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Many transformation techniques developed for constraint logic programs, also known

as constrained Horn clauses (CHCs), have found new useful applications in the field

of program verification. In this paper, we work out a nontrivial case study through the

transformation-based verification approach. We consider the familiar Quicksort program

for sorting lists, written in a functional programming language, and we verify the pre/-

postconditions that specify the intended correctness properties of the functions defined

in the program. We verify these properties by: (1) translating them into CHCs, (2) trans-

forming the CHCs by removing all list occurrences, and (3) checking the satisfiability

of the transformed CHCs by using the Eldarica solver over booleans and integers. The

transformation mentioned at Point (2) requires an extension of the algorithms for the

elimination of inductively defined data structures presented in previous work, because

during one stage of the transformation we use as lemmas some properties that have been

proved at previous stages.

1 From Program Transformation to Program Verification

Program transformation gained a lot of popularity after the seminal paper by Burstall and Darlington [7],

who advocated an approach based on transformation rules, which preserve the semantics of programs,

and transformation strategies, which guide the application of the rules towards a goal of interest. This ap-

proach enables the separation, during program development, of the correctness issue from the efficiency

issue.

Burstall and Darlington’s rule-based approach has been proposed in the context of functional pro-

gramming, and later extended to other programming paradigms, such as logic programming [35, 43] and

constraint logic programming (CLP) [15]. The interest of applying program transformation techniques

to declarative programming languages, like functional and logic programming, is due to the fact that in

that context both specifications and programs are written as logical formulas, and program transforma-

tion can be viewed as a means for deriving, via logical deduction, efficient programs that are correct by

construction [23].

Starting from the late 1990s, many program analysis and transformation techniques for logic and

constraint logic programs have found new applications in the field of program verification. Initially,

they have been applied to the proof of properties for abstract computational models such as Petri nets,

timed automata, and infinite state transition systems [3, 14, 16, 18, 28, 39], and, later on, also for ver-

ifying programs written in concrete programming languages, including imperative and object-oriented
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languages [1, 9, 30, 34]. Indeed, logic programming, possibly extended with constraint theories, is a very

suitable language for specifying program semantics and program properties [19, 34, 37]. Moreover, the

notions of least and greatest models are the logical counterparts of least and greatest fixed points often

used for program verification.

In the field of program verification, constraint logic programs are often called constrained Horn

clauses (CHCs), when we want to stress their use as a reasoning formalism, rather than as a programming

language [4]. The underlying constraint theories used in CHCs are typically those that axiomatize data

structures used in programming, such as booleans, integer numbers, real numbers, bit vectors, arrays,

heaps, and inductively defined data structures such as lists and trees. For checking the satisfiability of

CHCs, effective solvers, such as Eldarica [24] and Z3 [32] with the Spacer Horn engine [26], have been

developed during the last years.

Several CHC transformations, including fold/unfold transformations and CHC-specialisation, have

been applied to verification problems [9, 11, 12, 25, 31]. The basic idea is to transform a set of clauses P,

whose satisfiability guarantees a certain program property, into a new set of clauses P′, such that the

satisfiability of P′ (1) implies the satisfiability of P, and (2) is more effectively checked by the available

CHC solver. One of these CHC transformations is the fold/unfold strategy for the elimination of induc-

tively defined data structures from CHCs. This strategy was first proposed as a means for improving

the efficiency of logic programs by avoiding intermediate data structures [38], and is strongly related

to the well-known deforestation transformation in functional programming [45]. In the context of CHC

verification, the advantage of eliminating inductively defined data structures is that the satisfiability of

the derived clauses can be proved in simpler domains, such as the theory of booleans or the theory of

linear arithmetic, for which existing solvers are very effective.

In previous work [12, 13], we have shown that, by eliminating inductively defined data structures

from CHCs, we can avoid to extend solvers with induction-based inference rules, and yet we can prove

universally quantified properties of programs acting on those structures. Indeed, experiments show that

our two-step technique, consisting in preprocessing CHCs by eliminating inductively defined data struc-

tures, and then applying CHC solvers over booleans and integers, is competitive with respect to ap-

proaches based on extending solvers with induction over data structures [41, 44].

In this paper, we work out a case study through the transformation-based verification approach. We

consider a program Quicksort for sorting lists, written in the pure functional fragment of Scala [33], im-

plementing the familiar algorithm invented by Tony Hoare [21]. The program is equipped with contracts,

i.e., pre/postconditions that specify the intended correctness properties of the various program functions.

We check that the program verifies all contracts by: (1) translating them into CHCs, (2) transforming the

CHCs by removing all list occurrences, and (3) checking the satisfiability of the transformed CHCs by

using the Eldarica solver over booleans and integers. The transformation mentioned at Point (2) requires

an extension of the algorithms for the elimination of inductively defined data structures presented in pre-

vious work, because during one stage of the transformation we will use as lemmas some contracts that

we have verified at previous stages.

The advantage of our approach is that we avoid the use of very complex program verifiers, such as

the STAINLESS tool developed for Scala [20], which combine reasoning in Hoare logic with induction

and constraint solving, and instead, by our transformation, we reduce the verification task to a problem

that can be handled by simpler CHC solvers. In fact, our specific Quicksort verification problem is not

solved by STAINLESS.

The paper is organized as follows. In Section 2, we recall the transformation-based verification

approach by considering the partition function, which is used by the Quicksort program. In Sections 3
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and 4, we apply the transformation-based verification approach to the whole Quicksort program. In

particular, in Section 3 we show how the problem of verifying the correctness of Quicksort with respect

to its contracts is translated to CHCs. Then, in Section 4, we show how those CHCs are transformed by

removing all list terms, hence deriving a set of clauses over booleans and integers whose satisfiability

is proved by Eldarica. Finally, in Section 5, we compare our contribution to related work and we make

some concluding considerations.

2 Program Verification via Constrained Horn Clause Transformation

In this section, we recall the transformation-based approach to program verification by means of a simple

example. We consider a function partition for partitioning a list of natural numbers into two sublists

by using a pivot element. This function will be used in the Quicksort program of Section 3. We translate

the partition function into a set PartitionCHCs of clauses, and the contract associated with partition

into a set Gs of goals, that is, clauses with false head. The satisfiability of PartitionCHCs∪{G}, for

all G in Gs, guarantees that partition is correct with respect to the specified contract. Then, for all G

in Gs, we apply the transformation technique based on the Elimination Algorithm [12] for removing list

occurrences from PartitionCHCs∪{G}. The result of the transformation is a set TG of clauses over the

theories Bool of boolean values and LIA of linear integer arithmetic, which is satisfiable if and only if

PartitionCHCs∪{G} is satisfiable. Finally, we check the satisfiability of TG by using a CHC solver over

Bool and LIA.

Let us consider the following program Partition written in the pure functional fragment of Scala [33]:

def all_grt(x: Nat, l: List[Nat]): Boolean = {
l match {
case Nil() => true
case Cons(y, ys) if (x =< y) => false
case Cons(y, ys) if (x > y) => all_grt(x, ys)

}

def all_leq(x: Nat, l: List[Nat]): Boolean = {
l match {
case Nil() => true
case Cons(y, ys) if (x > y) => false
case Cons(y, ys) if (x =< y) => all_leq(x, ys)

}
}

def partition(x: Nat, l: List[Nat]): (List[Nat], List[Nat]) = {
l match {
case Nil() => (Nil[Nat](), Nil[Nat]())
case Cons(y, ys) =>
val (l1, l2) = partition(x, ys)
if (x > y) { (Cons(y, l1), l2) }
else { (l1, Cons(y, l2)) }

}
} ensuring { res =>
all_grt(x, res._1) && all_leq(x, res._2) // partition postcondition

}

Listing 1: Program Partition. Variable res denotes the pair returned by the partition function, and
res._1 and res._2 denote its first and second components, respectively.
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Given a natural number x and a list l of natural numbers, we have that (i) all_grt(x,l) (and, respec-

tively, all_leq(x,l)) returns true if x is greater than (respectively, less than or equal to) every element

of l, and false otherwise, (ii) partition(x,l) returns a pair of lists (l1,l2), where l1 (respectively,

l2) is the list of all the elements y of l such that x is greater than (respectively, less than or equal to) y.

The partition function is annotated with a postcondition, specified by the ensuring assertion, which

encodes the following contract:

∀x,l,l1,l2. partition(x,l)==(l1,l2) ==> all_grt(x,l1) && all_leq(x,l2) (Contract Pivot)

In general, a contract consists of a precondition, specified by a require assertion, and a postcondition,

specified by an ensuring assertion. However, in the case of partition, the precondition is missing

(i.e., it is true).

In order to prove that the contract Pivot is indeed satisfied, we first consider the translation of the

Partition program into the following set PartitionCHCs of clauses (where natural numbers have been

translated into non-negative integers in the LIA theory):

all_grt(X,[],B) :- X>=0, B=true.
all_grt(X,[Y|Ys],B) :- X=<Y, X>=0, B=false.
all_grt(X,[Y|Ys],B) :- X>Y, Y>=0, all_grt(X,Ys,B).

all_leq(X,[],B) :- X>=0, B=true.
all_leq(X,[Y|Ys],B) :- X>Y, Y>=0, B=false.
all_leq(X,[Y|Ys],B) :- X=<Y, X>=0, all_leq(X,Ys,B).

partition(X,[],[],[]).
partition(X,[Y|Ys],[Y|L1s],L2s) :- X>Y, Y>=0, partition(X,Ys,L1s,L2s).
partition(X,[Y|Ys],L1s,[Y|L2s]) :- X=<Y, X>=0, partition(X,Ys,L1s,L2s).

Listing 2: PartitionCHCs: Translation to CHCs of the Partition program.

The atoms (i) all_grt(X,L,B), (ii) all_leq(X,L,B) and (iii) partition(X,L,L1,L2) hold in the

least model of PartitionCHCs iff the expressions (i) all_grt(X,L)==B, (ii) all_leq(X,L)==B and

(iii) partition(X,L)==(L1,L2), respectively, hold in the functional program Partition of Listing 1.

Contract Pivot is translated into the following two goals G1 and G2, whose conjunction is equivalent to

the contract:

false :- B=false, partition(X,L,L1,L2), all_grt(X,L1,B). % G1
false :- B=false, partition(X,L,L1,L2), all_leq(X,L2,B). % G2

Listing 3: CHC translation of the Pivot contract.

By a slight abuse of notation we use false to denote both the empty disjunction in the conclusion

of a clause and a boolean value in a constraint. However, these two uses of false never generate any

confusion. The use of the constraint B=false allows us to avoid negative literals in the body of goals,

and hence to stick to Horn format. The satisfiability of PartitionCHCs ∪ {G}, for all G ∈ {G1,G2},

guarantees that partition satisfies the contract Pivot.

Let us consider PartitionCHCs∪{G2} (the satisfiability of PartitionCHCs∪{G1} can be proved in

a similar way). Unfortunately, PartitionCHCs ∪ {G2} cannot be proved satisfiable by state-of-the-art

CHC solvers, such as Eldarica or Z3, because they do not use any method, such as induction on the list

structure, which would be needed for reasoning on universally quantified list properties (goals, and in

general clauses, have an implicit universal quantification in front).

To overcome this difficulty, we now apply the Elimination Algorithm, which uses the definition,

unfolding, and folding rules [15, 43], and from PartitionCHCs∪{G2} we derive an equisatisfiable set
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TG2 of CHCs where lists do not occur. In this way, we can check the satisfiability of the transformed

CHCs TG2 using a solver over Bool and LIA, without the need for any induction-based method for

reasoning on lists. We start off by introducing a new predicate pl defined by the following clause (the

variable names are automatically generated by the interactive transformation system MAP [40]):

1. pl(A,B) :- partition(B,C,D,E), all_leq(B,E,A).

and we eliminate list terms from goal G2 by folding it using clause 1 as follows:

F. false :- B=false, pl(X,B).

Now, we look for a recursive definition of predicate pl without occurrences of lists. By unfolding

clause 1 with respect to the partition atom, we obtain

2. pl(A,B) :- all_leq(B,[],A).
3. pl(A,B) :- B>=0, partition(B,D,E,F), all_leq(B,F,A).
4. pl(A,B) :- B=<C, B>=0 partition(B,D,E,F), all_leq(B,[C|F],A).

We proceed by unfolding clauses 2 and 4 with respect to all_leq atoms, thereby obtaining

5. pl(A,B) :- A=true, B>=0.
6. pl(A,B) :- B=<C, B>=0, partition(B,D,E,F), B>C, A=false.
7. pl(A,B) :- B=<C, B>=0, partition(B,D,E,F), B=<C, all_leq(B,F,A).

We remove clause 6 because it contains an unsatisfiable constraint. Moreover, clause 7 is equal to

clause 3, modulo equivalence of constraints, and thus we remove it. As a final step, we use the definition

clause 1 for folding clause 3, hence deriving the following final set TG2 of CHCs:

5. pl(A,B) :- A=true, B>=0.
8. pl(A,B) :- B>=0, pl(A,B).
F. false :- A=false, pl(A,B).

The set TG2 is satisfiable, and Eldarica easily finds that pl(A,B):- A=true,B>=0 is a model for

TG2. Indeed, by replacing each occurrence of pl(A,B) by (A=true,B>=0) in the clauses of TG2, we

derive clauses that are true in the combined theory of booleans and integers.

3 Specification of Quicksort with Parameterized Catamorphisms

Now, we consider the following program that implements the Quicksort algorithm:

def quicksort(l: List[Nat]): List[Nat] = {
l match {
case Nil() => Nil[Nat]()
case Cons(x, xs) =>
val (ys,zs) = partition(x, xs)
append(quicksort(ys), Cons(x, quicksort(zs)))

}
} ensuring { res =>

forall((a: Nat) => all_grt(a,l) ==> all_grt(a,res)) &&
forall((a: Nat) => all_leq(a,l) ==> all_leq(a,res)) &&
isSorted(0,res) &&
forall((a: Nat) => count(a,l) == count(a,res))

}

def append(l: List[Nat], ys: List[Nat]): List[Nat] = {
require( isSorted(0,l) && ( ys == Nil()
( all_grt(ys.head,l) && all_leq(ys.head,ys.tail) && isSorted(0,ys.tail) )))
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l match {
case Nil() => ys
case Cons(x, xs) => Cons(x, append(xs,ys))

}
} ensuring { res => isSorted(0,res) }

Listing 4: Program Quicksort.

In program Quicksort, the function partition is defined as in Listing 1. The variable res denotes the

return value of a given function. The require and ensuring assertions specify the preconditions and

postconditions of the contracts for the quicksort and append functions. The contract specifications use

the functions all_grt and all_leq defined in Listing 1, and also the functions count and isSorted

defined below.

def count(a: Nat, l: List[Nat]): Nat = {
l match {
case Nil() => 0
case Cons(x, xs) => if (x==a) { count(a,xs)+1 } else { count(a,xs) }

}
}

def isSorted(a: Nat, l: List[Nat]): Boolean = {
l match {
case Nil() => true
case Cons(x,xs) => if (a<=x) isSorted(x,xs) else false

}
}

Listing 5: Auxiliary functions for the Quicksort contracts.

All of the functions used in the contract specifications have a common recursive pattern, which slightly

extends the catamorphism pattern defined in functional programming [29]. Indeed, the functions con-

sidered here admit an extra parameter, and are called parameterized catamorphisms. In particular, the

function isSorted is defined by induction on the list structure by considering the two cases where the

input list l is either Nil() or Cons(x,xs). By using the extra parameter a we avoid to split the case

Cons(x,xs) into Cons(x,Nil()) and Cons(x,Cons(y,xs)), and we express the sortedness of list l

as isSorted(0,l) (recall that the elements of l are all nonnegative numbers). The general pattern of

parameterized catamorphisms is defined below.

def pCata(p:A, l:List[A]): B = {
match l {
case Nil() => c
case Cons(x,xs) => g(p,x,pCata(h(p,x),xs))

}
}

Listing 6: General form of parameterized catamorphism on List[A].

In Listing 6, (i) A is any type and B is the type of the integer or boolean values, (ii) c is a constant of type

B, (iii) g is a total, B-valued function, and (iv) h is a total, A-valued function. Thus, also pCata is a total,

B-valued function.

The task of verifying the contract for a function f consists in proving the validity of a universally

quantified implication of the form:

∀x̄. pre(x̄) ==> post(x̄,f(x̄))
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where: (i) x̄ is a tuple of variables (a subset of the function inputs), and (ii) pre(x̄) and post(x̄,f(x̄))

are the precondition and postcondition, respectively, specified by the require and ensuring assertions

using parameterized catamorphisms.

The pre(x̄) assertion for quicksort is absent. Thus, verifying the contract of quicksort consists

in verifying the validity of ∀l. true ==> post(l,quicksort(l)), where post(l,quicksort(l))

is the conjunction of the following assertions:

1. ∀a. all_grt(a,l) ==> all_grt(a,quicksort(l)))

2. ∀a. all_leq(a,l) ==> all_leq(a,quicksort(l)))

3. isSorted(0,quicksort(l))

4. ∀a. count(a,l) == count(a,quicksort(l)))

Assertions 1 and 2 state that quicksort preserves the postcondition of the function partition. Asser-

tion 3 expresses the sortedness property. Assertion 4 states that the multiset of natural numbers in the

input list l is the same as the multiset of the elements in quicksort(l).

For the function append, the precondition pre(l,ys), where l and ys are the input lists, is defined

as follows:

isSorted(0,l) && ( ys == Nil() ||

( all_grt(ys.head,l) && all_leq(ys.head,ys.tail) && isSorted(0,ys.tail) ) )

The assertion states that (i) l is sorted, and either (ii) ys is the empty list or (iii.1) the head of ys is

greater than every element of l, (iii.2) the head of ys is less than or equal to every element occurring in

its tail, and (iii.3) the tail of ys is sorted. The postcondition of the function append states that its output

is a sorted list.

The Quicksort program (Listing 4) and the auxiliary functions (Listing 5) are translated to the set

QuicksortCHCs of clauses in Listing 7 below.

quicksort([],[]).
quicksort([X|Xs],Ys) :- X>=0,
partition(X,Xs,Littles,Bigs),
quicksort(Littles,Ls), quicksort(Bigs,Bs),
append(Ls,[X|Bs],Ys).

append([],Xs,Xs).
append([X|Xs],Ys,[X|Zs]) :- X>=0, append(Xs,Ys,Zs).

count(X,[],N) :- X>=0, N=0.
count(X,[Y|Ys],N) :- X>=0, X=Y, N=M+1, count(X,Ys,M).
count(X,[Y|Ys],N) :- X>=0, Y>=0, X=\=Y, N=M, count(X,Ys,M).

isSorted(A,[],B) :- A>=0, B=true.
isSorted(A,[X|Xs],B) :- X>=0, A>X, B=false.
isSorted(A,[X|Xs],B) :- A>=0, A=<X, isSorted(X,Xs,B).

Listing 7: QuicksortCHCs: CHC translation of Quicksort and its auxiliary functions.

The contracts are translated to CHC goals as follows.

% quicksort contract

false :- B1=true, B2=false, all_grt(A,B,B1), quicksort(B,C), all_grt(A,C,B2). % G3

false :- B1=true, B2=false, all_leq(A,B,B1), quicksort(B,C), all_leq(A,C,B2). % G4

false :- B1=false, quicksort(L,S), isSorted(0,S,B1). % G5

false :- N1=/=N2, count(X,L,N1), quicksort(L,S), count(X,S,N2). % G6
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% append contract

false :- B1=true, B2=true, B3=true, B4=true, B5=false, % G7

all_grt(X,Xs,B1), isSorted(0,Xs,B2),

all_leq(X,Ys,B3), isSorted(0,Ys,B4),

append(Xs,[X|Ys],Zs), isSorted(0,Zs,B5).

Listing 8: CHC translation of the Quicksort contracts.

Similarly to the translation of the contract for the Partition program, the use of boolean constraints avoids

the introduction of negative literals.

Now, to prove the correctness of Quicksort with respect to its contracts, it remains to show that

QuicksortCHCs∪{G} is satisfiable for all goals G ∈ {G3,G4,G5,G6,G7}. Unfortunately, these satisfia-

bility problems cannot be directly solved by Eldarica or Z3.

4 Removing List Arguments

Similarly to the partition example presented in Section 2, the proof of satisfiability of the set of

clauses QuicksortCHCs∪{G}, where G is a goal among G3,G4,G5,G6,G7, proceeds in two steps. First,

we transform QuicksortCHCs∪{G} by using the fold/unfold rules, and derive a new set TG such that:

(i) TG is a set of CHCs over LIA and Bool, without any list argument, and (ii) if TG is satisfiable, then

QuicksortCHCs∪{G} is satisfiable. Then, we check the satisfiability of TG by using a CHC solver over

LIA and Bool.

The main difference with respect to the partition example is that we also use as lemmas the

properties that we have already proved in previous applications of our method. For instance, having

proved that PartitionCHCs∪{G2} is satisfiable (see Section 2), during subsequent transformations we

can use the property

∀X,L,L1,L2. partition(X,L,L1,L2) ==> all_leq(X,L2,true)

and add (instances of) all_leq(X,L2,true) to the body of a clause where partition(X,L,L1,L2)

occurs.

The general form of the transformation strategy that we apply to eliminate list terms is an extension of

the Elimination Algorithm [12]. The strategy is parametric with respect to specific Define-Fold, Unfold,

and Replacecata functions.

List Removal Rcata.

Input: A set Cls∪{G}, where Cls is a set of non-goal clauses and G is a goal, and a set Props of properties

in the form of implications B1 ==> B2;

Output: A set TG of clauses over LIA and Bool such that if TG is satisfiable, then Cls∪{G} is satisfiable.

Defs := /0; InCls := {G}; TG := /0;

while InCls 6= /0 do

(NewDefs,FldCls) := Define-Fold(Defs, InCls);

UnfCls := Unfold(NewDefs,Cls);

RCls := Replacecata(UnfCls,Props);

Defs := Defs∪NewDefs; InCls := RCls; TG := TG ∪FldCls;
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In Rcata, the set Defs of clauses stores the new definitions introduced during the application of the

transformation strategy. The set InCls is the set of clauses to be transformed. TG is the set of transformed

clauses. NewDefs and FldCls are the sets of clauses derived by applying the definition and folding

rules, respectively using the function Define-Fold. UnfCls is the set of clauses derived by applying the

unfolding rule using the function Unfold. RCls is the set of clauses derived by applying the function

Replacecata, which uses properties stored in Props corresponding to goals whose satisfiability has been

proved in previous steps.

Let us explain the list removal strategy in action for the transformation of QuicksortCHCs∪{G5},

where we also use the properties Props corresponding to goals G1,G2,G3,G4. The properties corre-

sponding to goals G6 and G7 are not needed for G5.

Define-Fold. Rcata starts off by introducing the following new predicate:

1. qss(A) :- quicksort(B,C), isSorted(0,C,A).

and folding the goal G5 as follows:

F5. false :- A=false, qss(A).

Unfold. By unfolding clause 1 with respect to the quicksort and the isSorted atoms, we get:

2. qss(true).
3. qss(A) :- B>=0,

partition(B,C,D,E), quicksort(D,F), quicksort(E,G),
append(F,[B|G],H), isSorted(0,H,A).

Replacecata. Now, we apply the properties corresponding to goals G1 and G2, which translate the post-

condition of the partition function (see Section 2), and we add the two atoms all_grt(B,D,true)

and all_leq(B,E,true) to the body of clause 3:

4. qss(A) :- B>=0,
partition(B,C,D,E), all_grt(B,D,true), all_leq(B,E,true),
quicksort(D,F), quicksort(E,G), append(F,[B|G],H), isSorted(0,H,A).

Next, by using G3 and G4, we add the atoms all_grt(B,F,true) and all_leq(B,G,true) to the

body of clause 4 and we derive:

5. qss(A) :- B>=0,
partition(B,C,D,E), all_grt(B,D,true), all_leq(B,E,true),
quicksort(D,F), all_grt(B,F,true),
quicksort(E,G), all_leq(B,G,true),
append(F,[B|G],H), isSorted(0,H,A).

Now, in order to fold the two quicksort atoms using clause 1, we add two instances of the param-

eterized catamorphism isSorted, where the output boolean value is an unbound variable, and hence

implicitly existentially quantified. This step is correct because, by the totality of the isSorted function,

the following property holds: ∀L:List[Nat]∃B:Boolean.isSorted(0,L,B).

Hence, we get:

6. qss(A) :- B>=0,
partition(B,C,D,E), all_grt(B,D,true), all_leq(B,E,true),
quicksort(D,F), isSorted(0,F,B1), all_grt(B,F,true),
quicksort(E,G), isSorted(0,G,B2), all_leq(B,G,true),
append(F,[B|G],H), isSorted(0,H,A).

Note that we cannot use the property corresponding to goal G7 because B1 and B2 are unbound variables,

while G7 requires them to be bound to true.
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Now, we perform a second iteration of the List Removal strategy.

Define-Fold. We fold twice clause 6 using clause 1, and we get:

7. qss(A) :- B>=0,
partition(B,C,D,E), all_grt(B,D,true), all_leq(B,E,true),
qss(B1), isSorted(0,F,B1), all_grt(B,F,true),
qss(B2), isSorted(0,G,B2), all_leq(B,G,true),
append(F,[B|G],H), isSorted(0,H,A).

By this folding step, we do not remove the isSorted atoms, which share the lists F and G with the

append atom. In contrast, we remove the conjunction partition(B,C,D,E),all_grt(B,D,true),

all_leq(B,E,true), which, by the totality of partition(B,C,D,E) and by the properties corre-

sponding to goals G1 and G2, is always true:

8. qss(A) :- B>=0,
qss(B1), isSorted(0,F,B1), all_grt(B,F,true),
qss(B2), isSorted(0,G,B2), all_leq(B,G,true),
append(F,[B|G],H), isSorted(0,H,A).

Then, we introduce the following new definition:

9. a(B,X,Y,Z,T,U,B1,B2,A) :-
isSorted(X,F,B1), all_grt(B,F,T),
isSorted(Y,G,B2), all_leq(B,G,U),
append(F,[B|G],H), isSorted(Z,H,A).

which we use for folding clause 8, hence deriving:

10. qss(A) :- B>=0, qss(B1), qss(B2), a(B,0,0,0,true,true,B1,B2,A).

Now, predicate qss is defined by clauses 2 and 10, which have no lists. However, predicate a, occurring

in the body of clause 10, is defined by clause 9, whose body has some occurrences of list terms. Thus,

the List Removal strategy continues by transforming clause 9 and, after a few iterations, produces a set

of clauses without lists. The final result of this transformation is a set TG5 including goal F5, clauses 2

and 10, and the clauses for predicate a (and some extra predicates introduced in subsequent iterations)

reported in the Appendix. TG5 is a set of Horn clauses with constraints in LIA and Bool only.

The CHC solver Eldarica is able to prove the satisfiability of TG5, and hence also the initial set of

clauses QuicksortCHCs ∪ {G5} is satisfiable. Similarly, by applying again the List Removal strategy

and then proving satisfiability by Eldarica over LIA and Bool, we are able to verify all contracts of the

Quicksort program.

We have also attempted to verify the same contracts by using the STAINLESS system [20], a verifier

for the Scala language. STAINLESS is able to verify the contracts of the functions partition and

append, but not the one of quicksort.

5 Related Work and Conclusions

The Quicksort algorithm is a brilliant invention by Tony Hoare, presented in his famous 1961 paper [21].

A formal proof of partial correctness, using the axiomatic approach [22], was presented by Hoare himself,

in a joint paper with M. Foley [17]. Since then, many hand-made proofs have been worked out, for several

variants (both recursive and iterative) of the algorithm (see, for instance, the book by Apt et al. [2]). Also

semi-automated proofs have been presented, using program verifiers that implement Hoare logic, such as

DAFNY [8, 27] and STAINLESS [20]. However, the success of program verifiers is very much dependent

on the assertions provided by the programmer. In particular, we have checked that STAINLESS is able
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to verify the contracts of a program implementing a variant of Quicksort 1, but it could not verify the

version presented in Section 3 of this paper.

Also our proof depends critically on the contract specifications, because we first prove and then use

them as lemmas during the transformation phase. For instance, a crucial role is played by the postcondi-

tion of the partition function, that is, contract Pivot of Section 2:

∀x,l,l1,l2. partition(x,l)==(l1,l2) ==> all_grt(x,l1) && all_leq(x,l2)

stating that the output of partition is a pair of lists (l1,l2) such that the pivot x is greater than all

elements in l1, and smaller or equal than all elements in l2. Without introducing the two predicates

all_grt and all_leq, and then proving that they are preserved by applications of the quicksort

function, our transformation would not go through.

Another interesting point is that in all contract specifications we use predicates defined by a simple

induction scheme, which we have called parameterized catamorphisms. This form helps introducing suit-

able new predicates (the famous eureka definitions in Burstall and Darlington’s approach [7]). Indeed,

all predicates introduced by the definition rule in our transformations (including the ones not shown in

the paper) are defined as a conjunction of an atom, representing a call to a program function, and one or

more atoms representing parameterized catamorphism. We argue that, by exploiting properties of param-

eterized catamorphisms, one can develop a fully automatic version of the transformation strategy Rcata

that always succeeds in eliminating lists and, more in general, inductively defined data structures, from

large classes of CHCs. We leave this task for future research.

Catamorphisms (on trees) were used in the context of Satisfiability Modulo Theories, to define sat-

isfiability algorithms that terminate for suitable classes of formulas [36, 42]. A special form of integer-

valued catamorphisms, such as list length, term-size, and in general, the so-called type-based norms,

are used by techniques for proving termination of logic programs [5]. Our definition of parameterized

catamorphism slightly extends the one of list catamorphism usually given in the context of functional

programming [29]. Our definition allows an extra parameter, which makes the inductive scheme a little

more flexible.

A more challenging problem is to discover pre/postconditions defined by catamorphisms which are

not provided by the programmer. For instance, suppose that for the Quicksort program the programmer

only specifies the contract for the main function quicksort using the functions isSorted and count.

Then, an automated verifier (or transformer) should be able to discover suitable pre/postconditions such

as the ones we have provided in terms of predicates all_grt and all_leq. This problem is related to the

discovery of suitable lemmata during automated theorem proving [6] and program transformation [13],

which is well-known to be very hard. However, we argue that, restricting the search for those lemmata

among (parameterized) catamorphisms of suitable form, could be a fruitful heuristic.
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[24] H. Hojjat & Ph. Rümmer (2018): The ELDARICA Horn Solver. In N. Bjørner & A. Gurfinkel, editors: 2018

Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 – November 2,

2018, IEEE, pp. 1–7, doi:10.23919/FMCAD.2018.8603013.

[25] B. Kafle & J. P. Gallagher (2017): Constraint specialisation in Horn clause verification. Sci. Comput.

Program. 137, pp. 125–140, doi:10.1016/j.scico.2017.01.002.

[26] A. Komuravelli, A. Gurfinkel, S. Chaki & E. M. Clarke (2013): Automatic Abstraction in SMT-Based Un-

bounded Software Model Checking. In N. Sharygina & H. Veith, editors: Computer Aided Verification,

Proceedings of the 25th International Conference CAV ’13, Saint Petersburg, Russia, July 13–19, 2013, Lec-

ture Notes in Computer Science 8044, Springer, pp. 846–862, doi:10.1007/978-3-642-39799-8_59.

[27] K. R. M. Leino (2013): Developing Verified Programs with Dafny. In: Proceedings of the 2013 International

Conference on Software Engineering, ICSE ’13, IEEE Press, pp. 1488–1490, doi:10.1109/ICSE.2013.

6606754.

http://dx.doi.org/10.1016/j.scico.2016.11.002
http://dx.doi.org/10.1016/j.scico.2016.11.002
http://dx.doi.org/10.1017/S1471068418000157
http://dx.doi.org/10.1017/S1471068418000157
http://dx.doi.org/10.1007/978-3-030-51074-9_6
http://dx.doi.org/10.1007/3-540-49059-0_16
http://dx.doi.org/10.1016/0304-3975(95)00148-4
http://dx.doi.org/10.1093/comjnl/14.4.391
http://dx.doi.org/10.1023/A:1009747629591
http://dx.doi.org/10.1145/2345156.2254112
http://dx.doi.org/10.1145/3360592
http://dx.doi.org/10.1145/366622.366644
http://dx.doi.org/10.1145/366622.366644
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/322248.322258
http://dx.doi.org/10.1145/322248.322258
http://dx.doi.org/10.23919/FMCAD.2018.8603013
http://dx.doi.org/10.1016/j.scico.2017.01.002
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1109/ICSE.2013.6606754
http://dx.doi.org/10.1109/ICSE.2013.6606754


14 Transformational Verification of Quicksort

[28] M. Leuschel & H. Lehmann (2000): Coverability of Reset Petri Nets and Other Well-Structured Transition

Systems by Partial Deduction. In J. W. Lloyd, editor: Proceedings of the First International Conference on

Computational Logic (CL 2000), London, UK, 24-28 July, Lecture Notes in Artificial Intelligence 1861,

Springer-Verlag, pp. 101–115, doi:10.1007/3-540-44957-4_7.

[29] E. Meijer, M. M. Fokkinga & R. Paterson (1991): Functional Programming with Bananas, Lenses, Envelopes

and Barbed Wire. In J. Hughes, editor: Functional Programming Languages and Computer Architecture, 5th

ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings, Lecture Notes in Computer

Science 523, Springer, pp. 124–144, doi:10.1007/3540543961_7.

[30] M. Méndez-Lojo, J. A. Navas & M. V. Hermenegildo (2008): A Flexible, (C)LP-Based Approach to the Anal-

ysis of Object-Oriented Programs. In: 17th International Symposium on Logic-Based Program Synthesis and

Transformation, LOPSTR ’07, Kongens Lyngby, Denmark, August 23–24, 2007, Lecture Notes in Computer

Science 4915, Springer, pp. 154–168, doi:10.1007/978-3-540-78769-3_11.

[31] D. Mordvinov & G. Fedyukovich (2017): Synchronizing Constrained Horn Clauses. In T. Eiter & D. Sands,

editors: LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Rea-

soning, Maun, Botswana, May 7-12, 2017, EPiC Series in Computing 46, EasyChair, pp. 338–355. Available

at http://www.easychair.org/publications/paper/340359.

[32] L. M. de Moura & N. Bjørner (2008): Z3: An Efficient SMT Solver. In: Proceedings of the 14th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS ’08, Lecture

Notes in Computer Science 4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.

[33] M. Odersky, L. Spoon & B. Venners (2011): Programming in Scala: A Comprehensive Step-by-Step Guide,

2nd edition. Artima Incorporation, Sunnyvale, CA, USA.

[34] J. C. Peralta, J. P. Gallagher & H. Saglam (1998): Analysis of Imperative Programs through Analysis

of Constraint Logic Programs. In G. Levi, editor: Proceedings of the 5th International Symposium on

Static Analysis, SAS ’98, Lecture Notes in Computer Science 1503, Springer, pp. 246–261, doi:10.1007/

3-540-49727-7_15.

[35] A. Pettorossi & M. Proietti (1989): Decidability Results and Characterization of Strategies for the Develop-

ment of Logic Programs. In G. Levi & M. Martelli, editors: Proceedings of the Sixth International Conference

on Logic Programming, Lisbon, Portugal, The MIT Press, pp. 539–553.

[36] Tuan-Hung Pham, Andrew Gacek & Michael W. Whalen (2016): Reasoning About Algebraic Data Types

with Abstractions. J. Autom. Reason. 57(4), pp. 281–318, doi:10.1007/s10817-016-9368-2.

[37] A. Podelski & A. Rybalchenko (2007): ARMC: The Logical Choice for Software Model Checking with

Abstraction Refinement. In M. Hanus, editor: Practical Aspects of Declarative Languages, PADL ’07, Lecture

Notes in Computer Science 4354, Springer, pp. 245–259, doi:10.1007/978-3-540-69611-7_16.

[38] M. Proietti & A. Pettorossi (1995): Unfolding-Definition-Folding, in this Order, for Avoiding Unneces-

sary Variables in Logic Programs. Theoretical Computer Science 142(1), pp. 89–124, doi:10.1016/

0304-3975(94)00227-A.

[39] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift & D. S. Warren (1997):

Efficient Model Checking Using Tabled Resolution. In: Proceedings of the 9th International Conference

on Computer Aided Verification (CAV ’97), Lecture Notes in Computer Science 1254, Springer-Verlag, pp.

143–154, doi:10.1007/3-540-63166-6_16.

[40] S. Renault, A. Pettorossi & M. Proietti (1998): Design, Implementation, and Use of the MAP Transformation

System. R 491, IASI-CNR, Rome, Italy. Available at http://www.iasi.cnr.it/~proietti/system.

html.

[41] A. Reynolds & V. Kuncak (2015): Induction for SMT Solvers. In Deepak D’Souza, Akash Lal & Kim Guld-

strand Larsen, editors: Verification, Model Checking, and Abstract Interpretation, Proceedings of the 16th

International Conference VMCAI 2015, Mumbai, India, January 12–14, 2015, Lecture Notes in Computer

Science 8931, Springer, pp. 80–98, doi:10.1007/978-3-662-46081-8_5.

http://dx.doi.org/10.1007/3-540-44957-4_7
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1007/978-3-540-78769-3_11
http://www.easychair.org/publications/paper/340359
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-49727-7_15
http://dx.doi.org/10.1007/3-540-49727-7_15
http://dx.doi.org/10.1007/s10817-016-9368-2
http://dx.doi.org/10.1007/978-3-540-69611-7_16
http://dx.doi.org/10.1016/0304-3975(94)00227-A
http://dx.doi.org/10.1016/0304-3975(94)00227-A
http://dx.doi.org/10.1007/3-540-63166-6_16
http://www.iasi.cnr.it/~proietti/system.html
http://www.iasi.cnr.it/~proietti/system.html
http://dx.doi.org/10.1007/978-3-662-46081-8_5


E. De Angelis, F. Fioravanti & M. Proietti 15

[42] Ph. Suter, M. Dotta & V. Kuncak (2010): Decision procedures for algebraic data types with abstractions. In

M. V. Hermenegildo & J. Palsberg, editors: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, ACM, pp. 199–

210, doi:10.1145/1706299.1706325.

[43] H. Tamaki & T. Sato (1984): Unfold/Fold Transformation of Logic Programs. In S.-Å. Tärnlund, editor:
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Appendix

We list below the final set TG5 of clauses derived from QuicksortCHCs∪{G5}. Clauses 11–28 have been

derived automatically from clause 9, by using the implementation of the Elimination Algorithm on the

VeriMAP 2 system [10]. Both Eldarica and Z3 are able to prove the satisfiability of this set of clauses.

F5. false :- A=false, qss(A).
2. qss(A) :- A=true.
10. qss(A) :- B>=0, qss(B1), qss(B2), a(B,0,0,0,true,true,B1,B2,A).
11. a(A,B,C,D,E,F,G,H,I) :- A=J, B=0, C=0, D=0, E=true, F=true, G=K, H=L, I=M, N=0,

O=0, P=0, Q=J, R=true, S=J, T=true, J>=0, new2(J,T,Q,S,R,P,K,O,L,N,M).
12. new2(A,B,C,D,E,F,G,H,I,J,K) :- A=L, B=true, C=L, D=L, E=true, F=0, G=true, H=0,

J=0, K=M, L>=0, new3(L,M,D,E,H,I).
13. new2(A,B,C,D,E,F,G,H,I,J,K) :- A=L, B=true, C=L, D=L, E=true, F=0, G=M, H=0,

J=0, K=N, O=true, P=Q, Q-L=< -1, Q>=0, new6(C,L,O,P,M,Q,N,D,E,H,I).
14. new3(A,B,C,D,E,F) :- A=C, B=true, D=true, E=0, F=true, C>=0.
15. new3(A,B,C,D,E,F) :- A=G, B=H, C=G, D=true, E=0, F=H, I=true, G>=0, J-G>=0,

new10(G,I,J,H).
16. new6(A,B,C,D,E,F,G,H,I,J,K) :- A=L, B=L, C=true, D=F, E=true, G=M, H=L, I=true,

J=0, F>=0, L-F>=0, new7(L,M,H,I,J,K).
17. new6(A,B,C,D,E,F,G,H,I,J,K) :- A=L, B=L, C=true, D=F, E=false, G=false, H=L,

I=true, J=0, M=true, F>=1, L-F>=0, new9(A,L,M,H,I,J,K).
18. new6(A,B,C,D,E,F,G,H,I,J,K) :- A=L, B=L, C=true, D=F, E=M, G=N, H=L, I=true,

J=0, O=true, P=Q, Q-L=< -1, F>=0, Q-F>=0, new6(A,L,O,P,M,Q,N,H,I,J,K).
19. new7(A,B,C,D,E,F) :- A=C, B=true, D=true, E=0, F=true, C>=0.
20. new7(A,B,C,D,E,F) :- A=G, B=H, C=G, D=true, E=0, F=H, I=true, G>=0, J-G>=0,

new10(G,I,J,H).
21. new9(A,B,C,D,E,F,G) :- A=D, B=D, C=true, E=true, F=0, G=true, D>=1.
22. new9(A,B,C,D,E,F,G) :- A=H, B=H, C=true, D=H, E=true, F=0, G=I, J=true, H>=1,

K>=H, new10(H,J,K,I).
23. new9(A,B,C,D,E,F,G) :- A=H, B=H, C=true, D=H, E=true, F=0, I=true, H>=1,

new9(A,H,I,D,E,F,G).
24. new10(A,B,C,D) :- B=true, D=true, A>=0, C-A>=0.
25. new10(A,B,C,D) :- A=E, B=true, D=false, F=true, E-C=< -1, E>=0, new11(E,F).
26. new10(A,B,C,D) :- A=E, B=true, D=F, G=true, E-C=<0, E>=0, H>=C, new10(E,G,H,F).
27. new11(A,B) :- B=true, A>=0.
28. new11(A,B) :- A=C, B=true, D=true, C>=0, new11(C,D).

2The tool is available at https://fmlab.unich.it/iclp2018/.
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