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Software testing is the most commonly used technique in the industry to certify the correctness
of software systems. This includes security properties like access control and data confidentiality.
However, information flow control and the detection of information leaks using tests is a demanding
task without the use of specialized monitoring and assessment tools.

In this paper, we tackle the challenge of dynamically tracking information flow in third-party
Java-based applications using dependent information flow control. Dependent security labels in-
crease the expressiveness of traditional information flow control techniques by allowing to parametrize
labels with context-related information and allowing for the specification of more detailed and fine-
grained policies. Instead of the fixed security lattice used in traditional approaches that defines a
fixed set of security compartments, dependent security labels allow for a dynamic lattice that can be
extended at runtime, allowing for new security compartments to be defined using context values.

We present a specification and instrumentation approach for rewriting JVM compiled code with
in-lined reference monitors. To illustrate the proposed approach we use an example and a work-
ing prototype, SNITCH. SNITCH operates over the static single assignment language Shimple, an
intermediate representation for Java bytecode used in the SOOT framework.

1 Introduction

Data confidentiality is central in current software engineering practices. In the past years, there have been
recurrent news about information leaks surfacing as a result of subtle programming errors. For instance,
GitHub1 and Twitter2, both large-scale systems with impact on a large number of users, discovered and
reported that their users’ passwords were stored in cleartext to internal system logs, from where an ill-
intended employee could have access to them and enter the users’ accounts. Certifying the functional
correctness of software systems by testing is commonly accepted as a satisfactory approximation for
compliance with functional specifications and requirement fulfilment in the software industry. However,
testing aspects such as data confidentiality is a difficult task when using traditional approaches. Properties
like access control and information flow control require setting up complex testing scenarios where the
symptoms of an error are hardly detectable. Typically, information leaks are only perceived at a global
scale by detailed observation of side-effects.

Information flow analysis [5, 10, 20, 25] is a language-based approach for information leak detec-
tion on software systems. Information flow analysis is present in the literature, in the form of static
and dynamic analysis, each with their advantages and disadvantages. Static analysis usually requires
a considerable effort in code annotation or the complete refactoring of the target system. Besides, the

1http://bit.ly/2XNfEEU
2http://bit.ly/2XuMH16
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over-approximation of results and the existence of false positives also poses an obstacle to the usability of
languages and tools [15, 19, 22] that employ this kind of analysis. The alternative presented by dynamic
analysis techniques produces less false positives but has some problems of its own. It needs exhaustive
testing to achieve maximum coverage, and it is subject to label creeping [1, 20], i.e., the monotonic
increase of the security label of values rendering them unusable.

Information flow control mechanisms depend on a security lattice [10] whose security labels are,
usually, fixed. Consequently, existing are usually too restrictive when defining information flow poli-
cies, only allowing to define coarse-grained security policies which are inadequate in many cases. For
instance, one often groups all users of a system under the same security label “User”, which does not
prevent user A from accessing information of a user B. We follow a more expressive approach that in-
troduces dependent types for information flow [14, 16] and access-control [7] allowing for the definition
of data-dependent policies. Value-dependent security labels improve the expressiveness of traditional
information flow techniques. By allowing the parametrization of security labels with context-related
information, it is possible not only to define more detailed and fine-grained policies, but also to create
new security compartments at runtime. Java Information Flow (JIF) [18, 19] supports dynamic labels
which differ from dependent security labels. Dynamic labels follow a decentralized security model [18]
based on the notion of data ownership and authorizations. According to this model, each data item has an
owner, and the owner allows, or not, its data to be read or written by some entity. Dependent security la-
bels follow a traditional security model with a security lattice that hierarchically organizes security labels
and where a datum has a security label and can only be accessed by entities with sufficient privileges.
For instance, using dependent security labels, we can define policies restricting access to an employee’s
personal telephone number to the employee itself and its department manager.

In this paper, we present a strategy to specify and rewrite the intermediate Java code of applications
to embed reference monitors capable of enforcing information flow policies using dependent security
labels. Our low-level code rewriting approach for the Java virtual machine language is inspired by tools
like SASI [?] and TaintDroid [12] that automatically monitor the confidentiality of information of com-
piled Java programs. To check data confidentiality in an application, TaintDroid [12] instruments the
underlying runtime system (Android Java virtual machine) while our approach instruments the applica-
tion itself. We require the specification of some selected classes that make up the entry points of a system,
for instance, service controllers [9] or DAO classes3 [2]. Then, we use this information to introduce in-
lined reference monitors and instrument the application code to taint computed values with dependent
security labels. Our approach follows the style and semantics of the seminal work by Austin and Flana-
gan on dynamic information flow analysis [5] and is inspired by works such as the one by Lourenço and
Caires [16, 17] on dependent information flow analysis and the work of Chandra and Franz [8] about
hybrid information flow analysis for Java bytecode.

The rewriting process, presented in section 3 operates over an intermediate representation in the
static single assignment form [4, 26] (SSA). SSA is a way to arrange operations such that each variable
is defined only once and allows to simplify and improve some optimizations such as constant propaga-
tion, value numbering, common sub-expression elimination and partial redundancy elimination among
others. We present an example that illustrates the rewriting process over an intermediate representation
in the SSA form. Our approach is backed by a prototype tool, SNITCH, to instrument intermediate Java
code. SNITCH was evaluated on small-scale web applications using Java servlets and it uses the SOOT
framework4 [23] for code rewriting, a framework for optimizing and manipulating Java bytecode and

3Database access objects. Dtatypes that match database table schemas.
4https://github.com/Sable/soot
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offers multiple intermediate representations. One of such representations is Shimple, an intermediate
representation in the SSA form over which our prototype operates.

Our contributions can be summarized as follows:

• a rewriting system for instrumenting static single assignment instructions with in-line reference
monitors for information flow control with dependent information flow labels;

• a specification schema to define dependent information flow policies;

• a way to define dependent security labels in Java; and

• a tool capable of instrumenting third-party compiled code with an in-line reference monitor.

We leave for future work the introduction of abstract interpretation to optimize the computation
of security labels and mechanisms like the one presented by Austin and Flanagan [6] to reduce label
creeping and increase the number of accepted programs. Abstract interpretation would allow us not only
to reduce the number of security label related computations executed at runtime, but also to achieve a
gradual approach.

We start this paper by briefly presenting some concepts on dependent information flow labels in
Section 2. Section 3 presents our approach and describes an example of a web application. As we
present our approach we also describe the steps required to instrument the example application to test
it for information leaks. In Section 4 we illustrate the code rewriting process. In Sections 5 and 6 we
provide validate our approach and discuss the related work. Finally, in Section 7, we conclude with some
remarks on how to pursue this line of work.

2 Dependent Security Information Flow

Language-based security [21], and in particular information flow control [10], specify and provide a
platform to enforce security policies from the perspective of data creation, manipulation and data flow
operations. Information flow control allows the definition of hierarchic security compartments and the
tracking of all uses of data, ensuring that higher security data does not flow (leak) to unrelated or lower
security compartments. Traditionally, Security labels are organized in lattices [11] and are associated
with value types at compile-time [18, 24] or used to taint values at runtime [5, 8].

Information flow control allows for the detection of both explicit and implicit illegal information
flows. Explicit flows result from data transfer operations such as assignments, while implicit information
flows arise from the control flow of a program. High security label computations can have side effects on
values of lower security labels allowing those with access to lower labelled variables to infer the values of
those computations. The side effects of high security computations on lower labelled values go against
the non-interference property, a property at the core of information flow control and that denotes the
absence of information leaks. According to non-interference, changes to high security label values must
not reflect themselves on lower security labelled values, i.e., changes in the secret input of a program
must not interfere with the program’s public output [25].

Traditional security lattices enforce a significant degree of label squashing due to the lack of preci-
sion of the security labels used. For instance, it is usually the case that a single security label is used to
represent all the users of a system, not allowing to define fine-grained, per user, information flow restric-
tions. The introduction of dependent security policies increases the preciseness of security specifications
and introduces a higher degree of flexibility and usability. Dependent security policies are present in ap-
proaches like value-dependent information flow types [14, 16, 17], and dynamic labels [19]. The former
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Figure 1: Code Instrumentation Phases

was first introduced in the context of access control policies in [7] and then extended to the domain of
static checking of information flow in [14, 16, 17]. With dependent security labels, we can express, for
instance, that a given function yields values of a parametric security label user(u) where u is a runtime
value, allowing for row-level compartmentalization of security data visibility (c.f., [16]). The prede-
fined lattice is automatically extended to capture dependent security labels like user(u), user(>), and
user(⊥). The generic security label user(>) is the label taht allows access to all users’ data. The
security label user(⊥) is the label all users can read. We have the relations user(⊥) < user(u) <

user(>), for any user u, and user(u) # user(v) for all users u and v such that u 6= v. The first re-
lation means that, for any user u, data can flow from the user’s security compartment user(u), to label
user(>), and from user(⊥) to label user(u).

3 Technical Approach

Our technical approach follows the phases depicted in Figure 1. Given an application, a dependent
security lattice, and a security specification for key classes of the application, our approach instruments
the application with an in-lined reference monitor capable of enforcing information flow policies. We
next illustrate our approach with the help of an example.

Let us consider a small web application to implement a directory for a given company integrated in
their website. The information stored by such a system for each employee includes its identifier, name,
address, salary, and its password. We define two kinds of employees in this example: supervisor and
associate. The latter category includes extra information, namely its supervisor and information about
its last evaluation. Other users include unregistered users accessing the company’s website.

In this example, we consider the following access constraints to the stored information:

• only registered users can see the address of other users (employees);

• an associate employee can only access its salary;

• a supervisor user can access all associate users’ salary information;

• the information regarding who supervises who can only be accessed by supervisor users;

• the information about the evaluation of an associate user can only be accessed by supervisor users;

• passwords are always secret, and no one but its owner should access it.

Our example implements both retrieval and insertion operations. The operations are the following: it is
possible to list the employees in the system; to retrieve the information about a specific employee; to
compute the average salary; to add new employees to the system. Only a registered user, an employee,
can execute the operation that retrieves the information about any other employee. This operation exhibits
different behaviours depending on who is executing it and what information is retrieved.
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Figure 2: Typical architecture of a web application

In Figure 2 we illustrate the generalised architecture of a web application. For the sake of space and
simplicity, in our evaluation example we merged the application logic and request dispatchers in a single
layer. In Figure 4 we present the DAO classes to represent the company’s employees. Class Associate
represents associate employees and Class Supervisor represents supervisor employees. Both classes,
Associate and Supervisor, extend the abstract class Employee that contains the information common
to both kinds of employees. Class Supervisor is empty since it does not add any new fields to class
Employee. We omit all class methods as there are only getters and setters.

Dependent Security Labels The instrumentation of a system starts by defining the security specifica-
tion. First, it is necessary to define and implement custom security labels to extend the default security
lattice provided by SNITCH which only includes two built-in labels. The label Public, the lowest
security label of all, and the label Secret, the highest security label of all.

Custom security labels are implemented by extending the abstract class SecurityLevel, provided
in a companion library, and by defining a required comparator method. By implementing the missing
comparator method, we model the security lattice used by the reference monitor during the system’s
execution. Each label requires also a constructor which takes the same parameters as the security la-
bel. For each label parameter, the label’s contructor requires one extra parameter of type int. For
instance, a custom label User, parametrized by a String and a long has a constructor with the signature
User(String,int,long,int). The extra parameter tells the monitor if the value passed to the security
label’s constructor is ⊥, >, or if the corresponding parameter is to be considered as is.

In order to instrument the example, we define two custom security labels, SupervisorSL, and
AssociateSL, which define security compartments for supervisors and associates, respectively. Both
labels have a single parameter, an employee id, and their comparator methods define the security lattice
depicted in Figure 3.

Specifications files Besides custom security labels, it is necessary to define a security layer, using a
set of specification files and the security lattice (custom security labels) used to in-line the reference
monitor. In Figure 2 we show the layer that needs specification, the classes that make the boundaries of
the system. This layer includes all the classes that communicate with the exterior context of the system,
such as service controllers and DAO classes in a typical architecture.
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Figure 3: Security lattice used to instrument example.

abstract class Employee {
long id;
String name;
String address;
double salary;
String pwd;
...

}

class Associate extends Employee {
Supervisor supervisor;
double evaluation;
...

}

class Supervisor extends Employee {}

Figure 4: Classes Employee, Associate, and Supervisor

Specifications files include annotations to define the security labels of class fields and method sig-
natures. The semantics of field annotations is the following. If a security label is explicitly assigned
to a class field, it will be fixed (as maximum) throughout the entire execution. Any attempt to store a
value in such a field will result in one of two outcomes: if the incoming value’s security label is lower
than the expected security label, then the incoming value’s security label is upgraded; if the incoming
value’s security label is higher than the expected field’s security label, the monitor signals an information
leak. When a field is not annotated with a security label, it changes according to the stored values. We,
however, do not let assignment operations to lower the security labels of variables or fields (c.f., [5]) to
avoid implicit information leaks.

When defining specifications for methods, it is possible to annotate both parameters and return val-
ues. Method annotations differ from field annotations as they include one of two modifiers, ? or !. If
an annotation uses the modifier ?, the reference monitor compares the security label of the annotated
value with the security label used in the annotation and, if higher, the monitor signals an information
leak. If an annotation uses the modifier !, the monitor will associate the annotation’s security label with
the annotated value. The modifier ! allows one to associate a security label with input from outside the
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abstrcat class Employee {
long:Public id;
String:Public name;
String:AssociateSL(_) address;
String:Secret pwd;

}

(a)

class Supervisor extends Employee {
double:SupervisorSL(id) salary;

}

(b)

class Associate extends Employee {
double:AssociateSL(id) salary;
Supervisor:SupervisorSL(_) supervisor;
double:SupervisorSL(supervisor) evaluation;

}

(c)

Figure 5: Security specifications for classes Employee, Supervisor and Associate

public String associateDispatch(long requesterId, long queriedId) {

Employee queried = EmployeeRepository.getInstance().getEmployeeById(queriedId);

String response = "{"
+ "\"id\": " + "\"" + queried.getId() + "\""
+ "\"name\": \"" + queried.getName() + "\","
+ "\"address\": \"" + queried.getAddress() + "\",";

if (requesterId == queriedId)
response += "\"salary\": \"" + queried.getSalary() + "\",";

return response + "}";
}

Figure 6: Source code for the employee information dispatcher

system and to declassify information. Since it allows for information declassification [1], it is necessary
to use this modifier carefully as it may easily lead to incorrect specifications which result in undetected
information leaks. If a parameter or return value does not have a security annotation, then the monitor
will propagate its security label without performing any extra operation.

In the current example, we define specification files for all dispatcher classes and for classes that
represent stored information about employees. The specifications for classes Employee, Associate,
and Supervisor are depicted in Figure 5a, Figure 5b, and Figure 5c respectively. Notice that all fields
in the classes are annotated with a security label from the lattice in Figure 3. Security label parameters
are instantiated with fields to denote a concrete dependency, or (_) to represent ⊥. The values used to
instantiate security label parameters must belong to the same object and produce a security dependency
between fields. For instance, in class Supervisor we use SupervisorSL(id) as a security label depen-
dent on the value of field id, declared in the superclass Employee. The security label AssociateSL(_)
establishes a security compartment accessible to all Associate employees.

The effort required to write security specifications depends on several factors: the knowledge about
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class EmployeeInfoDispatcher {
String:?AssociateSL(requesterId) associateDispatch(long requesterId, long queriedId);

}

Figure 7: Security specifications for the employee information dispatcher

the system to instrument, the constraints of the system, and the complexity of the security specification
and lattice. After defining the security specifications and labels, it is possible to instrument the applica-
tion.

Value tainting In the first instrumentation step, we inject shadow fields in every application class. One
of them holds the security label of the class instance while the remaining ones mirror existing class fields
of a primitive or library (non-instrumented) type.

Methods and Parameter passing In order to propagate the security labels of primitive or library-type
arguments and return values, we add shadow fields to each class. These shadow fields help preparing
method calls by allowing the caller to store and the callee to retrieve the arguments’ security labels.
When the called method terminates its execution, the callee stores the security labels of the arguments
and return value for the caller to retrieve.

Instruction rewriting The final step of the instrumentation process consists in the instrumentation
of method bodies. The body of a method consists of a graph of basic blocks, where a basic block
is a sequence of instructions starting with a label and terminating in a return, a branching, or a jump
instruction. The instrumentation process compositionally rewrites instructions in the SSA form [4, 26],
according to the rules defined in Figure 8. Every rule for instructions that give place to information flows
take into account the security label associated with the computation itself, i.e., the security label of the
program counter (pc%`) [5].

The set of instructions considered is the following: load a value to a local variable v = s or v = o. f ;
method call v = o.g(v1...vn), where o represents the target object; object instantiation v = new C; binary
operations v = op(e,e); phi expressions v = φ(v,v); conditional jumps if(e) goto l; unconditional jumps
goto l; and the return instruction return e. A phi function is a pseudo-function used in merge points to
yield one of its arguments according to the control-flow path executed.
Notation: we use C to denote class names, v and o to denote local variables or registers, k to denote value
literals, e ranges over local variables and constants; f to denote object fields, and g to denote method
names. A variable vs stores the security label of variable v, a field fs stores the security label of field fs,
a field gpi stores the security label of parameter i of the method g and a field gret stores the security label
of the return value of method g.

The rules for loading operations, depicted in Figure 8, (CONST, LOCAL, and FIELD) work by com-
bining the pc, the security label of the value, and the variable’s security label. The dynamic modification
of a field, rule FIELDW, potentially increases the field’s security label with combination of pc and the
value’s security label. Rule FIELDC applies to fixed label fields, where writes are always lower or equal
to the current label.

To deal with a method call, we have two rules. Rule CALL handles the call to an instrumented method.
It starts by copying the arguments’ security labels to the target method with the help of auxiliary fields and
then calls the method. Once the method completes its execution, we retrieve the result and argument’s
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[[v := k]]`,v := k; vs := vstpc%` (CONST)
[[v := v′]]`,v := v′; vs := vst v′stpc%` (LOCAL)
[[v := f ]]`,v := f ; vs := vst fstpc%` (FIELD)
[[ f := v]]`,assert(vstpc%`v fs); f := v; ( f has spec.) (FIELDC)
[[ f := v]]`, f := v; fs := fst vstpc%` ( f has no spec.) (FIELDW)

[[v := new C]]`,v := new C; vs := vstpc%` (NEW)
[[v := o.g(v1, . . . ,vn)]]`,o. fp1 := v1s tpc%`; . . . ;o. fpn := vns tpc%`;

v := o.g(v1, . . . ,vn);
v1s := o. fp1; . . . ;vns := o. fpn;
vs := o. freturn (o has spec.) (CALL)

[[v := o.g(v1, . . . ,vn)]]`,v := o.g(v1, . . . ,vn);
vs := vstost v1s t . . .t vns tpc%` (o has no spec.) (CALLX)

[[v := op(e0,e1)]]`,v := op(e0,e1);
vs := v0s t v1s tpc%` (BIN OP)

[[if(v) goto k]]`,pc%`out := pc%`int vs

if(v) goto k (BRANCH)
[[goto k]]`,goto k (GOTO)

[[v := φ(v0,v1)]]`,v =: φ(v0,v1);vs := vstφ(v0s ,v1s) (PHI)
[[return e]]`, this. freturn := estpc%`;

o. fp1 := v1s ; . . . ;o. fpn := vns ;
return e; (RETURN)

Figure 8: Instrumentation rules

security label. It is necessary to collect the argument security labels after the call since they might have
changed during the method’s execution. Rule CALLX accounts for the use of non-instrumented methods,
where the resulting security label is the combination of all operands’ security labels plus the program
counter and, in the case of instance methods, the callee’s security label.

Notice that in the case of rule BRANCH, the value for the context’s security label (pc) increases
according to the security label of the branch condition. Once the execution leaves the scope started by
the branch condition, it is necessary to reinstate pc’s old security label. To restore the pc, we follow the
rules depicted in Figure 9. The rule depicted in Figure 9a is applied in the case where there are multiple
predecessors (`1, ..., `n) of the basic block ` but e1 does not post-dominate a common predecessor of
`1, ..., `n, i.e., multiple control flows converge but the scope does not change. According to this rule, the
security label of the context at beginning of the basic ` results from the φ function of the predecessors’
context security labels. The second rule, the rule depicted in Figure 9b, applies when there are multiple
predecessors (`1, ..., `n) of ` and e1 is the first instruction to post-dominate a common predecessor, d, of
`1, ..., `n. In this case, the context security label at beginning of block ` (pc%`in) is equal to the context
security label at the beginning of d (pc%din), i.e., e1 is the first instruction to execute outside the scope
created in d and reinstates the value of pc before entering the new scope. Unconditional branches do not
change any security meta-information. Rule PHI chooses the security label according to the executed
predecessor. When a return instruction executes, the pc stack is placed at the same label as it was when
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` : pc%` := φ(pc%`1, ...,pc%`n)
[[e1]]
...
[[en]]

`1, ..., `n are predecessor nodes of `.

(a)

` : pc%`in := pc%din
[[e1]]
...
[[en]]

d is the post-dominated node
where the current scope started.

(b)

pc%`out is equal to pc%`in if not stated otherwise.

Figure 9: Context security label rules for merging control flows

the function was called (because of ad-hoc returns at any point in the method body). Besides restoring
the pc, it is also necessary to copy the returned value’s security label and the argument’s security labels
to auxiliary fields. It is necessary to update the security labels of the arguments to deal with cases where
they are objects of non-instrumented types. The objects’ security label might change during the method’s
execution, in which case it is necessary to propagate any changes to the caller.

Testing phase Once defined the security layer and instrumented the application, we test the example
for information leaks. To do so, we need to test all available operations in the instrumented application.
If an operation has an information leak, the monitor halts the system’s execution indicating an assertion
violation. Strong guarantees about data confidentiality depend on the test coverage achieved.

In summary, our approach for the detection of illegal information flows using dependent security
labels, is embodied in a tool based on the SOOT framework which instruments a target application with
a reference monitor. With this approach, we believe to have improved the process of security certification
for third-party systems. Despite the need for some specification effort, typically, there is a set of DAO
and controller classes that are known and for which is possible to design a specification.

4 Rewriting Process Example

In this section we illustrate the rewriting process using a small example. Let us consider the Java class
depicted in Figure 10b. As stated in section 3, first, we add new fields (to which we will refer as “label
fields”) to the application classes for storing security labels. We add one label field for the objects’ secu-
rity label (secLbl$this), one label field for every field of a non-instrumented type (secLbl$field0)
and for every method we add label fields for parameters and return values of non-instrumented types
(secLbl$methodA$p0, secLbl$methodA$p1, and secLbl$methodA$ret). We show the result the of
field injection on class Example in Figure 10a.

Once injected all the necessary fields, we can proceed to rewrite the methods’ body in the SSA form.
To do so, we rewrite every instruction according to the rules defined in Section 3. Figure 11a depicts a
possible representation of methodA in the static single assignment form and, Figure 11b illustrates the
result of methodA’s body rewriting.

Lines 6-7 retrieve arguments’ security labels (secLlb$a and secLlb$b) from auxiliary fields in-
jected for the purpose (secLlb$methodA$p0 and secLlb$methodA$p1 respectively);



26 SNITCH: Dynamic Information Flow Analysis for Independent Java Bytecode

class Example {
SecurityLabel secLbl$this;

SecurityLabel secLbl$field0;
long field0;

Example field1;

SecurityLabel secLbl$methodA$p0;
SecurityLabel secLbl$methodA$p1;
int methodA (int a, int b) {...}
SecurityLabel secLbl$methodA$ret;

Example methodB(Example e) {...}

}

(a) Class Example after field injection.

class Example {

long field0;
Example field1;

int methodA (int a, int b) {
if(a > b)
return a;

return b;
}

Example methodB(Example e) {...}

}

(b) Method methodA of Class Example.

Figure 10: Class Example

Lines 8-10 compute the condition’s security label. Then, update pc, keeping its old value so that
we can restore it when the execution leaves the branch’s scope. Finally execute the
branching instruction.

Lines 11-16 compute the value to return, security operations accompany every operation executed.
Each branch stores the result in a different version of the same variable (result_1
and result_2).

Lines 17-19 terminate the context initiated with the branching instruction (more specifically in line
9). When the execution leaves the scope of the branch instruction, it is necessary
to restore pc to its previous value. Since there are two paths converging, it is also
necessary to decide which version of the variables to consider using φ functions.

Lines 19-20 conclude the method’s execution. They store the result’s label (secLbl$result_2)
in field secLblmethodAret and update the arguments’ label fields. The return only
executes after storing the labels.

5 Experimental Validation

To provide some validation to our approach, we developed a prototype tool, SNITCH, and the instru-
mented the web application presented to provide some validation to our approach, we developed a pro-
totype tool, SNITCH, and then used it to instrument the web application presented in Section 3.

Just as defined in the approach; SNITCH, based on a set of security specifications, instruments a
system with an in-lined reference monitor. As can be seen Figure 12, which depicts SNITCH’s architec-
ture, SNITCH consists of two modules; a parser for the security specifications and an instrumentation
module for bytecode rewriting. The latter component makes use of the SOOT [23] framework which,
as previously stated, is a framework for Java bytecode manipulation and optimization. In an attempt to
reduce the reference monitor’s impact on the system’s execution, SNITCH makes use of the optimization
suites SOOT offers for optimizing the instrumented code.
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1 class Example {
2
3 ...
4
5 int methodA (int a, int b) {
6 if(a > b) goto LABEL0
7 result_0 = b
8 goto LABEL1
9 LABEL0:

10 result_1 = a;
11 LABEL1:
12 result_2 = phi(result_0, result_1)
13 return result_2
14 }
15
16 ...
17
18 }

(a)

1 class Example {
2
3 ...
4
5 int methodA (int a, int b) {
6 secLbl$a = this.secLbl$methodA$p0
7 secLbl$b = this.secLbl$methodA$p1
8 secLbl$cond = combine(secLbl$a, secLbl$b)
9 secLbl$oldPC = increasePC(cond)

10 if(a > b) goto LABEL0
11 result_0 = b
12 secLbl$result_0 = secLbl$b
13 goto LABEL1
14 LABEL0:
15 result_1 = a;
16 secLbl$result_1 = secLbl$a
17 LABEL1:
18 setPC(secLbl$oldPC)
19 result_2 = phi(result_0, result_1)
20 secLbl$result_2
21 = phi(secLbl$result_0, secLbl$result_1)
22 this.secLbl$methodA$ret = secLbl$result_2
23 this.secLbl$methodA$p0 = secLbl$a
24 this.secLbl$methodA$p1 = secLbl$b
25 return result_2
26 }
27
28 ...
29
30 }

(b)

Figure 11: Original (left) and instrumented (right) SSA code for method methodA of Class Example

To test the approach, we introduced information leaks in the example application. The leaks resulted
from implicit and explicit information flows. The leaks caused by explicit flows were bad assignments or
attempts to return classified information. The in-lined reference monitor in the application was capable
of detecting all the information leaks introduced in the example application.

The example’s information retrieval methods’ implementation was naive, returning all information
available on the employees disregarding any information access restrictions. We reached the final imple-
mentation of the application through a trial and error process in which we instrumented, tested, and fixed
the application multiple times until no further information leaks were detected.

The instrumentation of the example web application also the collection of for the collection of some
broad measurements on the reference monitor’s impact on the execution time of an application. Still,
more applications need to be instrumented and tested to obtain more accurate values. We defined a set
of five operations which we used to measure the total execution time and each operation’s average exe-
cution time. We measured operations’ execution time in both the original and instrumented applications.
Figure 13 shows how the reference monitor affects the execution time of each operation. The operation
for information retrieval is the one where the impact of the monitor was the greatest. An explanation
for this is that this operation extracts the most information per employee; therefore, it executes data
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combination operations (e.g., string concatenation) requiring more intervention from the monitor. The
overall execution time of the five hundred operations in the instrumented application is 1.79 times the
original execution time. However, this estimate does not take into account the overhead of input and
output operations which takes milliseconds to complete while CPU operations take microseconds.

From the instrumentation of the example, it was possible to observe the impact of the reference
monitor on a system’s execution time. Despite that the instrumented application is of a small dimension,
we observed a significant overhead (average 1.79x) on the application’s CPU time; however, there is still
room for improvement; for instance, the prototype does not apply any kind of optimization specific to
information flow control, only using the standard optimizations supplied by the SOOT framework.

6 Related Work

There is a considerable amount of work on information flow analysis in the literature, ranging from
axiomatic approaches [3], dynamic analyses [5, ?], programming languages and types [15, 19, 22] to
instrumented virtual machines [12]. Java Information Flow [18, 19], contains embedded information
flow analysis capabilities, and allows the definition of a form of dynamic matching between labels and
principals which can in turn be used to parametrize classes and define richer runtime policies.

TaintDroid [12] is an approach that does not extend or create a programming language but instru-
ments the virtual machine where the intermediate language executes. Sensitive data is tainted at its source
(e.g., GPS) and the instrumented virtual machine propagates the taint along a program’s execution. When
tainted data reaches a sink (e.g., network interface), the information leak is logged. An advantage of the
approach taken by TaintDroid over JIF is that it is not necessary to change application code.

Austin and Flanagan [5] present a dynamic approach for information flow analysis that guarantees
non-interference in dynamically-typed languages. It presents and compares two approaches. Universal
Labelling, where all values have an explicit label (security label); and Sparse Labelling where all values
are tracked but only some are explicitly labelled. Sparse labelling is observably equivalent to universal
labelling but with significantly less overhead.

Ferreira [14] introduces the use of refinement types in information flow analysis. It presents an
extension of the LiveWeb/λDB [7] with type-based information flow. Security labels are expressed using
first-order logic propositions dependent on runtime values. Value-dependent security labels are further
developed by [16], who presents the first non-interference result for dependent information flow types.

7 Concluding Remarks

The purpose of this work is to study the applicability of information flow analysis to the certification of
third-party Java-based software systems. To convey a more usable, flexible and expressive framework,
we have adopted dependent information flow control as the preferred abstraction.

This paper presents work in the development of a certification tool that attaches in-lined reference
monitors to existing compiled code, based on interface specifications in observable points of systems.
We foresee some immediate follow-ups on this work, the challenges in dealing with label creeping
and the introduction of abstract interpretation to help reduce the runtime overhead beyond the opti-
mizations resulting from the use of SSA intermediate language. Considering the security label com-
bination operation (t) that given two security labels `A and `B, yields the lowest security label that
is higher or equal to both `A and `B and the security lattice shown in Figure 3, computations such as
AssociateSL(⊥)tAssociateSL(>) can be removed as its result is known beforehand (AssociateSL(>)
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). By statically analysing the code, not only trivial computations could be removed, but also, it would
be possible, in some instances, to detect illegal information flows statically. The introduction of such
mechanisms would allow our approach to evolve from a dynamic information flow control mechanism
to a hybrid one. Another possible line of work would be the introduction of our approach in software de-
velopment frameworks as a development tool. This would allow software developers to test their code as
they develop. There also some advantages that our approach can benefit from if integrated with software
development tools like the automatic extraction of specifications based on the frameworks annotations.
Frameworks like Spring and Jersey annotate classes with information relevant to the specification files;
for instance spring uses the annotation @Entity to flag DAO classes.

Regarding the monitor’s overhead presented on Section 5, we would like to highlight that the mea-
surements made only took into account CPU time. When taking into account I/O operations, we can
consider the monitor’s overhead as negligible. For instance, the measurements of CPU time were of the
order of the microseconds, while I/O operations took milliseconds, three decimal orders of magnitude
greater and network operations even worse.
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