genuine support for structured proof editing within the IDE.

So many conceptual problems and technical side-conditions had to be addressed over the past 6
years of PIDE that proper support for proof editing has been neglected. The Isabelle/Isar proof
language with its rich structure is predestined to go beyond mere “proof scripts”, but it still needs
to be done seriously. For example, there should be smart templates (e.g. for induction proofs),
depending on the present document source within the editor and its partial processing by the prover.

The near future should also see the final disposal the TTY loop, which merely serves as optional
legacy feature in Isabelle2014, and needlessly complicates the implementation.

94

Isabelle/jEdit in 2014

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

David Aspinall (2000): Proof General: A Generic Tool for Proof Development. In Susanne Graf & Michael
Schwartzbach, editors: European Joint Conferences on Theory and Practice of Software (ETAPS), LNCS
1785, Springer, doi:10.1007/3-540-46419-0_3.

Lars Hupel (2014): Interactive Simplifier Tracing and Debugging in Isabelle. In Stephen M. Watt, James H.
Davenport, Alan P. Sexton, Petr Sojka & Josef Urban, editors: Intelligent Computer Mathematics (CICM
2014), LNCS 8543, Springer, doi:10.1007/978-3-319-08434-3_24,

Christoph Liith & Martin Ring (2013): A Web Interface for Isabelle: The Next Generation. In Jacques Carette
et al., editors: Intelligent Computer Mathematics (CICM 2013), LNCS 7961, Springer, doi:10.1007/978-3-
642-39320-422.

Christoph Liith & Martin Ring (2014): Collaborative Interactive Theorem Proving with Clide. In Ger-
win Klein & Ruben Gamboa, editors: Interactive Theorem Proving (ITP 2014), LNCS 8558, Springer,
doi:10.1007/978-3-319-08970-6_30.

L. C. Paulson, T. Nipkow & G. Klein, editors: Archive of Formal Proofs. http://afp.sourceforge.net/|

M. Wenzel (2009): Parallel Proof Checking in Isabelle/Isar. In G. Dos Reis & L. Théry, editors: ACM
SIGSAM Workshop on Programming Languages for Mechanized Mathematics Systems (PLMMS 2009),
ACM Digital Library.

M. Wenzel (2011): Isabelle as Document-oriented Proof Assistant. In J. H. Davenport, W. M. Farmer,
F. Rabe & J. Urban, editors: Conference on Intelligent Computer Mathematics / Mathematical Knowledge
Management (CICM/MKM 2011), LNAI 6824, Springer, doi;10.1007/978-3-642-22673-1_17.

Makarius Wenzel (2010): Asynchronous Proof Processing with Isabelle/Scala and Isabelle/jEdit. In
C. Sacerdoti Coen & D. Aspinall, editors: User Interfaces for Theorem Provers (UITP 2010), ENTCS,
doi:10.1016/j.entcs.2012.06.009.

Makarius Wenzel (2012): Isabelle/jEdit — a Prover IDE within the PIDE framework. In J. Jeuring
et al., editors: Conference on Intelligent Computer Mathematics (CICM 2012), LNAI 7362, Springer,
doi:10.1007/978-3-642-31374-5_38.

Makarius Wenzel (2013): Isabelle/jEdit. Part of Isabelle distribution. http://isabelle.in.tum.de/
website-Isabelle2014/dist/Isabelle2014/doc/jedit.pdfl

Makarius Wenzel (2013): READ-EVAL-PRINT in Parallel and Asynchronous Proof-checking. In Cezary
Kaliszyk & Christoph Liith, editors: User Interfaces for Theorem Provers (UITP 2012), EPTCS 118,
doi:10.4204/EPTCS.118.4.

Makarius Wenzel (2013): Shared-Memory Multiprocessing for Interactive Theorem Proving. In Sandrine
Blazy, Christine Paulin-Mohring & David Pichardie, editors: Interactive Theorem Proving — 4th Interna-
tional Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, Lecture Notes in Computer
Science 7998, Springer, doi:10.1007/978-3-642-39634-2_30.

Makarius Wenzel (2014): Asynchronous User Interaction and Tool Integration in Isabelle/PIDE. In Gerwin
Klein & Ruben Gamboa, editors: Interactive Theorem Proving — 5th International Conference, ITP 2014,
Vienna, Austria, Lecture Notes in Computer Science 8558, Springer, doi:10.1007/978-3-319-08970-6_33,

http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/978-3-319-08434-3_24
http://dx.doi.org/10.1007/978-3-642-39320-4_22
http://dx.doi.org/10.1007/978-3-642-39320-4_22
http://dx.doi.org/10.1007/978-3-319-08970-6_30
http://afp.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-22673-1_17
http://dx.doi.org/10.1016/j.entcs.2012.06.009
http://dx.doi.org/10.1007/978-3-642-31374-5_38
http://isabelle.in.tum.de/website-Isabelle2014/dist/Isabelle2014/doc/jedit.pdf
http://isabelle.in.tum.de/website-Isabelle2014/dist/Isabelle2014/doc/jedit.pdf
http://dx.doi.org/10.4204/EPTCS.118.4
http://dx.doi.org/10.1007/978-3-642-39634-2_30
http://dx.doi.org/10.1007/978-3-319-08970-6_33

	1 Introduction
	2 Asynchronous print functions
	3 Syntactic and semantic completion
	4 Editor navigation
	5 Auxiliary files within the document-model
	6 Conclusion

