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Programs that transform other programs often require adodbe internal structure of the program
to be transformed. This is at odds with the usual extensigiest of functional programming, as
embodied by the lambda calculus and SK combinator calcdlbs. recently-developed SF combi-
nator calculus offers an alternative, intensional modelarfiputation that may serve as a foundation
for developing principled languages in which to expressristonal computation, including pro-
gram transformation. Until now there have been no statityarna for reasoning about or verifying
programs written in SF-calculus. We take the first step tdwaemedying this by developing a
formulation of the popular control flow analysis OCFA for $lculus and extending it to support
SF-calculus. We prove its correctness and demonstratéhthatnalysis is invariant under the usual
translation from SK-calculus into SF-calculus.
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1 Introduction

In order to reason formally about the behaviour of prograamsformations, we must simultaneously
consider the semantics of both the program being transfiband the program performing the transfor-
mation. In most languages, program code is not a first-clifigert typically, the code and its manip-
ulation and execution are encoded in an ad-hoc manner usingtdandard datatypes of the language.
Consequently, whenever we want to reason formally abowgrpro transformation, we must first for-
malise the link between the encoding of the code and its sirtsan

This is unsatisfying and it would be desirable to developdsdechniques for reasoning about pro-
gram transformation in a more general way. In order to dq Wésmust develop techniques for reasoning
about programs that manipulate other programs. That is,egd to develop techniques for reasoning
about and verifying uses afietaprogrammingMetaprogramming can be split inkxtensionandinten-
sionaluses: extensional metaprogramming involves joining togigbieces of program code, treating the
code as a “black box”; intensional metaprogramming allavepéction and manipulation of the internal
structure of code values.

Unfortunately, as support for metaprogramming is rel&tiy@or in most programming languages,
its study and verification is often not a priority. In parii theA -calculus, which is often thought of as
the theoretical foundation of functional programming laages, does not allow one to express programs
that can distinguish between two extensionally equal esgipes with different implementations, or
indeed to manipulate the internal structure of expressioasy way.

However, the SF combinatory calculls [6] does allow one fwr&ss such programs. SF-calculus is
a formalism similar to the familiar SK combinatory calculughich is itself similar toA -calculus, but
avoids the use of variables and hence the complicationshbsftitution and renaming. SF-calculus re-
places th&K of SK-calculus with a factorisation combinaterthat allows one to deconstruct factorise
program terms in certain normal forms. Thus it may be a slgitdteoretical foundation for programming
languages that support intensional metaprogramming.
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There has been some recent work on verification of prograing estensional metaprogramming,
mainly in languages that only allow the composition and aken of well-formed code templates| [1, 4].
In contrast, verification of intensional metaprogrammimag been comparatively neglected.

There do not yet appear to be astatic analysedor verifying properties of SF-calculus programs.
We rectify this by formulating the popular analySI€FA[20] for SF-calculus. We prove its correctness
and argue, with reference to a new formulation of 0CFA for &fculus, why it is appropriate to call the
analysis OCFA. This provides the groundwork for more exgivesanalyses of programs that manipulate
programs.

We begin in Section 2 by reviewing SK-calculus and OCFAXecalculus; we also present a sum-
mary of SF-calculus. In Section 3, we reformulate OCFA for&Hculus and prove its correctness; this
guides our formulation and proof of OCFA for SF-calculus ec&on 4. We discuss the precision of our
analysis in Section 5 and compare it with some related wokeation 6. We conclude by suggesting
some future research directions in Section 7.

2 Preliminaries

2.1 OCFA for Lambda Calculus

OCFA [20] is a popular form ofControl Flow Analysis It is flow insensitive and context insensitive,
but precise enough to be useful for many applications, dialyiguiding compiler optimisations [1/7), 2],
providing autocompletion hints in IDEs and noninterfereranalysis([14]. It is perhaps the simplest
static analysis that handles higher order functions, whreha staple of functional programming.

Let us consider OCFA for th&-calculus. OCFA can be formulated in many ways. Followinglsbn
and others, we present it as a system of constrainis [18]pd&agpwe wish to analyse a programWe
begin by assigning a unique lab€bdrawn from a selttabel) to every subexpression (variable, application
or A-abstraction) ire. (Reusing labels does not invalidate the analysis, anckihdigis is done deliber-
ately in proving its correctness, but it does reduce itsipi@t.) We writee! to make explicit reference
to the labell one. We often write applications infix a&@'e, rather thane; eg)' to make reference to
their labels clearer. We follow the usual convention thailiaation associates to the left, $og x (or
f@g@x) meangf g) xand notf (g x).

Next, we generate constraints on a functiohy recursing over the structure gfapplying the rules
shown in Figuréll. Finally, we solve the constraints to poedu: Labels Var — &7(Abs) that indicates,
for each position indicated by a subexpression lhlbelariablex, an over-approximation of all possible
expressions that may occur in that position during evadnatAbstractly represented valuesave the
form FUN(x, 1), indicating any expressiohx.€ that binds the variablg to a body with label. We say
thatl" = eif I is a solution for the constraints generated aver

The intuition behind the rules fdr = e is as follows:

e Ife=x": I'(x) must over-approximate the values that can be bound to

o lfe=Aixe'2 A A-expression is represented abstractlyFaiN(x, |2) by the variable it binds and
the label on its body. Furthermore, its subexpressions briahalysed.

e If e=€!@'€?: For any application, consider all the functions that mayuoan the left and all
the arguments that may occur on the right. Each argument mbpitind to any of the variables in
the functions. The result of the application may be the texfldny of the function bodies. Again,
all subexpressions of the application must be analysed.
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Labels Label > |

Variables Var > X

Labelled Expressions e = X|e@e]|A'xe
Abstract Values Abs > v = FUN(x]I)

Abstract Environment r Labelw Var — 22(Abs

M=x — Txcr(
M=Alixe? = T Ed2AFUN(x ) €T (ly)
Feei@e? <« T EAT Ee2A(YFUN(XI3) e F(11).M(ly) SE(X)AT(13) CT(1))

Figure 1: OCFA forA -calculus

In order to argue about the soundness of the analysis, we firaistormalise what™ means. We
can do this via dabelled semanticfor A-calculus that extends the usual rules for evalualingplculus
expressions to labelled expressions. We can then prove exarute theoreni [24]: if |= € and (in
the labelled semantics) — €', thenr = ¢" and r("y Cr(l). Infact, by induction on the length of
derivations of—*, this is also true foel —* €. Note in particular that, as(I") C (1), I'(l) gives
a sound over-approximation to the subexpressions that reyr @t the top level at any point during
evaluation.

As a concrete example, consider theexpressionAx.x%)@*(A3y.y?), which applies the identity
function to itself. We have chosdrabelto be the natural numbeR$. A solution forrl is:

FX) =r0)=r@)=r(4)={FUNy,2)} @) ={FUNKX0)} T(y)={}

In particular, this correctly tells us that the result ofleeging the expression is abstractedfiyN(y, 2);
that is, the identity function with body labelled 2 that bénd

Note that the constraints dnmay easily be solved by: initialising everyl) to be empty; iteratively
considering each unsatisfied constraint in turn and emigrgomel (1) in order to satisfy it; stopping
when a fixed point is reached and all constraints are satisbee naively, this takes timé'(n°) for
a program of sizen [18]. With careful ordering of the consideration of consits, this improves to
¢(n%). The best known algorithm for OCFA uses an efficient repriegiem of the sets iff to achieve
¢(n3/logn) complexity [3]. Van Horn and Mairson showed that, for lingmograms (in which each
bound variable occurs exactly once), OCFA gives the samétras actually evaluating the program;
hence it is PTIME-completé [10].

OCFA has been the inspiration for many other analyses. Fample k-CFA addsk levels of context
to distinguish between uses of the same function from diffepoints within a program. This improves
precision, but at the cost of making the analysis EXPTIMBiplete, even fok = 1 [9]. CFA2 similarly
tries to use context to improve precision, but via a pushdalstraction, which remains practical [23].

2.2 SK Combinatory Calculus

Combinatory logicis a Turing-powerful formalism for computation that is siamiin style to theA-
calculus, but without bound variables and the associatetplications of capture-avoiding substitution
anda-conversion[[8]. From the perspective of term rewritingteyss, a combinator is a named constant
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C with an associated rewrite ru@x — t(X), wherex is a sequence of variables of fixed length &6d
is term built from the variables irusing application; that ig(X) is an applicative term.

The SK Combinatory Calculugr just SK-calculus) is the rewrite system involving teroslt from
just two atomic combinator§andK:

Sfgx — fx(gx
Kxy — X

A combinator can also be viewed as a function acting on teheisce applicative termisouilt from
combinators are also functions. Using j$sandK, it is possible to express all functions encodable in
the A-calculus. For examples K K encodes the identity function. Figure 2 shows the rewrikesrand
the evaluation of the identity with terms depicted as trees.

From aA-calculus perspective, a combinator can be viewed as adchogerm built by wrapping a
purely applicative term id -abstractions:

S
K

AfAgAX T X (gX)
AXAY.X

This leads to an obvious translatiambdgt) from SK-calculus intoA -calculus:

lambdas) &' AfAgAxf x(gX)

lambdaK) = AxAyx

lambdat; t) & lambda(ty) lambdat,)

There are a number of translatiomslambdde) from A -calculus into SK-calculus, including the follow-
ing [8]:

unlambddx) = x
unlambdde; &) = unlambdde;) unlambdde;)
unlambdgAx.e) = unlambda(e)
unlambda(x) = SKK
unlambda(e) = K unlambdde) if x does not occur free ia
unlambda(e ) = unlambdde) if x does not occur free ia

unlambda(e; &) = S unlambdg(e;) unlambda(e;) if neither of the above applies
unlambda(Ay.e) = unlambda(unlambddAy.e))

This translation is left-inverse to the-translation; that isinlambddlambdgt)) =t. However, it is
not right-inverse.

The rewrite rules of combinatory calculus are very simpléntplement, as: there is no need to
track bound variables; the number of rewrite rules is smadl fixed; and all transformations aleal.
Here “local” means that, viewing a term as a graph, eachfoanstion involves only a small, bounded
number of edge additions and deletions, all affecting noldasare either within a bounded distance of
the combinator or are newly created (with the number of nedeaalso being bounded). Because of
this simplicity, combinators have frequently been congideas a basis for hardware or virtual machines
for executing functional programs [22, 5]. Combinators barthought of as an assembly language for
functional programs (although often an expanded set of auatdrs [21] is used to avoid a combinatorial
explosion in the size of the compiled program).
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Figure 2. Terms of SK-calculus viewed as trees. Above: tlieiaton rules forS and K. Below:
evaluation of the identity functio K K
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Figure 3: Terms of SF-calculus treated as trees. Aboveetigction rules foF on atoms and compound
terms. Below: evaluation of the identity functi@(F F) (F F).
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2.3 SF Combinatory Calculus

TheSF Combinatory Calculuis a recently-developed system of combinators for exprgssimputation
that manipulates the internal structure of programs [6¢ofltsists of just two combinator@€ andF. S

is the same as in SK-calculuB.is afactorisationcombinator that allows non-atomic expressions to be
split up into their component parts; it has two reductioresulalso depicted in Figuké 3):

Ffxy — x iff=Sorf=F
F(uv)xy — yuv ifuvisafactorable form

A factorable formis a term of the forn§ SuSuvF, F uorF uv, for any termau andy; that is,

a term cannot be factorised if it could be reduced at the mdst level. This ensures that reduction is
globally confluent regardless of the reduction order chosen. It also meanth#hasual notion of (weak)
head reduction is not sufficient for evaluating programsis system: if a term is of the forfa f x y,
then f must be head reduced (if possible) before applying the teaturule forF.

F stretches our usual notion of what constitutes a combirgigitly, as it has two rewrite rules,
with the conclusion of the second not being built from apian of its arguments, as it deconstructs
the applicatioru v. Nonetheless, it is still fair to call SF-calculus a combbamg calculus, as terms in the
calculus are still built solely from application of its atei@andF.

Confluence and the theory of weak equality. Confluence means that, for any termsv andV/, if
u—*vandu—*V, it follows that there is a ternrv with v —* w andVv —* w. This property can be
proved for SF-calculus using the standard technique ofllparaductions. Theveak equalityrelation
= IS the symmetric, reflexive, transitive closure of the rdmtucrelation—. From confluence and the
fact that the termSandF are irreducible, we can conclude that there are terarsdv such thau #,, v.
That is, the equational theory ef,, for SF-calculus isonsistent

The obvious way of adding a factorisation operatoAtgalculus has no restriction to factorable
forms equivalent to that foF. Consequently, adding this operator breaks confluencé)escesulting
theory of weak equality is not consistent.

Extensional equality. Two terms areextensionally equaf they compute the same function, perhaps
in different ways. Within the SF-calculus, it is possibledistinguishbetween two such terms. Con-
sequently, SF-calculus cannot be translated Avcalculus. For example, consider=F F S and
t,=F S S For any termu, we havet; u=F F Su—*Sandt, u=F S S u—»* S sot; andt, are
extensionally equal (and behave like the té€n$ of SK-calculus). In SK-calculus oY-calculus, if two
termst; andt, are extensionally equal, then we can replace one with ther atithout changing the result
of a computation. However, this is not the case in SF-cai; s we can usk to construct a ternv
(schematicallw = At.F t _ (AuAVv.F u_(Ax.Ayy))) such thav t; —* F andvt, —* S

In SK-calculus, it is possible to extend the theory of wealadity =,, with a rule corresponding
to n-reduction, yielding a theory of extensional equakty,; such that; =e to if and only if t; andt,
are extensionally equéll[8]. Clearly, any reasonable gitamextend the theory of weak equality for
SF-calculus to an extensional theory of equality will beomsistent, as it will equat8with F. This is
in direct and deliberate contrast to SK-calculus.

Expressivity of SF-calculus. There is a translation from SK-calculus into SF-calculkiscan be ex-
pressed af F. Hence all functions expressible in SK-calculus and thtsalculus are expressible in
SF-calculus.
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SF-calculus istructure completein the sense that it can pattern match over normal formsrofge
(those having no redexes) and distinguish between any tfereht terms in normal form. In particular,
for any two such terms, andt,, there is a terne such that we have t; —* Sande b —* F. Adding
System F types to SF-calculus (and giving names to some othmbinators), the resulting calculus
can encode and type an interpreter for its own languagde [IRis it presents a promising theoretical
foundation for reasoning about programs that transforrergthograms, for example by means of partial
evaluation.

As a more concrete example of the sorts of programs we migitg vir SF-calculus, suppose we
have an expressioh x y and we want to flip its arguments to gifey x [7]. For example, perhaps we
are writing an optimising compilerf, is a commutative function that is not strict in both argurseard
we expectf y xto execute faster thah x y. Schematically, we could write a program performing this
transformation as:

AaFa_(AbAy.Fb_(AfAxfyx)

where_is any dummy value. Expressed purely in term&ahdF, this can be written as:

(SF(FF9))(FF(S(S(FF(S(FFS)(FF)))(SFFFS)))(FF(S(FF(S(S(FF)(FF))))(FF)))))

Obviously, because of its lack of readability, SF-calciflike SK-calculus and -calculus) is not suitable
for use directly by human programmers.

3 OCFA for SK-Calculus

Before we can formulate OCFA for SF-calculus, we must firsisoder what it means for SK-calculus. A
central idea in OCFA foA -calculus is that the analysis computes an over-approiomat the expres-
sions that may be bound to a variable. It seems a little psevierapply this to SK-calculus, where there
are deliberately no variables.

As SK-calculus can be translated intecalculus, it is easy enough to translate a terof SK-
calculus into an equivalenkt-expressiorlambdgt) = e and analyse that. We could define our analysis
by I skt <= T =, lambd&t). Furthermore, any SK-calculus reductibr- t’ corresponds to a
sequence of 2 (foK) or 3 (for § A-calculusB-reductions. So folambdgt’) = € we havee —* €.
Then, as OCFA is coherent with evaluation following an adbit 3-reduction strategy, we would have
I =, € and hencé =skt’, showing the coherence of our combinatory OCFA with evabuat

But what then is the meaning of the resulting analysis? Weacawer this by reversing the transla-
tion (for example, usingnlambda to produce a labelled semantics for SK-calculus and OCHsrtlnat
apply directly to SK combinatory terms.

3.1 Labelled Semantics

First we will look at the result oB-reducing expressiorlambd&aS f g ¥ andlambdgK x y) using the
labelled semantics of-calculus. We begin by extendirigmbdato produce labelled expressions, as
shown in Figuré 4.

Here we have extendddbelto give an easy, syntactic way of associating a fixed set difléhels”
with each ordinary label. The choice of names for the sultdabesomewhat arbitrary, although we have
chosen them to match the structure of the expressions.nifgsrtant at this stage that the label on each
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AI.SLF fl /\I'K'LXX|

A I.SLGgl A I.K.LYyI

)\I'SLXX| XI'K'X
@I.S3

SN N

fII.SF XI'SXl gI.SG X:.SXZ

def

Iambddg) = )!.SLF fl')\IASLGgl.)\I.SLXXI‘fll.SF@IASLXIASX1@I.S3(gIASG@IASRX:ASXZ)
lambdgK') def AKXy ALKLY yy KX
lambddt; @) =& lambdat;)@ lambdat,)

Figure 4: The labelled\-calculus translatiodambdat) (below), with lambdaS) (upper-left) and
lambdaK') (upper-right) illustrated as trees.

expression remains distinct, so that we do not lose precisidormulating our analysis. We can now
uselambdato produce labelled reduction rules for SK-calculus:

K|2@|3X|1 @|4y|o —y xh
g3@|4f|2@|5g|1@|sx|0 — (f|2@|3.SLX|0)@|3.S3(g|1@|3.SRX|0)

Note that in the conclusion of the reduction fthere are new labels that were not present in the
original program. These are the sublabels from the apmitsiintroduced byambda In theA -calculus
formulation, these are present inside thexpression before reduction; the reduction exposes them.
consequence of this is that, in analysing a term of SK-ca;we will need to consider labels that do not
occur in the term. If the set of labels were infinite, this ntighse a problem for an analysis. However,
this is not the case, as the names of the labels are syntgctieaved from the label oi$; only a finite,
statically derivable set of labels may arise during the etien of a term.

3.2 Analysis Rules

We are now able to translate the rules of OCFAXetalculus into new rules for SK-calculus, as shown in
Figurelh. Note that a label is now either a base label (as &gfaken fronN) or a base label suffixed with
a sublabel name (taken from a fixed, finite set). In perforntivegtranslation, we have eliminated some
unnecessary or trivial constraints, such as those foritrgdke 2nd argument t, which is never used.
We have restricted the grammar of abstract values to justrines ofS andK with different numbers
of arguments applied. We have also made a small change frdfA @& A-calculus. The constraints
that express the result of reducing &are onlyactivatedif it is possible for thatSto be reduced. This
may improve precision slightly, but would be unsound in Ahealculus setting, where we can reduce
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Base Labels N > n
Sublabel Names s == S0|S1|S2|S3|SL|SR|K.0
Labels Label > | 1= njns
Labelled Terms t = S|K"1,@'2 ] (x)
Abstract Values Abs > v = §|F|S|KJ|KT]
Abstract Environment r Label— Z(Abs
Abstract Activation ¢ Label— Bool
kLS = FerMA@n)=r.¢Fts)
¢ E=K" < K{erl(n
Mo =@ty «— ToEtuAl, ¢t
/\V$Er(|1 (|2)Cr nS.O)/\SfEFlg
AVYS el (11).M(2) CT(NS1)AS el (l3)
AVS el (11).M(I2) CT(n.S2)AT(n.S3) CT(I3) A ¢(n)
AVKG €T (17).r(I2) €T (n.K.0)AK] €T (l3)
AVKT el (11).Mr(n.K.0) C T (l3)
Mo =) — true
def

tg = (( f >n.SO@n.SL<X>n.SZ)@n.S3(<g>n.Sl@n.SR<X>n.SZ)

Figure 5: OCFA for SK-calculus

the expression corresponding3@ven if it only has 1 or 2 arguments. It will be more importaot $F-
calculus. In order to track whether constraints for an mstahave been activated, we introduce a new
component : Label— Boolto the solution of the constraints, wigh{n) being true when the constraints
for S" are active.

The intuitive meaning o € I'(l) is thatS' may occur at the point labelleld hence the rule for
I, ¢ =S The meaning o8] € I'(l) is that a term built from applying 1 argument$may occur at,
or thatS" may occur as the 1st left child of the term tree node labéll&the meaning o8 is analogous
(but for 2 arguments or the 2nd left child), as is thakgfandK? (but for K, notS).

The abstract values in(n.S.0) are meant to over-approximate the values that may occureaksth
argument td&S"; similarly for I'(n.S.1) and the 2nd argument, and analogouslyrf&2 andn.K.0.

This leads to the explanation of the conjunction of condgidorl", ¢ = t'll@'3t'22. For example, the
condition involvingVS] ensures that, i8" may occur in function position, then: the abstractign.S.0)
of the 1st argument d8" over-approximates the arguments that may be supplidgl, layd the result of
the application needs only 2 more arguments for a reductiaceur. The condition involving'S! and
the first part of the condition with'S; are similar. The condition okK is analogous to that forS].
The condition withvKY simply says that the result of reducigmay be anything that occurs as its 1st
argument.

The second part of the condition f8; is more complicated. In the event thgt may receive 3
arguments and hence be reduced, it introduces constrairitsef conclusion of the reduction, which are
those generated by analysis of the constant applicatimetter It also says that the result of the reduction
may be anything that occurs at the root of that term, whichidlae n.S.3.

The introduction of the constraints fo# is forced by asserting (n), which produces the corre-
sponding constraints in the rule for¢ = S'. The use ofp avoids the introduction of a recursive loop
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ro) = {Kg} rQ = {Kg} re = {§} Tr@so = {Kg
r2s1y = {Kg} re = {s r4 = {s} re = {Kgt
r6K.0 = {S} re = {Kg} T(®6KO) = {S} r@ = {}
r(zs0) = {K$§} r7s1y = {K3} r(zs2 = {} Tr@s3) = {5}
r(zsL) = {K{} T(7SR = {Kj} re = {s} rQ = {s
ra) = {s} ¢(7) = true

r’¢ ): (87@8K6@9K5)@10(82@3K1@4K0)
Figure 6: Solution of the analysis for application of idgnto itself in SK-calculus.

in the constraint rules; an alternative method would be ®aisoinductive definition df. Within ts
we use dummy terms of the for(w)' to give the leaf node of the term tree a label; hérg andx have
no meaning (other than to make reading the rules easier)lagpachp role in the analysis.

This analysis may seem like a step backwards, as we haveeeptasmall set of general rules for
A-calculus with a larger, more specific set of rules for SKeahls. However, there are a number of
benefits. Firstly, the rules for S can be used directly in 0@&ASF-calculus. Secondly, they reveal
the meaning of OCFA in SK-calculus: the abstract values aballed point tell us which combinators
may occur at that poirdnd locally at its left branches. This insight will be key in bgihoducing an
accurate analysis for F and for justifying why it is reasdadb call that analysis OCFA. Finally, because
SK-calculus does not have to deal with arbitrary substitutr the intricacies of name-binding, the proof
of correctness for this system is considerably simpler thahfor A -calculus.

Recall the example of OCFA fot-calculus involving applying the identity function to iteThe
corresponding SK-calculus term and a solution for its asialgre shown in Figufd 6. Note tHaf10) =
I (4) = {$}, indicating that the result of evaluation H&sas its second left child; that is, it is the second
identity function(S@°K'@*K?°).

3.3 Correctness

We now prove the correctness of this analysis for SK-cakukirst we make some observations about
the satisfaction of constraints:

Lemma 1(SK Substitution) If ', ¢ =t1@"t?, as well ad™, ¢ [=t;'1 andl, ¢ =1t)2, with T (14) C T (I1),
M(13) C (1) andr (1) D T (13) thenr, ¢ = t)'i @5y,

Proof. Trivial by inspection of the constraints generated by @. O

Lemma 2 (SK Reduction Coherencelor any top-level reductior t— t"', ifr,¢ =t thenl),¢ = t"
and2)r(I"ycr().

Proof. Case split on the two kinds of top-level reducti@ehdK).

Case SWe have! = 2@ fl2@'sg1@'sxo andt”’ = (f2@'3-SLx0)@'+53(g': @'*SRx0). Expanding
the constraints fof ,¢ =t', we have: ¢ € I'(I3); S? € I'(l4); S¢ € I'(I5); hencer (13.53) C I'(lg)
(proving Condition 2) and(l3) is true. Asl', ¢ = S'03 and¢(l3), we haverl',¢ =tg . Butts, can be
turned intot’ by substitutingf, g andx at its leaves. So to prove Condition 1, we just need to shotv tha
we can use the Substitution Lemma. Nowag =t', we get:I", ¢ |= '2; I, ¢ = d'1; andl, ¢ = xo.
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Furthermore: fronﬁ)3 € I'(I3) we getl (I2) C ' (15.S0); from §f € (la) we getl(I1) CT(15.S1); and
from éj e (l3) we getl(Ip) C I(13.S2). So the Substitution Lemma can be used to prove Condition 1.
Case K:We havet' = K2@'sx1@"ylo andt' = x1. FromTl,¢ rt' we havel, ¢ |= X1, showing
Condition 1. Expanding the constraints far |=t' further, we getKg € I'(12); hencel (1) C T (12.K.0)
andK|2 € I (I3); thusr (12.K.0) C I'(14). Combining these giveis(l1) C I'(l4), proving Condition 2. [

Theorem 1(SK Evaluation Coherencefor any reduction in context [81]'2 — C[t"1]'2, if I, ¢ |=C]t"]"2
thenl) [, ¢ |=C[t"1]'2 and2) [ (1%) C (1)

Proof. For the empty context, this follows immediately from the Rettbn Coherence Lemma. For a
non-empty contex€, Condition 2 is trivially true as$, = I,. For Condition 1, the reduction occurs at
either the left child or right child of an application nodetire term tree (as all other nodes are leaves).
Any constraints generated by the context are unchangedemutiremain satisfied. For the hole in the
context, fromr, ¢ = C[t"]'2 we havel, ¢ = t'1, so by Reduction Coherence we getp |= t'* with

r(I7) € (l1). Hence any constraints withiff? are satisfied. That just leaves the constraints generated
by the interaction between the application at the hole ottmext and’. We can apply the Substitution
Lemma to the application node to show that they are satisfibabh gives Condition 1 as required.[]

Corollary 1 (SK Soundness)If I', ¢ =t' and t—*t’ thenl", ¢ Ft"'.

Proof. By induction over the length of the derivation-ef* and application of the Evaluation Coherence
Theorem. O

4 OCFA for SF-Calculus

We now turn our attention to formulation of OCFA for SF-cdimi AsF is not encodable iiA -calculus,
we cannot argue for the correctness of our analysis by appé#a translatiodambda Instead, we must
follow the style of our formulation for SK-calculus.

4.1 Labelled Semantics

Following the labelled reduction f&, we introduce the following labelled reductions for

Flr@flz@sx:@eyo — xh1 if f=Sorf=K
Fls@(u@2ve)@sxX1@'syle — (ye@'3sFMu7)@'sF3vis if u vis a factorable form

4.2 Analysis Rules

There are two main problems to consider in analys$indnow to determine whether the 1st argument is
a factorable form and, when that argument is a factorablha,fopw to deconstruct its abstract represen-
tation.

Concerning the first problem, if we think back to our analyfsis SK-calculus, a ternt' might
evaluate to an ator8 or F" if (for somen) § € I'(I) or Kj € ['(I). Its normal form might be a non-
atomic term ifl (1) contains any other abstract values. We can use the sameidgB-talculus, except
with Fg' in place ofK{.
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Base Labels N > n
Sublabel Names s == S0|S1|S2|S3|SL|SR]
FO|F1|F2|F.3|FL|F.R|FM
Labels Label > | = njns
Labelled Terms t = S|F" 1@ (x)
Abstract Values Abs > v SIS ISR R @)
Abstract Environment r Label— &7(Abs)
Abstract Activation ¢ : Label— Bool
9= — SeTMA(PM)=T.¢ Ftg)
@ =F" = Fo e r(n)

A¢(n) = (Ing.§° € F(n.F.0) VF© € I (n.F.0)) = [(n.F.1) C(n.F.3)
A$(n) = (Ig.SP° € F(n.F.0)vVSP € F(n.F.0) Vv
F°elM(nFO)VFX e (nF.0)=T,¢ Eten A
V@12 e T(n.F.0).M (1) CT(n.FL)AT(I) CT(n.F.R)
Mo Eth@st?2 «— ToEuAT, ¢
AJ@4's € T(13).F(I1) CT(I4) AT (I2) C T (ls)
AV el (l1).M(2) Cr(nSO)AS el (l3)
/\V@ € r(ll).r(|2) - F n. S.l)/\gz1 € F |3)
AVS) €T (I1).F(I2) CT(n.S2) AT (n.S3) C
AVFD € F(Il) F(l) CT(NF.O)AF) e (l3)
AVFI €T (11).T(I2) CT(NFL)AFY €T (I3)
AVFR €T (11).T (I2) CF(nF.2) AT (n.F.3) C
re =X — true

F(s)A¢(n)

F(Is) A ¢(n)

tg d:ef (< f >n480@n.SL <X>n.52)@n.53(<g>n481@nASR<X>n482)

ten d:ef (<y>n4F.2@n4F.M<u>n4F.L)@n.F43<V>n.F4R

Figure 7: OCFA for SF-calculus

As for the second problem, in order to deconstruct abstedaeg, we introduce a new type of abstract
value @'2. Intuitively, the abstract value indicates that any cotexalue was produced by applying a
term approximated bly(I1) to a term approximated Hy(l2). The resulting analysis is shown in Figlte 7.

We have reused the analysis rules $orThe rules forF are mostly very similar. This is to be ex-
pected, as they both take 3 arguments. In the rul€ fo¢r= F", there are two separate sets of constraints
that can be activated liy(n), corresponding to the two reduction rules. Both involveréier condition
that corresponds to testing whether the 1st argument matob@cor a factorable form. The conclu-
sion to the first, corresponding to the atomic case, is sinulahe last rule foK in ', ¢ = t'll@'St'z2 of
the analysis for SK-calculus. The conclusion to the secaich handles factorisation, introduces the
constraints generated by the applicative tgsmin a similar style to the case f@andts. However, it
also adds new constraintstio corresponding to the factorisation of the 1st argument.

There is also a new constraint for¢ = t'l1 @'St'z2 that introduces abstract values of the forn+@
When analysing a term, this is easily satisfied by setting2@ I (I3). The slightly more complicated
constraint here is necessary to ensure coherence of thesanaith evaluation.

A termt' can be analysed by findinglaand ¢ such thatr,¢ =t'. This is done by solving the



M. M. Lester 63

ro = {r} ra = {/}
rro = {FY} re = {FiLe9}
re) = {r} ra = {F}
r(4F0) = {F3} re = {Ff@4*3}
re = {$ r6.50) = {F4@*¥}
res1 = {F:e@*9} r7 = {$@69}
re = {se"} ro = {F}
r(a) = {Folo} N(10.F.0) = {Fé’}
r(1oFr1y) = {S$,@"?} ray = {F @109}
ra2 = {r/?% r(13) = {F%
r3ro) = {R% rA3Fl) = {S$,@7?)
Mr13r3) = {S$,@"?} M(13F2) = {F10 @(15S11582)
r(4 = {F2 @™} ras = {§%
r(15s0) = {F3 @312} r(1581) = {F0 @109}
r(15s2) = {,@"?} r(1583) = {$ @15SL15SR @72}
r(153|_) — {leS’@(15.SO.l5.SZ)} F(16) — {S-IJ-.57@(15.14)}
F(15.SR) — {F2107@(15481,15.52)} r(l7) _ {5%5’@(16,11)}
r18 = {,@*5SL158R @178 @72y
$(13) = true $(15 = true

r7¢ ': (815@16(F13@14F12)@17(F10@11F9))@18(56@7(F4@5F3)@8(F1@2F0))
Figure 8: Solution of the analysis for application of idgnto itself in SF-calculus.

constraints using a fixed point process, much as with OCFAAfarlculus. We need only consider
0 (n) abstract values (corresponding to nodes in the term trég b we retain the polynomial time
complexity of OCFA.

Consider once again the example of applying the identitgtion to itself. The corresponding SF-
calculus term and its analysis are shown in Figire 8; not@m I'(18), indicating the result correctly.

4.3 Correctness

Correctness of the analysis follows by the same sequeneasoits as for SK-calculus.

Lemma 3(SF Substitution) If [, ¢ =1 @"t2, as well as™, ¢ =t} andT, ¢ (=52, with [ (1) C T (Iy),
M(13) C T(Il2) andr (1) 2 T (I3) thenr, ¢ = t)1 @5y,

Proof. Again, trivial by inspection of the constraints generatgdd. It is at this point that the correct
formulation of the constrair@@'+'s € I'(I3).I' (I1) C [ (14) AT (I2) C I'(Is) is important; the lemma does
not hold if we use the simpler constraint'@ < I (13). O

Lemma 4 (SF Reduction Coherencefor any top-level reductiod t5t'", if I, ¢ [=t' then1) T, ¢ =t/
and2)r(I"ycr().

Proof. Case split on the two kinds of top-level reducti@®@andF).
Case SiLargely as for SK-calculus. The only new point is that we malgtck the constraints on the
abstract @ values generated by and @2-SR still hold.
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Case F:We havet' = Fls@f2@'sx1@'syo. We begin as foS by expanding the constraints for
M¢ =t'. We getr)® € [(I3), F{* € T (I4) andF,? € I'(Is); alsol (1) C [(13.F.0), [(I1) C F(13.F.1) and
M (lp) C T (l3.F.2); as well as(15.F.3) C '(lg) and¢(I3). Now there are two subcases depending on
whetherf is factorable.

Subcase f is not factorabl&Ve have = x'1. Fromr, ¢ |=t' we getl", ¢ |= X', proving Condition 1.
As f"2 is not factorable, eithef = F'2 andF2 € (1) C I'(13.F.0) or f = 2 andS? € I'(I2) € [(15.F.0).

In either case, noting we already havegp = F'3 and ¢ (I3), we getl (I3.F.1) C ['(13.F.3). Combining
this with " (I1) C ' (I3.F.1) andrl (15.F.3) C I'(lg) givesl (I1) C I(lg), proving Condition 2.

Subcase f is factorablaie havef'2 = u”@'2v's andt"’ = (yo@'sFMul")@'sF3v's. Condition 2 now
follows immediately fromi™ (13.F.3) C ['(lg). As f is factorable, eithed” or its left childw? (if it has
one) isSor F. Hence one oF’, §f F2Ig andF2|9 must be inl (I3.F.0). Notingl", ¢ = F'3 and¢(I3), we
now havel', ¢ = tgn, as well as a constraint relating abstract @ valuds(lg.F.0) with I'(I5.F.L) and
I (Is.F.R). Similarly to the case fog, in order to prove Condition 1, we note that we can obt&irby
substitutingy', u”” andv* into ten, SO we need to show that the Substitution Lemma is applicdtie
ylo this is easy, as we already havélg) C I (I3.F.2). Foru” andv¢, there must exist some'@e € I'(1,)
with ['(I7) C T (Ia) andr (Ig) € I (Ig). But (l) C [(13.F.0), so @'®  ['(13.F.0). Then, using the above
constraint on abstract @ valudgJla) C I'(Is.F.L) andl"(Ig) C ' (I3.F.R). Hencel (I7) C I'(Is.F.L) and
M(Ig) C I'(I3.F.R), so we can apply the Substitution Lemma to prove Condition 1. O

Theorem 2(SF Evaluation Coherenceffor any reduction in context [€]'2 — C[t"1]'2, if [, ¢ |=C]t"]"2
thenl) T, ¢ |=C[t"1]'2 and2) [ (1%) C (1)

Proof. The proof is as for SK-calculus. The only point of note is tii&t constraints between the appli-
cation at the hole of the context atichow include a constraint on an abstract @ value. Howeverjghi
still handled by using the Substitution Lemma. O

Corollary 2 (SF Soundness)f I, ¢ =t' and t—* t’ thenl", ¢ = t"".

Proof. As for SK-calculus. O

5 Evaluation

It is currently difficult to evaluate meaningfully the ushkfess of this analysis. If one wishes to evaluate
an analysis for untyped -calculus, then by using the usual Church encodings for musphists and
other datatypes, one can easily test it against examplesdrny textbook on functional programming.
Similarly, using the translatioonlambda it is not much harder to evaluate an analysis for SK-cakulu
in this way.

There is a straightforward translation from SK-calculu$Ste-calculus: simply repladé with FF.
It is easy for our analysis to determine that the only posdiiost argument to the first is justF, and
hence that it will never be factorable. This activates aamsts that are very similar to those fidrin the
analysis for SK-calculus. Thus it makes no difference topireeision of OCFA whether it is done on a
term of SK-calculus or the same term translated into SFatusdc

While this is encouraging in that it suggests it is reasoméblrefer to our analysis as OCFA, it does
not really tell us anything interesting about the precisiérihe analysis. The translated program does
not use the power of factorisation in a meaningful way, oegd(considering that only one reduction of
F is used) at all. There is no interesting suite of program#tevriin SF-calculus against which to test the
analysis; nor is there any existing idiomatic translatiwnt any higher level language to SF-calculus.



M. M. Lester 65

If we consider only programs that do not deconstruct codeh(sis straightforward translations of
SK-calculus programs), our analysis has the same streagthsveaknesses as other forms of OCFA. it
can analyse some higher order control flow within a programidses precision when the same function
is used in two different contexts.

If we consider programs that do inspect and manipulate teerial structure of code, there are three
further places where we can lose precision. Firstly, we chaiways tell whether an argument o
will be factorable or not and in this case, we over-approxarits behaviour to cover both cases. Our
technique essentially works by tracking how many argumant®mbinator has been given. This is
unlikely to work well when a term is simultaneously used rsixely and partially applied. Secondly,
when we abstractly factorise a term, we lack any contextfahination, so if two applications flow into
the same factorisation, we will conflate their factors. Tikisimilar to the imprecision introduced by
lack of context when using the same function in two diffeqgatces in ordinary OCFA. Finally, while we
make a reasonable attempt to track reduction of a term fgouhgose of determining whether its normal
form is an atom, we have no way of discarding non-normal fowhen we factorise abstractly, so we
may consider the factorisation of terms that are not fabterforms.

6 Related Work

O0CFA and other forms of control flow analysis have been widalglied; see the work of Midtgaard [17]
for a detailed survey.

To our knowledge, this is the first static analysis for SFeghis. There has been some work on
analysing other styles of metaprogramming. For examplej &id others [4] consider how to analyse a
form of extensional metaprogramming called staged metmpnoming, which captures the composition
of code templates. They suggest using an unstaging treomsldiat turns the metaprogramming con-
structs into function abstraction and record lookup, theingiother existing analyses. Our own work
considers how to formulate OCFA in a dynamically typed laaggiwith staged metaprogramming and
variable capture [14], with a view to analysing JavaSgigtval construct [15]. In a statically typed
setting, Berger and Tratt develop a Hoare-style lagic [t ftanguage with staged metaprogramming.

Intensional metaprogramming has often been ignored bea#uts semantic difficulties, or because
of the dominance of the idea that extensionally equal pragraught to be indistinguishable J11]. Re-
FLect [7], a functional programming language for hardwagsigih and theorem proving, allows decon-
struction of code values, but this causes difficulties fotype system, even in a combinatory fragment
of the languagé€ [16].

The idea that program code can be deconstructed and thdtuttuse can influence the control
flow of a program is conceptually similar to the functionabgramming idiom of defining functions by
pattern-matching over algebraic datatypes. There hasdmea work on analysing functional programs
from this perspective. For example, Jones and Anderseemras analysis that uses tree grammars to
over-approximate the structure of data values that mayddused by a program [13]. Ong and Ramsay
suggest a formalism called Pattern Matching Recursionr8ebehat captures the idea in a typed setting
and develop a powerful analysis forlit [19].

7 Future Work and Conclusions

We have presented the first static analysis for SF-calc@u®rmalism which presents a promising
foundation for writing programs that transform other peogs. We have proved correctness of the



66 CFA for SF-Calculus

analysis and shown that is comparable to standard OCFA égrams that do not rely on the ability of
F to factor terms, such as those translated directly from 8lketus. From here, there are a number of
obvious directions in which to proceed.

Firstly, in order to evaluate the usefulness of the analgsdto advance our understanding of pro-
gram transformation, it would be good to develop a trarmtefiiom a higher level language that supports
intensional metaprogramming into SF-calculus. The tetitl should map code deconstruction to fac-
torisation usingd-.

Secondly, there is scope to improve the precision of theyaisalFor standard OCFA, tracking context
in the style ofk-CFA or a pushdown analysis in the style of CFA2 can improweision significantly.
The same techniques may be applicable here. It may also Béj@o® use technigues from analysing
pattern matching and tree datatypes in functional prograiganguages to analyse the term trees that
constitute programs in SF-calculus and their patternsniagcand deconstruction with. However, an
important consideration in applying any such techniqueRec&culus would be the need to distinguish
between a non-factorable tetnand the factorable tert to which it may reduce.

Finally, OCFA is often useful not as an end to itself, but heseait can be combined with other
analysis technigues, for example drawn from abstractpné¢ation, in order to improve their precision
by reducing the number of execution paths or reduction semsethat must be considered to over-
approximate the behaviour of a program. It would be intérggb see if, combined with such techniques,
this analysis can actually be used to verify properties off@ms that perform program transformations.
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