
Alexei Lisitsa and Andrei Nemytykh (Eds.): 9th International Workshop
on Verification and Program Transformation (VPT 2021)
EPTCS 341, 2021, pp. 33–41, doi:10.4204/EPTCS.341.3

© M.B. Mikkelsen, R. Glück, M.H. Kirkeby

An Inversion Tool for Conditional Term Rewriting Systems
– A Case Study of Ackermann Inversion

Maria Bendix Mikkelsen* Robert Glück
DIKU, University of Copenhagen, Denmark

mbm@di.ku.dk, glueck@acm.org

Maja H. Kirkeby
Roskilde University, Denmark

kirkebym@acm.org

We report on an inversion tool for a class of oriented conditional constructor term rewriting systems.
Four well-behaved rule inverters ranging from trivial to full, partial and semi-inverters are included.
Conditional term rewriting systems are theoretically well founded and can model functional and non-
functional rewrite relations. We illustrate the inversion by experiments with full and partial inversions
of the Ackermann function. The case study demonstrates, among others, that polyvariant inversion
and input-output set propagation can reduce the search space of the generated inverse systems.

Keywords program inversion, program transformation, term rewriting systems, case study

1 Introduction

Program inversion is one of the fundamental transformations that can be performed on programs [3]. Al-
though function inversion is an important concept in mathematics, program inversion has received little
attention in computer science. In this paper, we report on a tool implementation of an inversion frame-
work [6] and on some computer experiments within the framework. The implementation includes four
well-behaved rule inverters ranging from trivial to full, partial and semi-inverters, several of which have
been studied in the literature [7, 12, 13]. The generic inversion algorithm used by the tool was proven to
produce the correct result for all well-behaved rule inverters [6]. The tool reads the standard notation of
the established confluence competition (COCO), making it compatible with other term rewriting tools.
The Haskell implementation is designed as an open system for experimental and educational purposes
that can be extended with further well-behaved rule inverters.

In particular, we illustrate the use of the tool by repeating A.Y. Romanenko’s three experiments with
full and partial inversions of the Ackermann function [15, 16]. His inversion algorithm, inspired by
Turchin [17], inverts programs written in a Refal extension, Refal-R [16], which is a functional-logic
language, whereas our tool uses a subclass of oriented conditional constructor term rewriting systems1

(CCSs) [1, 14]. Conditional term rewriting systems are theoretically well founded and can model a wide
range of language paradigms, e.g., reversible, functional, and declarative languages.

Let us illustrate our tool with three kinds of inversions of a simple remove-index function, rem
(Figure 1). Given a list and a unary number n, it returns the nth element of the list and the list without the
removed element. rem is defined by two rewrite rules: the first rule defines the base case where cons (:)
is written in prefix notation and the two outputs are tupled (<·>). The second rule contains a so-called
condition after the separator (<=) that can be read as a recursion. The input-output relation specified by
rem is exemplified by the list [a,b,b] and the indices 0, 1, and 2 (inputs are marked in blue).

*Thanks for support to Zonta International, Club of Copenhagen.
1CCSs are also referred to as pure constructor CTRS [10].

http://dx.doi.org/10.4204/EPTCS.341.3
http://project-coco.uibk.ac.at/


34 An Inversion Tool for Conditional Term Rewriting Systems – A Case Study of Ackermann Inversion

remove-index
([a,b,b],0) 〈a, [b,b]〉
([a,b,b],1) 〈b, [a,b]〉
([a,b,b],2)

rem(:(x,xs),0) -> <x,xs>

rem(:(x,xs),s(i)) -> <y,:(x,zs)> <=

rem(xs,i) -> <y,zs>

Full inv.
======⇒ random-insert

(a, [b,b]) 〈[a,b,b],0〉
〈[b,a,b],1〉
〈[b,b,a],2〉

rem{}{1,2}(x,xs) -> <:(x,xs),0>

rem{}{1,2}(y,:(x,zs)) -> <:(x,xs),s(i)> <=

rem{}{1,2}(y,zs) -> <xs,i>

Partial inv.
========⇒ insert

(0,a, [b,b]) 〈[a,b,b]〉
(1,b, [a,b])
(2,b, [a,b])

rem{2}{1,2}(0,x,xs) -> <:(x,xs)>

rem{2}{1,2}(s(i),y,:(x,zs)) -> <:(x,xs)> <=

rem{2}{1,2}(i,y,zs) -> <xs>

Semi-inv.
=======⇒ remove-elem

([a,b,b],a) 〈0, [b,b]〉
([a,b,b],b) 〈1, [a,b]〉

〈2, [a,b]〉

rem{1}{1}(:(x,xs),x) -> <0,xs>

rem{1}{1}(:(x,xs),y) -> <s(i),:(x,zs)> <=

rem{1}{1}(xs,y) -> <i,zs>

Figure 1: Full, partial and semi-inversion of the remove-index function rem.

Usually, we consider program inversion as full inversion that swaps a program’s entire input and
output. In our tool, the new directionality of the desired program is specified by input and output index
sets (io-sets). The user can select the input and output arguments that become the input arguments of the
inverse program, so this technique is very general. Full inversion always has an empty input index set I
and an output index set O containing all indices of the outputs.

Full inversion of rem yields a program rem{}{1,2}whose non-functional input-output relation spec-
ifies the insertion of an element into a list at an arbitrary position. The updated lists and the corresponding
positions are the output. The name rem{}{1,2} indicates that none of rem’s inputs ({}) and all of rem’s
outputs ({1,2}) are the new inputs.

The full inverse of a non-injective function specifies a non-functional relation. Thus, program inver-
sion does not respect language paradigms, and this is one of the inherent difficulties when performing
program inversion for a functional language. The inverted rules do not always define a functional rela-
tion because they may have overlapping left-hand sides or extra variables. The non-functional relation
random-insert of rem{}{1,2} is induced by two overlapping rules.

Partial inversion swaps parts of the input and the entire output. rem{2}{1,2} is a partial inverse of
rem where the original list is swapped with the entire output. It defines the insertion of an element at a
position n in a list, i.e., the functional relation insert. Semi-inversion, the most general form of inversion,
can swap any part of the input and output. rem{1}{1} is a semi-inversion of rem where the position
and the element are swapped, i.e., the non-functional relation remove-elem. While we obtain two pro-
grams for the price of one by full inversion, we can obtain several programs by partial and semi-inversion.

The contribution of the work reported here is a complete implementation of the generic inversion algo-
rithm, together with four well-behaved rule inverters. The system is available for experimental (source
code) and educational purposes (web system). We then report on the case study of Ackermann inversion
repeating three experiments by A.Y. Romanenko and compare the results and provide measures of the
rewrite steps and function calls. We are not aware of other investigations of Romanenko’s experiments.

We begin by giving an overview of the tool (Section 2) followed by the case study of Ackermann in-
version (Section 3). This paper, the tool implementation itself, and the paper on the inversion framework
are intended to complement each other. They are intended to be used together. For more details on the
generic inversion algorithm and the rule inverters, interested readers are therefore referred to [6].



M.B. Mikkelsen, R. Glück, M.H. Kirkeby 35

Inversion
framework

Inversion task

Rule inverter

CCS rules

add(0,y) -> <y>

add(s(x),y) -> <s(z)> <=

add(x,y) -> <z>

partial rule inverter

Inverted CCS rules

Diagnostics table

add, I = {1}, O = {1} add{1}{1}(0,y) -> <y>

add{1}{1}(s(x),s(z)) -> <y> <=

add{1}{1}(x,z) -> <y>

Figure 2: The tool illustrated with the partial inversion of add defining the addition of unary numbers.

2 Inversion Tool

The tool is implemented in Haskell2, and we provide both an online web-based version3 and the source
code4. We demonstrate how to partially invert a function add, which defines the addition of two unary
numbers, to obtain add{1}{1}, which defines the subtraction of two unary numbers. As illustrated in
Figure 2, the Inversion Framework requires three inputs: (i) the original CCS rules with the add-rules,
(ii) the Inversion task: add with io-set I = {1} and O = {1}, and (iii) an indication of which well-
behaved Rule inverter the tool should apply, here, the partial rule inverter. The inversion framework
provides two outputs: (i) the Inverted CCS rules, containing the add{1}{1}-rules defining subtraction,
and (ii) a Diagnostics table with an overview of the systems’ paradigm characteristics. Because the
program inversion does not respect language paradigms, it is useful that the tool also provides an analysis
of the programs’ paradigm characteristics; see [6, Fig.2] for definitions and interrelations.

Whereas the source code provides a command line interface, which facilitates composition with
other program transformations, the online web-based version provides a friendly clickable interaction;
see Figure 3 for a screenshot. In the following, we describe the most important content and features of
the online tool. The tool web-site contains the following:

1. a navigation bar (in the top) with green action buttons and white settings buttons,

2. a white input window with a text field for the original CCS,

3. a gray output window (in the lower left corner) for the inverted systems, and

4. another gray output window (in the lower right corner) with program diagnostics.

The original CCS can either be entered into the input window or chosen from the predefined CCS ex-
amples available via the Examples button, e.g., choosing add. Using the Options button, one defines the
inversion task, e.g., the partial inversion of add with I = {1} and O = {1} and selects one of the rule
inverters, e.g., the partial rule inverter. To apply the inverter, we use the Invert button whereafter the tool

2The Glorious Glasgow Haskell Compilation System, version 8.10.4
3https://topps.di.ku.dk/pirc/inversion-tool
4https://github.com/pirc-src/inversion-tool

https://topps.di.ku.dk/pirc/inversion-tool
https://github.com/pirc-src/inversion-tool


36 An Inversion Tool for Conditional Term Rewriting Systems – A Case Study of Ackermann Inversion

Figure 3: The interface of the web-based inversion tool after partially inverting add to add{1}{1}.

creates (or updates) the gray output windows with the inversion, e.g., the partial inversion add{1}{1},
and the paradigm characteristics of both the original and the inverted program, e.g., column ORIG and
column PART. For instance, we can see that both add and add{1}{1} are functional and that none of
them is reversible. The Diagnose button provides a more detailed property analysis of the program in
the white input text field. Another feature is the Latex button that translates the CCS in the main window
into LATEX code that can be used when typesetting documents.

3 A Case Study of Ackermann Inversion

We illustrate the use of our tool by repeating three experiments [16], namely, two partial inversions and
a full inversion of the Ackermann function ack (Figure 4a). ack takes two unary numbers as inputs and
returns one unary number as output.

First Experiment An io-set together with the ack program in Figure 4a are the tool inputs. The io-set
for this experiment is I = {1} and O = {1}, specifying that the first input term and the output term of
ack are the inputs for the partially inverted program ack{1}{1}. Then, our tool propagates the io-set
through the entire program and transforms the rules locally using the selected well-behaved rule inverter.

The result of the pure partial inversion [6, Fig.6] is shown in Figure 4b. The resulting program



M.B. Mikkelsen, R. Glück, M.H. Kirkeby 37

ack(0,y) -> <s(y)>

ack(s(x),0) -> <z> <= ack(x,s(0)) -> <z>

ack(s(x),s(y)) -> <z> <= ack(s(x),y) -> <v>, ack(x,v) -> <z>
ack

(a) Program ack implementing the Ackermann function Ack(x,y).

ack{1}{1}(0,s(y)) -> <y>

ack{1}{1}(s(x),z) -> <0> <= ack{1,2}{1}(x,s(0),z) -> <>

ack{1}{1}(s(x),z) -> <s(y)> <= ack{1}{1}(x,z) -> <v>,

ack{1}{1}(s(x),v) -> <y>

ack{1,2}{1}(0,y,s(y)) -> <>

ack{1,2}{1}(s(x),0,z) -> <> <= ack{1,2}{1}(x,s(0),z) -> <>

ack{1,2}{1}(s(x),s(y),z) -> <> <= ack{1}{1}(x,z) -> <v>,

ack{1,2}{1}(s(x),y,v) -> <>

ack{1,2}{1}

ack{1}{1}

(b) Partial inverse of ack with I = {1} and O = {1}.

ack_2(0,s(y)) -> <y>

ack_2(s(x),z) -> <0> <= ack_2(x,z) -> <s(0)>

ack_2(s(x),z) -> <s(y)> <= ack_2(x,z) -> <v>,

ack_2(s(x),v) -> <y>

ack_2

(c) Romanenko’s partial inverse Ack−1
2 [16, p.17] rewritten as a CCS.

Figure 4: Partial inversions of the Ackermann function and the dependency graphs.

consists of two defined function symbols, namely, the desired partial inverse ack{1}{1}, which depends
on another partial inverse ack{1,2}{1}. The io-set of ack{1,2}{1} specifies that it takes both inputs
and the output of ack as the input. As a consequence, all of its three rules return a nullary output tuple <>.
In the case of Romanenko’s ack_2 in Figure 4c, the second rule’s right-hand side of the condition is a
constant s(0). Since this output is a known constant, we can provide it as input to the left-hand side
using our tool. This illustrates that our tool fully propagates the io-sets such that all known terms become
the new input. This means that the algorithm is a polyvariant inverter in that it may produce several
inversions of the same function symbol, namely, one for each input-output index set.

The relation specified by the partial inverse is functional [16, p.18], but the program in Figure 4b
is nondeterministic due to a single pair of overlapping rules, i.e., the 2nd and 3rd rules of ack{1}{1}.
The same issue occurs for the partially inverted program Ack−1

2 (ack_2, Figure 4c) [16, p.17]. Com-
parison of the two programs shows that in ack{1}{1}’s second rule, our tool has moved the condition’s
constant s(0) to the input side and thereby created a dependency on the more specific partial inversion
ack{1,2}{1} instead of ack{1}{1}.

The effect is to reduce the search space when rewriting using the inverted systems. In this experiment,
we found a remarkable reduction of function calls and rewrite steps. The results and the speed-ups for
ack_2 and ack{1}{1} are reported in Table 1. For the tested inputs ranging from (1, 2) to (3, 509) the
speed-up is up to 5.89 for rewrite steps and up to 3.92 for function calls when comparing ack{1}{1}
with Romanenko’s ack_2. We observe that there is a rewrite step speed-up for all inputs, while the two
programs have equally many function calls when the first input is 1. One reason is that ack{1}{1} tends



38 An Inversion Tool for Conditional Term Rewriting Systems – A Case Study of Ackermann Inversion

Input (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)

ack_2 Rewrite steps 5 8 11 14 17 20 23
Function calls 9 12 15 18 21 24 27

ack{1}{1} Rewrite steps 4 6 8 10 12 14 16
Function calls 9 12 15 18 21 24 27

Speed-up Rewrite steps 1.25 1.33 1.38 1.40 1.42 1.43 1.53
Function calls 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Input (2, 3) (2, 5) (2, 7) (2, 9) (2, 11) (2, 13) (2, 15)

ack_2 Rewrite steps 21 50 91 144 209 286 375
Function calls 38 75 124 185 258 343 440

ack{1}{1} Rewrite steps 13 25 41 61 85 113 145
Function calls 28 51 80 115 156 203 256

Speed-up Rewrite steps 1.62 2.00 2.22 2.36 2.46 2.53 2.59
Function calls 1.36 1.47 1.55 1.61 1.65 1.69 1.72

Input (3, 5) (3, 13) (3, 29) (3, 61) (3, 125) (3, 253) (3, 509)

ack_2 Rewrite steps 109 682 3351 14820 62321 255614 1035403
Function calls 178 865 3776 15743 64254 259581 1043452

ack{1}{1} Rewrite steps 45 186 727 2836 11153 44174 175755
Function calls 95 347 1239 4563 17359 67531 266183

Speed-up Rewrite steps 2.42 3.67 4.61 5.23 5.59 5.79 5.89
Function calls 1.87 2.49 3.05 3.45 3.70 3.84 3.92

Table 1: The rewrite steps and function calls for ack{1}{1} and ack_2 on a range of inputs.

to use fewer rewriting steps because its call to ack{1,2}{1} can fail using pattern matching, whereas
ack_2 requires a rewriting and pattern match of the result to establish the same failure.

The number of required rewrite steps is used in the complexity of conditional term rewriting sys-
tems [8], and the number of function/predicate calls is used in the complexity analysis of functional and
logic programs [9, 11]. Here, function calls correspond to the number of function-rooted terms that must
be rewritten to reach normal form.

To confirm that these speed-ups manifest themselves in a functional-logic language, we implemented
ack{1}{1} and ack_2 in Curry and measured their runtimes in CPU seconds on input (3,253) using two
Curry systems5: The Haskell-based Kics2 terminated on the programs after 1295.7 s and 4674.6 s,
respectively, and the Prolog-based Pakcs3 terminated after 8.5 s and 40.7 s, respectively. Thus, the
speed-ups in Curry, which are 3.61 and 4.79, are comparable to the speed-ups for function calls and
rewrite steps.

On the other hand, the polyvariant io-set propagation also has a cost with respect to the size of
ack{1}{1}: in the worst case, all possible inversions of a function symbol are created–io-sets are never

5The programs were executed using the Docker images caups/pakcs3:3.3.0 and caups/kics2:2.3.0 on an Apple
MacBook Pro (2.6 GHz 6-Core Intel Core i7 processor, 16 GB memory, Intel Graphics). The execution times are slower than
if Curry were installed directly on the machine, but the relative program execution times are expected to hold in either case.



M.B. Mikkelsen, R. Glück, M.H. Kirkeby 39

ack{2}{1}(y, s(y)) -> <0>

ack{2}{1}(0, z) -> <s(x)> <= ack{2}{1}(s(0), z) -> <x>

ack{2}{1}(s(y), z) -> <s(x)> <= ack{}{1}(z) -> <x, v>,

ack{1,2}{1}(s(x), y, v) -> < >

ack{}{1}(s(y)) -> <0, y>

ack{}{1}(z) -> <s(x), 0> <= ack{2}{1}(s(0), z) -> <x>

ack{}{1}(z) -> <s(x), s(y)> <= ack{}{1}(z) -> <x, v>,

ack{1}{1}(s(x), v) -> <y>

(a) Partial inverse of ack with I = {2} and O = {1} includes, in addition, the rules of Figure 4b.

ack_1(y, s(y)) -> <0>

ack_1(0, z) -> <s(x)> <= ack_1(s(0), z) -> <x>

ack_1(s(y), z) -> <s(x)> <= ack_0(z) -> <s(x), v>,

ack_1(s(y), v) -> <s(x)>

ack_0(s(y)) -> <0, y>

ack_0(z) -> <s(x), 0> <= ack_0(z) -> <x, s(0)>

ack_0(z) -> <s(x), s(y)> <= ack_0(z) -> <x, v>,

ack_0(v) -> <s(x), y>

(b) Romanenko’s partial inverse Ack−1
1 [16, p.17] rewritten as a CCS.

ack{2}{1}

ack{}{1}

ack{1,2}{1}

ack{1}{1}

ack_1

ack_0

(c) Dependency graphs of ack{2}{1} and ack_1.

Figure 5: A partial inversion of the Ackermann function and the dependency graphs.

generalized–thereby increasing the size of the generated program. Despite the full propagation of the
io-sets, the tool always terminates due to their finite number for any program; this characteristic relates
to mode analysis [14]. Romanenko’s method, which is potentially more powerful due to the global
approach because it builds a configuration graph and uses generalization to make the unfolding of calls
terminate, produces a monovariant partial inverse ack_2 so that not all known local information is used
(Figure 4c); this may be due to the generalization in the configuration graph [15].

Second experiment The next experiment is the partial inversion ack{2}{1} and our tool correctly
produces the inverse that defines four function symbols including ack{1}{1} and ack{1,2}{1} and also
a full inverse ack{}{1}. This full inverse depends on the partial inverses ack{1}{1} and ack{2}{1}
due to the io-set propagation in our tool. By contrast, Romanenko’s partial inversion ack_1 depends on
itself and on ack_1’s full inverse ack_0. His full inverse depends on itself [16, p.17] instead of partial
inverses that would have been possible if all known information was exploited. Both systems ack{2}{1}
and ack_1 are shown in Figure 5a and 5b, where ack{2}{1} depends on ack{1,2}{1} and ack{1}{1}
in Figure 4b. The systems are illustrated by their dependency graphs in Figure 5c.

Romanenko’s ack_1 and ack{2}{1} are nonterminating. The third rule of ack_0 has ack_0(z)



40 An Inversion Tool for Conditional Term Rewriting Systems – A Case Study of Ackermann Inversion

ack{}{1}(s(y)) -> <0, y>

ack{}{1}(z) -> <s(x), 0> <= ack{}{1}(z) -> <x, s(0)>

ack{}{1}(z) -> <s(x), s(y)> <= ack{}{1}(z) -> <x, v>,

ack{}{1}(v) -> <s(x), y>

Figure 6: The full inverse of the Ackermann function.

as its left-hand side and also requires a rewriting of the same term ack_0(z) in its first condition, thus
yielding an infinitely deep search tree. The third rule of ack{}{1} has a similar structure. Since both
programs are nonterminating, no counts are provided. Nevertheless, when producing ack{2}{1}, our
tool discovers an improvement of the inverse system, e.g., the second condition of the third rule depends
on the terminating ack{1,2}{1} whereas the same condition of the same rule of ack_1 depends on the
nonterminating ack_1.

The cost of creating polyvariant inversions is evident in ack{2}{1}, where the tool has created
4 different inversions of the 3 original rules, producing a system of 12 rules. In comparison, ack_1
consists of two inversions of the same three original rules producing a smaller system of 6 rules; see the
dependency graphs in Figure 5c.

Third experiment In the third experiment, Romanenko used his full inverter [16, Sect.3.1] to invert
ack, and our pure full inverter [6, Fig.6] produces exactly the same program, namely, ack{}{1}, in
Figure 6. Please note that this full inversion shares the same defined function symbol as the rules in
Figure 5, but the rules are different. This is because they define the same input-output relation, namely,
the full inversion of the original ack. This system is nonterminating; thus, no count is provided. By
exploiting the mathematical property of Ackermann that its output is larger than its input, it may be
possible to create a terminating full inversion. It is beyond the tool to use extra mathematical properties
to improve the inversions.

The fourth partial inversion that is possible is ack{1,2}{1}, which is already included in Figure 4b.
This means that with our tool, we produced all four possible partial inversions (including the special case
of full inversion) of the Ackermann function in the course of the three experiments. Using our tool, we
also reproduced all of the examples in [6, 7].

4 Conclusion and Future Work

The goal of this work was to provide a design space for the experimental evaluation and comparison of
different well-behaved rule inverters, including those using heuristic approaches [7]. It will be interesting
to investigate Romanenko’s inversion method [15] as well as related global approaches [2, 4, 5] and
program analyses such as mode and binding-time analyses. Using CCSs enabled us to focus on the
essence of inversion without considering language-specific details, as demonstrated by the examples
above. The examples demonstrate that polyvariant inversion can considerably reduce the search space of
the inverted system. The post-optimizations of the inverted programs represent another future direction of
investigation. We have observed two potential improvements: the first is the reduction of nondeterminism
by determinization [5, 10], and the other is exploiting constants by partial evaluation, for example, the
constant s(0) of the 2nd rule of Figure 4b. We expect that this will further improve the efficiency of
inverse systems. In future work, one can consider the translation of the resulting programs to logic or
functional-logic programming languages, such as Prolog or Curry, and explore the relation to partial
deduction in logic programming.



M.B. Mikkelsen, R. Glück, M.H. Kirkeby 41

Acknowledgements Thanks to Alberto Pettorossi and to the anonymous reviewers for their construc-
tive feedback on an earlier version of this paper.

References
[1] Marc Bezem, Jan W. Klop & Roel de Vrijer (2003): Terese: Term Rewriting Systems. Cambridge University

Press, United Kingdom.
[2] Robert Glück & Masahiko Kawabe (2005): Revisiting an automatic program inverter for Lisp. SIGPLAN

Notices 40(5), pp. 8–17, doi:10.1145/1071221.1071222.
[3] Robert Glück & Andrei V. Klimov (1994): Metacomputation as a tool for formal linguistic modeling. In

Robert Trappl, editor: Cybernetics and Systems ’94, 2, World Scientific, pp. 1563–1570.
[4] Robert Glück & Valentin F. Turchin (1990): Application of metasystem transition to function inversion and

transformation. In: International Symposium on Symbolic and Algebraic Computation. Proceedings, ACM,
pp. 286–287, doi:10.1145/96877.96953.

[5] Masahiko Kawabe & Robert Glück (2005): The program inverter LRinv and its structure. In Manuel
Hermenegildo & Daniel Cabeza, editors: Practical Aspects of Declarative Languages. Proceedings, LNCS
3350, Springer, pp. 219–234, doi:10.1007/978-3-540-30557-6 17.

[6] Maja H. Kirkeby & Robert Glück (2020): Inversion framework: reasoning about inversion by conditional
term rewriting systems. In: Principles and Practice of Declarative Programming. Proceedings, ACM, p.
Article 9, doi:10.1145/3414080.3414089.

[7] Maja H. Kirkeby & Robert Glück (2020): Semi-inversion of conditional constructor term rewriting systems.
In Maurizio Gabbrielli, editor: Logic-based Program Synthesis and Transformation. Proceedings, LNCS
12042, Springer, pp. 243–259, doi:10.1007/978-3-030-45260-5 15.

[8] Cynthia Kop, Aart Middeldorp & Thomas Sternagel (2017): Complexity of conditional term rewriting. Log-
ical Methods in Computer Science 13(1:6), doi:10.23638/LMCS-13(1:6)2017.

[9] Daniel Le Métayer (1988): ACE: an automatic complexity evaluator. ACM Transactions on Programming
Languages and Systems 10(2), pp. 248–266, doi:10.1145/42190.42347.

[10] Masanori Nagashima, Masahiko Sakai & Toshiki Sakabe (2012): Determinization of conditional term rewrit-
ing systems. TCS 464, doi:10.1016/j.tcs.2012.09.005.

[11] Jorge Navas, Edison Mera, Pedro López-Garcı́a & Manuel V. Hermenegildo (2007): User-definable resource
bounds analysis for logic programs. In Véronica Dahl & Ilkka Niemelä, editors: Logic Programming. Pro-
ceedings, LNCS 4670, Springer, pp. 348–363, doi:10.1007/978-3-540-74610-2 24.

[12] Naoki Nishida (2004): Transformational Approach to Inverse Computation in Term Rewriting. Ph.D. thesis,
Graduate School of Engineering, Nagoya University, Japan.

[13] Naoki Nishida, Masahiko Sakai & Toshiki Sakabe (2005): Partial inversion of constructor term rewriting
systems. In Jürgen Giesl, editor: Rewriting Techniques and Applications. Proceedings, LNCS 3467, Springer,
pp. 264–278, doi:10.1007/978-3-540-32033-3 20.

[14] Enno Ohlebusch (2002): Advanced Topics in Term Rewriting. Springer, New York, doi:10.1007/978-1-4757-
3661-8.

[15] Alexander Y. Romanenko (1988): The generation of inverse functions in Refal. In Dines Bjørner, Andrei P.
Ershov & Neil D. Jones, editors: Partial Evaluation and Mixed Computation, North-Holland, pp. 427–444.

[16] Alexander Y. Romanenko (1991): Inversion and metacomputation. In: Partial Evaluation and Semantics-
Based Program Manipulation. Proceedings, ACM, pp. 12–22, doi:10.1145/115865.115868.

[17] Valentin F. Turchin (1986): The concept of a supercompiler. ACM TOPLAS 8(3), pp. 292–325,
doi:10.1145/5956.5957.

http://dx.doi.org/10.1145/1071221.1071222
http://dx.doi.org/10.1145/96877.96953
http://dx.doi.org/10.1007/978-3-540-30557-6_17
http://dx.doi.org/10.1145/3414080.3414089
http://dx.doi.org/10.1007/978-3-030-45260-5_15
http://dx.doi.org/10.23638/LMCS-13(1:6)2017
http://dx.doi.org/10.1145/42190.42347
http://dx.doi.org/10.1016/j.tcs.2012.09.005
http://dx.doi.org/10.1007/978-3-540-74610-2_24
http://dx.doi.org/10.1007/978-3-540-32033-3_20
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1145/115865.115868
http://dx.doi.org/10.1145/5956.5957

	1 Introduction
	2 Inversion Tool
	3 A Case Study of Ackermann Inversion
	4 Conclusion and Future Work

