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Programs that transform other programs often require access to the internal structure of the program
to be transformed. This is at odds with the usual extensionalview of functional programming, as
embodied by the lambda calculus and SK combinator calculus.The recently-developed SF combi-
nator calculus offers an alternative, intensional model ofcomputation that may serve as a foundation
for developing principled languages in which to express intensional computation, including pro-
gram transformation. Until now there have been no static analyses for reasoning about or verifying
programs written in SF-calculus. We take the first step towards remedying this by developing a
formulation of the popular control flow analysis 0CFA for SK-calculus and extending it to support
SF-calculus. We prove its correctness and demonstrate thatthe analysis is invariant under the usual
translation from SK-calculus into SF-calculus.
Keywords:control flow analysis; SF-calculus; static analysis; intensional metaprogramming

1 Introduction

In order to reason formally about the behaviour of program transformations, we must simultaneously
consider the semantics of both the program being transformed and the program performing the transfor-
mation. In most languages, program code is not a first-class citizen: typically, the code and its manip-
ulation and execution are encoded in an ad-hoc manner using the standard datatypes of the language.
Consequently, whenever we want to reason formally about program transformation, we must first for-
malise the link between the encoding of the code and its semantics.

This is unsatisfying and it would be desirable to develop better techniques for reasoning about pro-
gram transformation in a more general way. In order to do this, we must develop techniques for reasoning
about programs that manipulate other programs. That is, we need to develop techniques for reasoning
about and verifying uses ofmetaprogramming. Metaprogramming can be split intoextensionalandinten-
sionaluses: extensional metaprogramming involves joining together pieces of program code, treating the
code as a “black box”; intensional metaprogramming allows inspection and manipulation of the internal
structure of code values.

Unfortunately, as support for metaprogramming is relatively poor in most programming languages,
its study and verification is often not a priority. In particular, theλ -calculus, which is often thought of as
the theoretical foundation of functional programming languages, does not allow one to express programs
that can distinguish between two extensionally equal expressions with different implementations, or
indeed to manipulate the internal structure of expressionsin any way.

However, the SF combinatory calculus [6] does allow one to express such programs. SF-calculus is
a formalism similar to the familiar SK combinatory calculus, which is itself similar toλ -calculus, but
avoids the use of variables and hence the complications of substitution and renaming. SF-calculus re-
places theK of SK-calculus with a factorisation combinatorF that allows one to deconstruct orfactorise
program terms in certain normal forms. Thus it may be a suitable theoretical foundation for programming
languages that support intensional metaprogramming.
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There has been some recent work on verification of programs using extensional metaprogramming,
mainly in languages that only allow the composition and execution of well-formed code templates [1, 4].
In contrast, verification of intensional metaprogramming has been comparatively neglected.

There do not yet appear to be anystatic analysesfor verifying properties of SF-calculus programs.
We rectify this by formulating the popular analysis0CFA[20] for SF-calculus. We prove its correctness
and argue, with reference to a new formulation of 0CFA for SK-calculus, why it is appropriate to call the
analysis 0CFA. This provides the groundwork for more expressive analyses of programs that manipulate
programs.

We begin in Section 2 by reviewing SK-calculus and 0CFA forλ -calculus; we also present a sum-
mary of SF-calculus. In Section 3, we reformulate 0CFA for SK-calculus and prove its correctness; this
guides our formulation and proof of 0CFA for SF-calculus in Section 4. We discuss the precision of our
analysis in Section 5 and compare it with some related work inSection 6. We conclude by suggesting
some future research directions in Section 7.

2 Preliminaries

2.1 0CFA for Lambda Calculus

0CFA [20] is a popular form ofControl Flow Analysis. It is flow insensitive and context insensitive,
but precise enough to be useful for many applications, including guiding compiler optimisations [17, 2],
providing autocompletion hints in IDEs and noninterference analysis [14]. It is perhaps the simplest
static analysis that handles higher order functions, whichare a staple of functional programming.

Let us consider 0CFA for theλ -calculus. 0CFA can be formulated in many ways. Following Nielson
and others, we present it as a system of constraints [18]. Suppose we wish to analyse a programe. We
begin by assigning a unique labell (drawn from a setLabel) to every subexpression (variable, application
or λ -abstraction) ine. (Reusing labels does not invalidate the analysis, and indeed this is done deliber-
ately in proving its correctness, but it does reduce its precision.) We writeel to make explicit reference
to the labell on e. We often write applications infix ase1@l e2 rather than(e1 e2)

l to make reference to
their labels clearer. We follow the usual convention that application associates to the left, sof g x (or
f @g@x) means( f g) x and notf (g x).

Next, we generate constraints on a functionΓ by recursing over the structure ofe, applying the rules
shown in Figure 1. Finally, we solve the constraints to produceΓ : Label⊎Var→ P(Abs) that indicates,
for each position indicated by a subexpression labell or variablex, an over-approximation of all possible
expressions that may occur in that position during evaluation. Abstractly represented valuesv have the
form FUN(x, l), indicating any expressionλx.el that binds the variablex to a body with labell . We say
thatΓ |= e if Γ is a solution for the constraints generated overe.

The intuition behind the rules forΓ |= e is as follows:

• If e= xl : Γ(x) must over-approximate the values that can be bound tox.

• If e= λ l1x.e′ l2: A λ -expression is represented abstractly asFUN(x, l2) by the variable it binds and
the label on its body. Furthermore, its subexpressions mustbe analysed.

• If e= el1
1 @lel2

2 : For any application, consider all the functions that may occur on the left and all
the arguments that may occur on the right. Each argument may be bound to any of the variables in
the functions. The result of the application may be the result of any of the function bodies. Again,
all subexpressions of the application must be analysed.
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Labels Label ∋ l
Variables Var ∋ x
Labelled Expressions e ::= xl | e1@l e2 | λ l x.e
Abstract Values Abs ∋ v ::= FUN(x, l)
Abstract Environment Γ : Label⊎Var→ P(Abs)

Γ |= xl ⇐⇒ Γ(x) ⊆ Γ(l)
Γ |= λ l1x.el2 ⇐⇒ Γ |= el2 ∧FUN(x, l2) ∈ Γ(l1)
Γ |= el1

1 @lel2
2 ⇐⇒ Γ |= el1

1 ∧Γ |= el2
2 ∧ (∀FUN(x, l3) ∈ Γ(l1).Γ(l2)⊆ Γ(x)∧Γ(l3)⊆ Γ(l))

Figure 1: 0CFA forλ -calculus

In order to argue about the soundness of the analysis, we mustfirst formalise whatΓ means. We
can do this via alabelled semanticsfor λ -calculus that extends the usual rules for evaluatingλ -calculus
expressions to labelled expressions. We can then prove a coherence theorem [24]: ifΓ |= el and (in
the labelled semantics)el → e′ l

′

, thenΓ |= e′ l
′

andΓ(l ′) ⊆ Γ(l). In fact, by induction on the length of
derivations of→∗, this is also true forel →∗ e′ l

′

. Note in particular that, asΓ(l ′) ⊆ Γ(l), Γ(l) gives
a sound over-approximation to the subexpressions that may occur at the top level at any point during
evaluation.

As a concrete example, consider theλ -expression(λ 1x.x0)@4(λ 3y.y2), which applies the identity
function to itself. We have chosenLabel to be the natural numbersN. A solution forΓ is:

Γ(x) = Γ(0) = Γ(3) = Γ(4) = {FUN(y,2)} Γ(1) = {FUN(x,0)} Γ(y) = {}

In particular, this correctly tells us that the result of evaluating the expression is abstracted byFUN(y,2);
that is, the identity function with body labelled 2 that binds y.

Note that the constraints onΓ may easily be solved by: initialising everyΓ(l) to be empty; iteratively
considering each unsatisfied constraint in turn and enlarging someΓ(l) in order to satisfy it; stopping
when a fixed point is reached and all constraints are satisfied. Done naively, this takes timeO(n5) for
a program of sizen [18]. With careful ordering of the consideration of constraints, this improves to
O(n3). The best known algorithm for 0CFA uses an efficient representation of the sets inΓ to achieve
O(n3/ logn) complexity [3]. Van Horn and Mairson showed that, for linearprograms (in which each
bound variable occurs exactly once), 0CFA gives the same result as actually evaluating the program;
hence it is PTIME-complete [10].

0CFA has been the inspiration for many other analyses. For example,k-CFA addsk levels of context
to distinguish between uses of the same function from different points within a program. This improves
precision, but at the cost of making the analysis EXPTIME-complete, even fork= 1 [9]. CFA2 similarly
tries to use context to improve precision, but via a pushdownabstraction, which remains practical [23].

2.2 SK Combinatory Calculus

Combinatory logicis a Turing-powerful formalism for computation that is similar in style to theλ -
calculus, but without bound variables and the associated complications of capture-avoiding substitution
andα-conversion [8]. From the perspective of term rewriting systems, a combinator is a named constant
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C with an associated rewrite ruleC x→ t(x), wherex is a sequence of variables of fixed length andt(x)
is term built from the variables inx using application; that is,t(x) is an applicative term.

TheSK Combinatory Calculus(or just SK-calculus) is the rewrite system involving termsbuilt from
just two atomic combinators,SandK:

S f g x → f x (g x)
K x y → x

A combinator can also be viewed as a function acting on terms;hence applicative termst built from
combinators are also functions. Using justS andK, it is possible to express all functions encodable in
theλ -calculus. For example,S K K encodes the identity function. Figure 2 shows the rewrite rules and
the evaluation of the identity with terms depicted as trees.

From aλ -calculus perspective, a combinator can be viewed as a closed λ -term built by wrapping a
purely applicative term inλ -abstractions:

S ≡ λ f .λg.λx. f x (g x)
K ≡ λx.λy.x

This leads to an obvious translationlambda(t) from SK-calculus intoλ -calculus:

lambda(S)
def
= λ f .λg.λx. f x (g x)

lambda(K)
def
= λx.λy.x

lambda(t1 t2)
def
= lambda(t1) lambda(t2)

There are a number of translationsunlambda(e) from λ -calculus into SK-calculus, including the follow-
ing [8]:

unlambda(x) = x
unlambda(e1 e2) = unlambda(e1) unlambda(e2)
unlambda(λx.e) = unlambdax(e)

unlambdax(x) = S K K
unlambdax(e) = K unlambda(e) if x does not occur free ine

unlambdax(e x) = unlambda(e) if x does not occur free ine
unlambdax(e1 e2) = S unlambdax(e1) unlambdax(e2) if neither of the above applies
unlambdax(λy.e) = unlambdax(unlambda(λy.e))

This translation is left-inverse to theλ -translation; that isunlambda(lambda(t)) = t. However, it is
not right-inverse.

The rewrite rules of combinatory calculus are very simple toimplement, as: there is no need to
track bound variables; the number of rewrite rules is small and fixed; and all transformations arelocal.
Here “local” means that, viewing a term as a graph, each transformation involves only a small, bounded
number of edge additions and deletions, all affecting nodesthat are either within a bounded distance of
the combinator or are newly created (with the number of new nodes also being bounded). Because of
this simplicity, combinators have frequently been considered as a basis for hardware or virtual machines
for executing functional programs [22, 5]. Combinators canbe thought of as an assembly language for
functional programs (although often an expanded set of combinators [21] is used to avoid a combinatorial
explosion in the size of the compiled program).
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Figure 2: Terms of SK-calculus viewed as trees. Above: the reduction rules forS and K. Below:
evaluation of the identity functionS K K.

@

y@

x@

SF

→ x @

y@

x@

FF

→ x @

y@

x@

@

vu

F

→ @

v@

uy

@

x@

@

FF

@

@

FF

S

→ @

@

x@

FF

@

x@

FF

→ x
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2.3 SF Combinatory Calculus

TheSF Combinatory Calculusis a recently-developed system of combinators for expressing computation
that manipulates the internal structure of programs [6]. Itconsists of just two combinators:SandF. S
is the same as in SK-calculus.F is a factorisationcombinator that allows non-atomic expressions to be
split up into their component parts; it has two reduction rules (also depicted in Figure 3):

F f x y → x if f = Sor f = F
F (u v) x y → y u v if u v is a factorable form

A factorable formis a term of the formS, S u, S u v, F, F u or F u v, for any termsu andv; that is,
a term cannot be factorised if it could be reduced at the outermost level. This ensures that reduction is
globallyconfluent, regardless of the reduction order chosen. It also means that the usual notion of (weak)
head reduction is not sufficient for evaluating programs in this system: if a term is of the formF f x y,
then f must be head reduced (if possible) before applying the reduction rule forF .

F stretches our usual notion of what constitutes a combinatorslightly, as it has two rewrite rules,
with the conclusion of the second not being built from application of its arguments, as it deconstructs
the applicationu v. Nonetheless, it is still fair to call SF-calculus a combinatory calculus, as terms in the
calculus are still built solely from application of its atomsSandF .

Confluence and the theory of weak equality. Confluence means that, for any termsu, v andv′, if
u →∗ v andu →∗ v′, it follows that there is a termw with v →∗ w andv′ →∗ w. This property can be
proved for SF-calculus using the standard technique of parallel reductions. Theweak equalityrelation
=w is the symmetric, reflexive, transitive closure of the reduction relation→. From confluence and the
fact that the termsSandF are irreducible, we can conclude that there are termsu andv such thatu 6=w v.
That is, the equational theory of=w for SF-calculus isconsistent.

The obvious way of adding a factorisation operator toλ -calculus has no restriction to factorable
forms equivalent to that forF. Consequently, adding this operator breaks confluence, so the resulting
theory of weak equality is not consistent.

Extensional equality. Two terms areextensionally equalif they compute the same function, perhaps
in different ways. Within the SF-calculus, it is possible todistinguishbetween two such terms. Con-
sequently, SF-calculus cannot be translated intoλ -calculus. For example, considert1 = F F S and
t2 = F S S. For any termu, we havet1 u = F F S u→∗ S and t2 u = F S S u→∗ S, so t1 and t2 are
extensionally equal (and behave like the termK Sof SK-calculus). In SK-calculus orλ -calculus, if two
termst1 andt2 are extensionally equal, then we can replace one with the other without changing the result
of a computation. However, this is not the case in SF-calculus, as we can useF to construct a termv
(schematicallyv= λ t.F t (λu.λv.F u (λx.λy.y))) such thatv t1 →∗ F andv t2 →∗ S.

In SK-calculus, it is possible to extend the theory of weak equality =w with a rule corresponding
to η-reduction, yielding a theory of extensional equality=ext such thatt1 =ext t2 if and only if t1 andt2
are extensionally equal [8]. Clearly, any reasonable attempt to extend the theory of weak equality for
SF-calculus to an extensional theory of equality will be inconsistent, as it will equateSwith F. This is
in direct and deliberate contrast to SK-calculus.

Expressivity of SF-calculus. There is a translation from SK-calculus into SF-calculus:K can be ex-
pressed asF F. Hence all functions expressible in SK-calculus and thusλ -calculus are expressible in
SF-calculus.
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SF-calculus isstructure complete, in the sense that it can pattern match over normal forms of terms
(those having no redexes) and distinguish between any two different terms in normal form. In particular,
for any two such termst1 andt2, there is a terme such that we havee t1 →∗ S ande t2 →∗ F. Adding
System F types to SF-calculus (and giving names to some othercombinators), the resulting calculus
can encode and type an interpreter for its own language [12].Thus it presents a promising theoretical
foundation for reasoning about programs that transform other programs, for example by means of partial
evaluation.

As a more concrete example of the sorts of programs we might write in SF-calculus, suppose we
have an expressionf x y and we want to flip its arguments to givef y x [7]. For example, perhaps we
are writing an optimising compiler,f is a commutative function that is not strict in both arguments and
we expectf y x to execute faster thanf x y. Schematically, we could write a program performing this
transformation as:

λa.F a (λb.λy.F b (λ f .λx. f y x))

where is any dummy value. Expressed purely in terms ofSandF , this can be written as:

(SF(FFS))(FF(S(S(FF(S(FFS)(FF)))(SF(FFS)))(FF(S(FF(S(S(FF)(FF))))(FF)))))

Obviously, because of its lack of readability, SF-calculus(like SK-calculus andλ -calculus) is not suitable
for use directly by human programmers.

3 0CFA for SK-Calculus

Before we can formulate 0CFA for SF-calculus, we must first consider what it means for SK-calculus. A
central idea in 0CFA forλ -calculus is that the analysis computes an over-approximation of the expres-
sions that may be bound to a variable. It seems a little perverse to apply this to SK-calculus, where there
are deliberately no variables.

As SK-calculus can be translated intoλ -calculus, it is easy enough to translate a termt of SK-
calculus into an equivalentλ -expressionlambda(t) = e and analyse that. We could define our analysis
by Γ |=SK t ⇐⇒ Γ |=λ lambda(t). Furthermore, any SK-calculus reductiont → t ′ corresponds to a
sequence of 2 (forK) or 3 (for S) λ -calculusβ -reductions. So forlambda(t ′) = e′ we havee→∗ e′.
Then, as 0CFA is coherent with evaluation following an arbitrary β -reduction strategy, we would have
Γ |=λ e′ and henceΓ |=SK t ′, showing the coherence of our combinatory 0CFA with evaluation.

But what then is the meaning of the resulting analysis? We cananswer this by reversing the transla-
tion (for example, usingunlambda) to produce a labelled semantics for SK-calculus and 0CFA rules that
apply directly to SK combinatory terms.

3.1 Labelled Semantics

First we will look at the result ofβ -reducing expressionslambda(S f g x) andlambda(K x y) using the
labelled semantics ofλ -calculus. We begin by extendinglambda to produce labelled expressions, as
shown in Figure 4.

Here we have extendedLabel to give an easy, syntactic way of associating a fixed set of “sublabels”
with each ordinary label. The choice of names for the sublabels is somewhat arbitrary, although we have
chosen them to match the structure of the expressions. It is important at this stage that the label on each
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λ l .S.LF fl

λ l .S.LGgl

λ l .S.LXxl

@l .S.3

@l .S.R

xl .S.X2
lgl .S.G

l

@l .S.L

xl .S.X1
lf l .S.F

l

λ l .K.LXxl

λ l .K.LYyl

xl .K.X
l

lambda(Sl )
def
= λ l .S.LF fl .λ l .S.LGgl .λ l .S.LXxl . f l .S.F

l @l .S.Lxl .S.X1
l @l .S.3(gl .S.G

l @l .S.Rxl .S.X2
l )

lambda(K l )
def
= λ l .K.LXxl .λ l .K.LYyl .xl .K.X

l

lambda(t1@l t2)
def
= lambda(t1)@l lambda(t2)

Figure 4: The labelledλ -calculus translationlambda(t) (below), with lambda(Sl ) (upper-left) and
lambda(K l ) (upper-right) illustrated as trees.

expression remains distinct, so that we do not lose precision in formulating our analysis. We can now
uselambdato produce labelled reduction rules for SK-calculus:

K l2@l3xl1@l4yl0 → xl1

Sl3@l4 f l2@l5gl1@l6xl0 → ( f l2@l3.S.Lxl0)@l3.S.3(gl1@l3.S.Rxl0)

Note that in the conclusion of the reduction ofS, there are new labels that were not present in the
original program. These are the sublabels from the applications introduced bylambda. In theλ -calculus
formulation, these are present inside theλ -expression before reduction; the reduction exposes them.A
consequence of this is that, in analysing a term of SK-calculus, we will need to consider labels that do not
occur in the term. If the set of labels were infinite, this might pose a problem for an analysis. However,
this is not the case, as the names of the labels are syntactically derived from the label onS; only a finite,
statically derivable set of labels may arise during the execution of a term.

3.2 Analysis Rules

We are now able to translate the rules of 0CFA forλ -calculus into new rules for SK-calculus, as shown in
Figure 5. Note that a label is now either a base label (as before, taken fromN) or a base label suffixed with
a sublabel name (taken from a fixed, finite set). In performingthe translation, we have eliminated some
unnecessary or trivial constraints, such as those for tracking the 2nd argument toK, which is never used.
We have restricted the grammar of abstract values to just instances ofS andK with different numbers
of arguments applied. We have also made a small change from 0CFA for λ -calculus. The constraints
that express the result of reducing anSare onlyactivatedif it is possible for thatS to be reduced. This
may improve precision slightly, but would be unsound in theλ -calculus setting, where we can reduce
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Base Labels N ∋ n
Sublabel Names s ::= S.0 | S.1 | S.2 | S.3 | S.L | S.R | K.0
Labels Label ∋ l ::= n | n.s
Labelled Terms t ::= Sn | Kn | t1@l t2 | 〈x〉l

Abstract Values Abs ∋ v ::= Sn
0 | Sn

1 | Sn
2 | Kn

0 | Kn
1

Abstract Environment Γ : Label→ P(Abs)
Abstract Activation ϕ : Label→ Bool

Γ,ϕ |= Sn ⇐⇒ Sn
0 ∈ Γ(n)∧ (ϕ(n)⇒ Γ,ϕ |= tSn)

Γ,ϕ |= Kn ⇐⇒ Kn
0 ∈ Γ(n)

Γ,ϕ |= t l1
1 @l3t l2

2 ⇐⇒ Γ,ϕ |= t1∧Γ,ϕ |= t2
∧∀Sn

0 ∈ Γ(l1).Γ(l2)⊆ Γ(n.S.0)∧Sn
1 ∈ Γ(l3)

∧∀Sn
1 ∈ Γ(l1).Γ(l2)⊆ Γ(n.S.1)∧Sn

2 ∈ Γ(l3)
∧∀Sn

2 ∈ Γ(l1).Γ(l2)⊆ Γ(n.S.2)∧Γ(n.S.3) ⊆ Γ(l3)∧ϕ(n)
∧∀Kn

0 ∈ Γ(l1).Γ(l2)⊆ Γ(n.K.0)∧Kn
1 ∈ Γ(l3)

∧∀Kn
1 ∈ Γ(l1).Γ(n.K.0) ⊆ Γ(l3)

Γ,ϕ |= 〈x〉l ⇐⇒ true

tSn
def
= (〈 f 〉n.S.0@n.S.L〈x〉n.S.2)@n.S.3(〈g〉n.S.1@n.S.R〈x〉n.S.2)

Figure 5: 0CFA for SK-calculus

the expression corresponding toSeven if it only has 1 or 2 arguments. It will be more important for SF-
calculus. In order to track whether constraints for an instance have been activated, we introduce a new
componentϕ : Label→ Bool to the solution of the constraints, withϕ(n) being true when the constraints
for Sn are active.

The intuitive meaning ofSn
0 ∈ Γ(l) is thatSn may occur at the point labelledl , hence the rule for

Γ,ϕ |= Sn. The meaning ofSn
1 ∈ Γ(l) is that a term built from applying 1 argument toSn may occur atl ,

or thatSn may occur as the 1st left child of the term tree node labelledl . The meaning ofSn
2 is analogous

(but for 2 arguments or the 2nd left child), as is that ofKn
0 andKn

1 (but for K, notS).

The abstract values inΓ(n.S.0) are meant to over-approximate the values that may occur as the 1st
argument toSn; similarly for Γ(n.S.1) and the 2nd argument, and analogously forn.S.2 andn.K.0.

This leads to the explanation of the conjunction of conditions forΓ,ϕ |= t l1
1 @l3t l2

2 . For example, the
condition involving∀Sn

0 ensures that, ifSn may occur in function position, then: the abstractionΓ(n.S.0)
of the 1st argument ofSn over-approximates the arguments that may be supplied byt2; and the result of
the application needs only 2 more arguments for a reduction to occur. The condition involving∀Sn

1 and
the first part of the condition with∀Sn

2 are similar. The condition on∀Kn
0 is analogous to that for∀Sn

0.
The condition with∀Kn

1 simply says that the result of reducingK may be anything that occurs as its 1st
argument.

The second part of the condition on∀Sn
2 is more complicated. In the event thatSn may receive 3

arguments and hence be reduced, it introduces constraints for the conclusion of the reduction, which are
those generated by analysis of the constant applicative term tSn. It also says that the result of the reduction
may be anything that occurs at the root of that term, which haslabeln.S.3.

The introduction of the constraints fortSn is forced by assertingϕ(n), which produces the corre-
sponding constraints in the rule forΓ,ϕ |= Sn. The use ofϕ avoids the introduction of a recursive loop
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Γ(0) = {K0
0} Γ(1) = {K1

0} Γ(2) = {S2
0} Γ(2.S.0) = {K1

0}
Γ(2.S.1) = {K0

0} Γ(3) = {S2
1} Γ(4) = {S2

2} Γ(5) = {K5
0}

Γ(5.K.0) = {S2
2} Γ(6) = {K6

0} Γ(6.K.0) = {S2
2} Γ(7) = {S7

0}
Γ(7.S.0) = {K6

0} Γ(7.S.1) = {K5
0} Γ(7.S.2) = {S2

2} Γ(7.S.3) = {S2
2}

Γ(7.S.L) = {K6
1} Γ(7.S.R) = {K5

1} Γ(8) = {S7
1} Γ(9) = {S7

2}
Γ(10) = {S2

2} ϕ(7) = true

Γ,ϕ |= (S7@8K6@9K5)@10(S2@3K1@4K0)

Figure 6: Solution of the analysis for application of identity to itself in SK-calculus.

in the constraint rules; an alternative method would be to use a coinductive definition of|=. Within tSn

we use dummy terms of the form〈x〉l to give the leaf node of the term tree a label; heref , g andx have
no meaning (other than to make reading the rules easier) and play no role in the analysis.

This analysis may seem like a step backwards, as we have replaced a small set of general rules for
λ -calculus with a larger, more specific set of rules for SK-calculus. However, there are a number of
benefits. Firstly, the rules for S can be used directly in 0CFAfor SF-calculus. Secondly, they reveal
the meaning of 0CFA in SK-calculus: the abstract values at a labelled point tell us which combinators
may occur at that pointand locally at its left branches. This insight will be key in bothproducing an
accurate analysis for F and for justifying why it is reasonable to call that analysis 0CFA. Finally, because
SK-calculus does not have to deal with arbitrary substitution or the intricacies of name-binding, the proof
of correctness for this system is considerably simpler thanthat forλ -calculus.

Recall the example of 0CFA forλ -calculus involving applying the identity function to itself. The
corresponding SK-calculus term and a solution for its analysis are shown in Figure 6. Note thatΓ(10) =
Γ(4) = {S2

2}, indicating that the result of evaluation hasS2 as its second left child; that is, it is the second
identity function(S2@3K1@4K0).

3.3 Correctness

We now prove the correctness of this analysis for SK-calculus. First we make some observations about
the satisfaction of constraints:

Lemma 1 (SK Substitution). If Γ,ϕ |= t l1
1 @l3t l2

2 , as well asΓ,ϕ |= t ′1
l ′1 andΓ,ϕ |= t ′2

l ′2, withΓ(l ′1)⊆Γ(l1),
Γ(l ′2)⊆ Γ(l2) andΓ(l ′3)⊇ Γ(l3) thenΓ,ϕ |= t ′1

l ′1@l ′3t ′2
l ′2.

Proof. Trivial by inspection of the constraints generated by @.

Lemma 2 (SK Reduction Coherence). For any top-level reduction tl → t ′ l
′

, if Γ,ϕ |= t l then1) Γ,ϕ |= t ′ l
′

and2) Γ(l ′)⊆ Γ(l).

Proof. Case split on the two kinds of top-level reduction (SandK).
Case S:We havet l =Sl3@l4 f l2@l5gl1@l6xl0 andt ′l

′
=( f l2@l3.S.Lxl0)@l3.S.3(gl1@l3.S.Rxl0). Expanding

the constraints forΓ,ϕ |= t l , we have: Sl3
0 ∈ Γ(l3); Sl3

1 ∈ Γ(l4); Sl3
2 ∈ Γ(l5); henceΓ(l3.S.3) ⊆ Γ(l6)

(proving Condition 2) andϕ(l3) is true. AsΓ,ϕ |= Sl3
0 andϕ(l3), we haveΓ,ϕ |= tSl3

. But tSl3
can be

turned intot ′ by substitutingf , g andx at its leaves. So to prove Condition 1, we just need to show that
we can use the Substitution Lemma. Now asΓ,ϕ |= t l , we get:Γ,ϕ |= f l2; Γ,ϕ |= gl1; andΓ,ϕ |= xl0.
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Furthermore: fromSl3
0 ∈ Γ(l3) we getΓ(l2) ⊆ Γ(l3.S.0); from Sl3

1 ∈ Γ(l4) we getΓ(l1) ⊆ Γ(l3.S.1); and
from Sl3

2 ∈ Γ(l3) we getΓ(l0)⊆ Γ(l3.S.2). So the Substitution Lemma can be used to prove Condition 1.
Case K: We havet l = K l2@l3xl1@l4yl0 andt l ′ = xl1. FromΓ,ϕ |= t l we haveΓ,ϕ |= xl1, showing

Condition 1. Expanding the constraints forΓ,ϕ |= t l further, we get:K l2
0 ∈Γ(l2); henceΓ(l1)⊆Γ(l2.K.0)

andK l2
1 ∈ Γ(l3); thusΓ(l2.K.0)⊆ Γ(l4). Combining these givesΓ(l1)⊆ Γ(l4), proving Condition 2.

Theorem 1(SK Evaluation Coherence). For any reduction in context C[t l1]l2 →C[t ′l
′
1]l

′
2, if Γ,ϕ |=C[t l1]l2

then1) Γ,ϕ |=C[t ′l
′
1]l

′
2 and2) Γ(l ′2)⊆ Γ(l2).

Proof. For the empty context, this follows immediately from the Reduction Coherence Lemma. For a
non-empty contextC, Condition 2 is trivially true asl ′2 = l2. For Condition 1, the reduction occurs at
either the left child or right child of an application node inthe term tree (as all other nodes are leaves).
Any constraints generated by the context are unchanged and hence remain satisfied. For the hole in the
context, fromΓ,ϕ |= C[t l1]l2 we haveΓ,ϕ |= t l1, so by Reduction Coherence we getΓ,ϕ |= t ′ l

′
1 with

Γ(l ′1) ⊆ Γ(l1). Hence any constraints withint ′ l
′
1 are satisfied. That just leaves the constraints generated

by the interaction between the application at the hole of thecontext andt ′. We can apply the Substitution
Lemma to the application node to show that they are satisfied,which gives Condition 1 as required.

Corollary 1 (SK Soundness). If Γ,ϕ |= t l and t→∗ t ′ thenΓ,ϕ |= t ′l
′

.

Proof. By induction over the length of the derivation of→∗ and application of the Evaluation Coherence
Theorem.

4 0CFA for SF-Calculus

We now turn our attention to formulation of 0CFA for SF-calculus. AsF is not encodable inλ -calculus,
we cannot argue for the correctness of our analysis by appealto the translationlambda. Instead, we must
follow the style of our formulation for SK-calculus.

4.1 Labelled Semantics

Following the labelled reduction forS, we introduce the following labelled reductions forF:

F l3@l4 f l2@l5xl1@l6yl0 → xl1 if f = Sor f = K
F l3@l4(ul7@l2vl8)@l5xl1@l6yl0 → (yl0@l3.F.Mul7)@l3.F.3vl8 if u v is a factorable form

4.2 Analysis Rules

There are two main problems to consider in analysingF: how to determine whether the 1st argument is
a factorable form and, when that argument is a factorable form, how to deconstruct its abstract represen-
tation.

Concerning the first problem, if we think back to our analysisfor SK-calculus, a termt l might
evaluate to an atomSn or Fn if (for somen) Sn

0 ∈ Γ(l) or Kn
0 ∈ Γ(l). Its normal form might be a non-

atomic term ifΓ(l) contains any other abstract values. We can use the same idea for SF-calculus, except
with Fn

0 in place ofKn
0.
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Base Labels N ∋ n
Sublabel Names s ::= S.0 | S.1 | S.2 | S.3 | S.L | S.R |

F.0 | F.1 | F.2 | F.3 | F.L | F.R | F.M
Labels Label ∋ l ::= n | n.s
Labelled Terms t ::= Sn | Fn | t1@l t2 | 〈x〉l

Abstract Values Abs ∋ v ::= Sn
0 | Sn

1 | Sn
2 | Fn

0 | Fn
1 | Fn

2 | @(l1,l2)

Abstract Environment Γ : Label→ P(Abs)
Abstract Activation ϕ : Label→ Bool

Γ,ϕ |= Sn ⇐⇒ Sn
0 ∈ Γ(n)∧ (ϕ(n)⇒ Γ,ϕ |= tSn)

Γ,ϕ |= Fn ⇐⇒ Fn
0 ∈ Γ(n)

∧ϕ(n)⇒ (∃n0.S
n0
0 ∈ Γ(n.F.0)∨Fn0

0 ∈ Γ(n.F.0))⇒ Γ(n.F.1) ⊆ Γ(n.F.3)
∧ϕ(n)⇒ (∃n0.S

n0
1 ∈ Γ(n.F.0)∨Sn0

2 ∈ Γ(n.F.0)∨
Fn0

1 ∈ Γ(n.F.0)∨Fn0
2 ∈ Γ(n.F.0))⇒ Γ,ϕ |= tFn ∧

∀@l1,l2 ∈ Γ(n.F.0).Γ(l1)⊆ Γ(n.F.L)∧Γ(l2)⊆ Γ(n.F.R)
Γ,ϕ |= t l1

1 @l3t l2
2 ⇐⇒ Γ,ϕ |= t1∧Γ,ϕ |= t2

∧∃@l4,l5 ∈ Γ(l3).Γ(l1)⊆ Γ(l4)∧Γ(l2)⊆ Γ(l5)
∧∀Sn

0 ∈ Γ(l1).Γ(l2)⊆ Γ(n.S.0)∧Sn
1 ∈ Γ(l3)

∧∀Sn
1 ∈ Γ(l1).Γ(l2)⊆ Γ(n.S.1)∧Sn

2 ∈ Γ(l3)
∧∀Sn

2 ∈ Γ(l1).Γ(l2)⊆ Γ(n.S.2)∧Γ(n.S.3) ⊆ Γ(l3)∧ϕ(n)
∧∀Fn

0 ∈ Γ(l1).Γ(l2)⊆ Γ(n.F.0)∧Fn
1 ∈ Γ(l3)

∧∀Fn
1 ∈ Γ(l1).Γ(l2)⊆ Γ(n.F.1)∧Fn

2 ∈ Γ(l3)
∧∀Fn

2 ∈ Γ(l1).Γ(l2)⊆ Γ(n.F.2)∧Γ(n.F.3) ⊆ Γ(l3)∧ϕ(n)
Γ,ϕ |= 〈x〉l ⇐⇒ true

tSn
def
= (〈 f 〉n.S.0@n.S.L〈x〉n.S.2)@n.S.3(〈g〉n.S.1@n.S.R〈x〉n.S.2)

tFn
def
= (〈y〉n.F.2@n.F.M〈u〉n.F.L)@n.F.3〈v〉n.F.R

Figure 7: 0CFA for SF-calculus

As for the second problem, in order to deconstruct abstract values, we introduce a new type of abstract
value @l1,l2. Intuitively, the abstract value indicates that any concrete value was produced by applying a
term approximated byΓ(l1) to a term approximated byΓ(l2). The resulting analysis is shown in Figure 7.

We have reused the analysis rules forS. The rules forF are mostly very similar. This is to be ex-
pected, as they both take 3 arguments. In the rule forΓ,ϕ |= Fn, there are two separate sets of constraints
that can be activated byϕ(n), corresponding to the two reduction rules. Both involve a further condition
that corresponds to testing whether the 1st argument may be atomic or a factorable form. The conclu-
sion to the first, corresponding to the atomic case, is similar to the last rule forK in Γ,ϕ |= t l1

1 @l3t l2
2 of

the analysis for SK-calculus. The conclusion to the second,which handles factorisation, introduces the
constraints generated by the applicative termtFn in a similar style to the case forSandtSn. However, it
also adds new constraints totFn corresponding to the factorisation of the 1st argument.

There is also a new constraint forΓ,ϕ |= t l1
1 @l3t l2

2 that introduces abstract values of the form @l1,l2.
When analysing a term, this is easily satisfied by setting @l1,l2 ∈ Γ(l3). The slightly more complicated
constraint here is necessary to ensure coherence of the analysis with evaluation.

A term t l can be analysed by finding aΓ andϕ such thatΓ,ϕ |= t l . This is done by solving the
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Γ(0) = {F0
0 } Γ(1) = {F1

0 }

Γ(1.F.0) = {F0
0 } Γ(2) = {F1

1 ,@
(1,0)}

Γ(3) = {F3
0 } Γ(4) = {F4

0 }

Γ(4.F.0) = {F3
0 } Γ(5) = {F4

1 ,@
(4,3)}

Γ(6) = {S6
0} Γ(6.S.0) = {F4

1 ,@
(4,3)}

Γ(6.S.1) = {F1
1 ,@

(1,0)} Γ(7) = {S6
1,@

(6,5)}

Γ(8) = {S6
2,@

(7,2)} Γ(9) = {F9
0 }

Γ(10) = {F10
0 } Γ(10.F.0) = {F9

0 }

Γ(10.F.1) = {S6
2,@

(7,2)} Γ(11) = {F10
1 ,@(10,9)}

Γ(12) = {F12
0 } Γ(13) = {F13

0 }

Γ(13.F.0) = {F12
0 } Γ(13.F.1) = {S6

2,@
(7,2)}

Γ(13.F.3) = {S6
2,@

(7,2)} Γ(13.F.2) = {F10
2 ,@(15.S.1,15.S.2)}

Γ(14) = {F13
1 ,@(13,12)} Γ(15) = {S15

0 }

Γ(15.S.0) = {F13
1 ,@(13,12)} Γ(15.S.1) = {F10

1 ,@(10,9)}

Γ(15.S.2) = {S6
2,@

(7,2)} Γ(15.S.3) = {S6
2,@

(15.S.L,15.S.R),@(7,2)}

Γ(15.S.L) = {F13
2 ,@(15.S.0,15.S.2)} Γ(16) = {S15

1 ,@(15,14)}

Γ(15.S.R) = {F10
2 ,@(15.S.1,15.S.2)} Γ(17) = {S15

2 ,@(16,11)}

Γ(18) = {S6
2,@

(15.S.L,15.S.R),@(17,8),@(7,2)}
ϕ(13) = true ϕ(15) = true

Γ,ϕ |= (S15@16(F13@14F12)@17(F10@11F9))@18(S6@7(F4@5F3)@8(F1@2F0))

Figure 8: Solution of the analysis for application of identity to itself in SF-calculus.

constraints using a fixed point process, much as with 0CFA forλ -calculus. We need only consider
O(n) abstract values (corresponding to nodes in the term tree oft), so we retain the polynomial time
complexity of 0CFA.

Consider once again the example of applying the identity function to itself. The corresponding SF-
calculus term and its analysis are shown in Figure 8; note that S6

2 ∈ Γ(18), indicating the result correctly.

4.3 Correctness

Correctness of the analysis follows by the same sequence of results as for SK-calculus.

Lemma 3 (SF Substitution). If Γ,ϕ |= t l1
1 @l3t l2

2 , as well asΓ,ϕ |= t ′1
l ′1 andΓ,ϕ |= t ′2

l ′2, withΓ(l ′1)⊆ Γ(l1),
Γ(l ′2)⊆ Γ(l2) andΓ(l ′3)⊇ Γ(l3) thenΓ,ϕ |= t ′1

l ′1@l ′3t ′2
l ′2.

Proof. Again, trivial by inspection of the constraints generated by @. It is at this point that the correct
formulation of the constraint∃@l4,l5 ∈ Γ(l3).Γ(l1)⊆ Γ(l4)∧Γ(l2)⊆ Γ(l5) is important; the lemma does
not hold if we use the simpler constraint @l1,l2 ∈ Γ(l3).

Lemma 4 (SF Reduction Coherence). For any top-level reduction tl → t ′ l
′

, if Γ,ϕ |= t l then1) Γ,ϕ |= t ′ l
′

and2) Γ(l ′)⊆ Γ(l).

Proof. Case split on the two kinds of top-level reduction (SandF).
Case S:Largely as for SK-calculus. The only new point is that we mustcheck the constraints on the

abstract @ values generated by @l3.S.L and @l3.S.R still hold.
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Case F: We havet l = F l3@l4 f l2@l5xl1@l6yl0. We begin as forS by expanding the constraints for
Γ,ϕ |= t l . We getF l3

0 ∈ Γ(l3), F l3
1 ∈ Γ(l4) andF l3

2 ∈ Γ(l5); alsoΓ(l2)⊆ Γ(l3.F.0), Γ(l1)⊆ Γ(l3.F.1) and
Γ(l0) ⊆ Γ(l3.F.2); as well asΓ(l3.F.3) ⊆ Γ(l6) andϕ(l3). Now there are two subcases depending on
whether f is factorable.

Subcase f is not factorable:We havet ′l
′
= xl1. FromΓ,ϕ |= t l we getΓ,ϕ |= xl1, proving Condition 1.

As f l2 is not factorable, eitherf = F l2 andF l2
0 ∈ Γ(l2)⊆ Γ(l3.F.0) or f = Sl2 andSl2

0 ∈ Γ(l2)⊆ Γ(l3.F.0).
In either case, noting we already haveΓ,ϕ |= F l3 andϕ(l3), we getΓ(l3.F.1) ⊆ Γ(l3.F.3). Combining
this with Γ(l1)⊆ Γ(l3.F.1) andΓ(l3.F.3)⊆ Γ(l6) givesΓ(l1)⊆ Γ(l6), proving Condition 2.

Subcase f is factorable:We havef l2 = ul7@l2vl8 andt ′l
′
= (yl0@l3.F.Mul7)@l3.F.3vl8. Condition 2 now

follows immediately fromΓ(l3.F.3) ⊆ Γ(l6). As f is factorable, eitherul7 or its left child wl9 (if it has
one) isSor F. Hence one ofF l7

1 , Sl7
1 , F l9

2 andF l9
2 must be inΓ(l3.F.0). NotingΓ,ϕ |= F l3 andϕ(l3), we

now haveΓ,ϕ |= tFn, as well as a constraint relating abstract @ values inΓ(l3.F.0) with Γ(l3.F.L) and
Γ(l3.F.R). Similarly to the case forS, in order to prove Condition 1, we note that we can obtaint ′l

′
by

substitutingyl0, ul7 andvl8 into tFn, so we need to show that the Substitution Lemma is applicable. For
yl0 this is easy, as we already haveΓ(l0)⊆ Γ(l3.F.2). Forul7 andvl8, there must exist some @lA,lB ∈ Γ(l2)
with Γ(l7)⊆ Γ(lA) andΓ(l8)⊆ Γ(lB). But Γ(l2)⊆Γ(l3.F.0), so @lA,lB ∈ Γ(l3.F.0). Then, using the above
constraint on abstract @ values,Γ(lA)⊆ Γ(l3.F.L) andΓ(lB)⊆ Γ(l3.F.R). HenceΓ(l7)⊆ Γ(l3.F.L) and
Γ(l8)⊆ Γ(l3.F.R), so we can apply the Substitution Lemma to prove Condition 1.

Theorem 2(SF Evaluation Coherence). For any reduction in context C[t l1]l2 →C[t ′l
′
1]l

′
2, if Γ,ϕ |=C[t l1]l2

then1) Γ,ϕ |=C[t ′l
′
1]l

′
2 and2) Γ(l ′2)⊆ Γ(l2).

Proof. The proof is as for SK-calculus. The only point of note is thatthe constraints between the appli-
cation at the hole of the context andt ′ now include a constraint on an abstract @ value. However, this is
still handled by using the Substitution Lemma.

Corollary 2 (SF Soundness). If Γ,ϕ |= t l and t→∗ t ′ thenΓ,ϕ |= t ′l
′

.

Proof. As for SK-calculus.

5 Evaluation

It is currently difficult to evaluate meaningfully the usefulness of this analysis. If one wishes to evaluate
an analysis for untypedλ -calculus, then by using the usual Church encodings for numbers, lists and
other datatypes, one can easily test it against examples from any textbook on functional programming.
Similarly, using the translationunlambda, it is not much harder to evaluate an analysis for SK-calculus
in this way.

There is a straightforward translation from SK-calculus toSF-calculus: simply replaceK with FF.
It is easy for our analysis to determine that the only possible first argument to the firstF is justF, and
hence that it will never be factorable. This activates constraints that are very similar to those forK in the
analysis for SK-calculus. Thus it makes no difference to theprecision of 0CFA whether it is done on a
term of SK-calculus or the same term translated into SF-calculus.

While this is encouraging in that it suggests it is reasonable to refer to our analysis as 0CFA, it does
not really tell us anything interesting about the precisionof the analysis. The translated program does
not use the power of factorisation in a meaningful way, or indeed (considering that only one reduction of
F is used) at all. There is no interesting suite of programs written in SF-calculus against which to test the
analysis; nor is there any existing idiomatic translation from any higher level language to SF-calculus.
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If we consider only programs that do not deconstruct code (such as straightforward translations of
SK-calculus programs), our analysis has the same strengthsand weaknesses as other forms of 0CFA: it
can analyse some higher order control flow within a program, but loses precision when the same function
is used in two different contexts.

If we consider programs that do inspect and manipulate the internal structure of code, there are three
further places where we can lose precision. Firstly, we cannot always tell whether an argument toF
will be factorable or not and in this case, we over-approximate its behaviour to cover both cases. Our
technique essentially works by tracking how many argumentsa combinator has been given. This is
unlikely to work well when a term is simultaneously used recursively and partially applied. Secondly,
when we abstractly factorise a term, we lack any contextual information, so if two applications flow into
the same factorisation, we will conflate their factors. Thisis similar to the imprecision introduced by
lack of context when using the same function in two differentplaces in ordinary 0CFA. Finally, while we
make a reasonable attempt to track reduction of a term for thepurpose of determining whether its normal
form is an atom, we have no way of discarding non-normal formswhen we factorise abstractly, so we
may consider the factorisation of terms that are not factorable forms.

6 Related Work

0CFA and other forms of control flow analysis have been widelystudied; see the work of Midtgaard [17]
for a detailed survey.

To our knowledge, this is the first static analysis for SF-calculus. There has been some work on
analysing other styles of metaprogramming. For example, Choi and others [4] consider how to analyse a
form of extensional metaprogramming called staged metaprogramming, which captures the composition
of code templates. They suggest using an unstaging translation that turns the metaprogramming con-
structs into function abstraction and record lookup, then using other existing analyses. Our own work
considers how to formulate 0CFA in a dynamically typed language with staged metaprogramming and
variable capture [14], with a view to analysing JavaScript’s eval construct [15]. In a statically typed
setting, Berger and Tratt develop a Hoare-style logic [1] for a language with staged metaprogramming.

Intensional metaprogramming has often been ignored because of its semantic difficulties, or because
of the dominance of the idea that extensionally equal programs ought to be indistinguishable [11]. Re-
FLect [7], a functional programming language for hardware design and theorem proving, allows decon-
struction of code values, but this causes difficulties for its type system, even in a combinatory fragment
of the language [16].

The idea that program code can be deconstructed and that its structure can influence the control
flow of a program is conceptually similar to the functional programming idiom of defining functions by
pattern-matching over algebraic datatypes. There has beensome work on analysing functional programs
from this perspective. For example, Jones and Andersen present an analysis that uses tree grammars to
over-approximate the structure of data values that may be produced by a program [13]. Ong and Ramsay
suggest a formalism called Pattern Matching Recursion Schemes that captures the idea in a typed setting
and develop a powerful analysis for it [19].

7 Future Work and Conclusions

We have presented the first static analysis for SF-calculus,a formalism which presents a promising
foundation for writing programs that transform other programs. We have proved correctness of the
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analysis and shown that is comparable to standard 0CFA for programs that do not rely on the ability of
F to factor terms, such as those translated directly from SK-calculus. From here, there are a number of
obvious directions in which to proceed.

Firstly, in order to evaluate the usefulness of the analysisand to advance our understanding of pro-
gram transformation, it would be good to develop a translation from a higher level language that supports
intensional metaprogramming into SF-calculus. The translation should map code deconstruction to fac-
torisation usingF.

Secondly, there is scope to improve the precision of the analysis. For standard 0CFA, tracking context
in the style ofk-CFA or a pushdown analysis in the style of CFA2 can improve precision significantly.
The same techniques may be applicable here. It may also be possible to use techniques from analysing
pattern matching and tree datatypes in functional programming languages to analyse the term trees that
constitute programs in SF-calculus and their pattern-matching and deconstruction withF. However, an
important consideration in applying any such technique to SF-calculus would be the need to distinguish
between a non-factorable termt and the factorable termt ′ to which it may reduce.

Finally, 0CFA is often useful not as an end to itself, but because it can be combined with other
analysis techniques, for example drawn from abstract interpretation, in order to improve their precision
by reducing the number of execution paths or reduction sequences that must be considered to over-
approximate the behaviour of a program. It would be interesting to see if, combined with such techniques,
this analysis can actually be used to verify properties of programs that perform program transformations.
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