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Paisley is an extensible lightweight embedded domain-specific language for nondeterministic pattern
matching in Java. Using simple APIs and programming idioms, it brings the power of functional–logic
processing of arbitrary data objects to the Java platform, without constraining the underlying object-
oriented semantics. Here we present an extension to the Paisley framework that adds pattern-based
control flow. It exploits recent additions to the Java language, namely functional interfaces and
lambda expressions, for an explicit and transparent continuation-passing style approach to control.
We evaluate the practical impact of the novel features on a real-world case study that reengineers
a third-party open-source project to use Paisley in place of conventional object-oriented data query
idioms. We find the approach viable for incremental refactoring of legacy code, with significant
qualitative improvements regarding separation of concerns, clarity and intentionality, thus making for
easier code understanding, testing and debugging.
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1 Introduction

The object-oriented paradigm, in its pure form, suffers from strongly asymmetric expressivity with respect
to structured data. On the one hand, constructors and factory methods allow for a term-like notation
for the construction of data. On the other hand, the corresponding dedicated tools for the query and
deconstruction of data, namely dynamic type tests, casts and getter methods, are not only very different
in appearance, but also markedly less expressive and compositional. Programming style patterns and
idioms such as iterators and visitors have been developed to amend the issue, but suffer from restricted
applicability and heavy impact on code structure, resulting in imprecise and clumsy practical usage.

By contrast, declarative languages typically support a notation that is directly inverse to, and hence
as clear, lightweight, precise and expressive as, data construction: pattern matching. The denotational
semantics of patterns rely on the invertible algebraic structure of declarative data models. Hence they
do not carry over to arbitrary object-oriented data models, whose basic principles such as transcendental
identity, mutable state and data abstraction are fundamentally at odds.

Multi-paradigm languages such as Scala [4] have demontrated that object-oriented programming can
benefit greatly from an approach to pattern matching that is more operational and hence adequate to
imperative program semantics. By contrast, approaches such as JMatch [3], which impose declarative
pseudo-semantics on objects and imperative code, have never successfully reached the mainstream.

We have designed Paisley [6] as a lightweight embedded domain-specific language, that is a library of
classes and idioms, for pattern matching in Java. Paisley integrates closely with the imperative object-
oriented paradigm, even closer than Scala’s built-in patterns. It supports user extensions, combinatorial
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public class Pair {

private Object car, cdr;
public Pair (Object car,

Object cdr) {
this.car = car;
this.cdr = cdr;
}
public Object getCar( ) {

return car;
}
public Object getCdr( ) {

return cdr;
}
public static final Object empty;
}

Pattern〈Object〉 isPair = isInstanceOf(Pair.class);
Motif〈Pair, Object〉 asPair = forInstancesOf(Pair.class);

Pattern〈Object〉 pair (Pattern〈Object〉 pcar,
Pattern〈Object〉 pcdr) {

return asPair.apply(car.apply(pcar)
.and(cdr.apply(pcdr) ) );

}
Motif〈Object, Pair〉 car = transform(Pair::getCar);

Motif〈Object, Pair〉 cdr = transform(Pair::getCdr);

Pattern〈Object〉 isEmpty = eq(Pair.empty);

Figure 1: LISP lists, Java data model (left) and Paisley pattern library (right)

abstractions, nondeterminism by backtracking, encapsulated search, and metaprogramming, without
requiring changes to either the Java host language or the code of the data object models to be queried.

In past papers, we have demonstrated how to use Paisley to sanitize legacy query interfaces [5], how
to combine nondeterminism and search-plan metaprogramming to solve logical puzzles [7], and how
to express complex relational queries in pattern (Kleene) algebra [8], respectively. In summary, Paisley
turns Java into an effective functional–logic programming language, without constraining the use of
features of the object-oriented host environment. However, the demonstrations have so far focused on
encapsulated search, and omitted a different aspect that is ubiquitous in declarative pattern matching: the
joint specification of data and control flow in case distinctions by pattern matching clauses.

The present paper fills this gap. The Java language has adopted, in its recent version 8, mechanisms
for local functional programming that are well-integrated with the object-oriented background. We
demonstrate how to use these to encode the right hand sides of pattern matching clauses as continuations,
such that the ordinary Java means for clause selection, namely conditional statements and short-circuiting
Boolean operators, can be used freely and effectively. Unlike for the preceding papers [7, 8], we illustrate
the real-world use of this novel expressivity not by constructing a new program for the purpose, but instead
by reengineering parts of an existing third-party open-source project. We discuss and evaluate the impact
of our modifications both qualitatively and quantitatively.

2 Paisley in a Nutshell

As a running example, consider Figure 1 (left): a simple data model of LISP-style universal lists,
implemented in Java in object-oriented textbook style. It is a simple matter to denote the construction
of a list, for instance of three elements x, y and z. It is however a very different matter to use the public
API to denote the inverse operation: checking whether a given list contains exactly three elements, and if
so, extract them as x, y and z, or otherwise do something else. See Figure 2 (top and center). The style
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list1 = new Pair(x, new Pair(y, new Pair(z, empty) ) );

boolean success = false; // [S]
if (list1 instanceof Pair) { // [T]

Pair pair1 = (Pair)list1; // [C]
Object x = pair1.getCar( ); // [B,P]
Object list2 = pair1.getCdr( ); // [b,P]
if (list2 instanceof Pair) { // [T]

Pair pair2 = (Pair)list2; // [C]
Object y = pair2.getCar( ); // [B,P]
Object list3 = pair2.getCdr( ); // [b,P]
if (list3 instanceof Pair) { // [T]

Pair pair3 = (Pair)list3; // [C]
Object z = pair3.getCar( ); // [B,P]
Object list4 = pair3.getCdr( ); // [b,P]
if (list4 == empty) { // [T]

succeed(x, y, z); // [R]
success = true; // [S]
}
}
}
}
if (!success) // [S]

fail( ); // [R]

Variable〈Object〉 x = new Variable〈〉 ( ),
y = new Variable〈〉 ( ),
z = new Variable〈〉 ( ); // [B]

Pattern〈Object〉 triple = pair(x, pair(y, pair(z, isEmpty) ) ); // [T,C,P,b]
if (triple.match(list1) ) // [S]

succeed(x.getValue( ), y.getValue( ), z.getValue( ) ); // [R,B]
else // [S]

fail( ); // [R]

Figure 2: Construction of a list (top) and its inverse operation with plain Java (center) and Paisley (bottom).
For comments see text.

mandated by naı̈ve direct use of the data model API, and prevalent in practice, that is both in teaching and
industry, is deficient in several ways:
• It is low-level and of little documentation value regarding the intentions of the programmer.

• It lacks compositionality; although the code structure is repetitive, its fragments cannot be easily
reused, nor inspected, understood, analyzed, tested and debugged independently.

• Its sheer verbosity leaves ample room for control and data flow errors.

• It entangles concerns that should, and can, be separated.
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In order to illustrate the last point, we have annotated each line of code with the respective operational
concern: type and predicate testing [T], type casting [C], binding of variables of interest [B] and of
temporary variables [b], projection to subelements [P], success management [S], and finally actual
reaction [R]. The design of Paisley is founded on an object-oriented model and API that separates these
concerns, and reifies their instances as first-class citizens, as orthogonally as possible.

The following exposition is a summary of the core layer of Paisley, as far as required for appreciation
of the novel contributions discussed in the remainder of this paper. They are presented in synopsis in
Figure 3. The core-level class and method names are printed in slanted font, to distinguish them from
host-level and user-level items. Note that the use of generic types has been simplified for the sake of easy
reading. For more details see [6].

Patterns that potentially match target data of type A are instances of class Pattern〈A〉. At the core of
the pattern API is its method boolean match(A target). The type parameter ensures static type safety, to the
usual degree of Java generics. The Boolean return value indicates success. Pure tests [T] implement match
without side effects, either manually or by wrapping a predicate object with the static factory method test.
There are generic factory methods for type and equality test, isInstanceOf, and eq, respectively.

Local success management [S] is implemented by the logical binary operators and/or. Nondeterminism,
such as introduced by or, is implemented by explicit backtracking; after a successful initial match, one
may call boolean matchAgain( ) to obtain further solutions, and iterate as long as successful. Note that
the and combinator is different from trivial sequential matching; it is fully distributive over backtracking,
analogous to the Prolog comma operator. Operationally, in p.and(q), q is (re)started after each successful
match for p. Denotationally, the dependent sum of solutions is formed, which degenerates to the Cartesian
product if q is independent of the state of p.

Data flow is by side effects only: Its simplest form is binding [B], implemented by the subclass
Variable〈A〉 that succeeds deterministically and binds the matched target data, such that it can be retrieved
if a successful match of the containing pattern has been performed; otherwise the bound value is undefined.
Temporary variables [b] can often be elided by means of point-free pattern combination.

Transformative data processing, such as type casting [C] and projection [P], is implemented by
contravariant lifting; a data transformation of type B→ A is lifted to a pattern transformation of the
opposite type Pattern〈A〉→ Pattern〈B〉. For instance, consider a getter method A getFoo( ) of class B. The
corresponding lifting is a pattern factory of roughly the following functionality:

Pattern〈B〉 foo(Pattern〈A〉 p) {
return new Pattern〈B〉 ( ) {

public boolean match(B target) {
return p.match(target.getFoo( ) );
}
};
}

Pattern factories are again reified in Paisley as class Motif〈A,B〉 with methods apply and then for
application and composition, respectively, thus enabling function-level pattern metaprogramming. The
contravariant lifting operator itself is available as a metafactory method transform. The function to be lifted
is typed with a functional interface. This novel feature of Java 8 emulates the structural type operator (→)
in Java’s nominal type system, with automatic coercion to compatible functional interfaces. Thus the
preceding example can be shortened to the explicit lifting of a function object,

Motif〈A, B〉 foo = transform(f);
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public abstract class Pattern〈A〉 {
public boolean match(A target);
public boolean matchAgain( );
public Pattern〈A〉 and(Pattern〈A〉 p);
public Pattern〈A〉 or(Pattern〈A〉 p);
}

public class Variable〈A〉 extends Pattern〈A〉 {
private A value;
public boolean match(A target) {

value = target;
return true;
}
public boolean matchAgain( ) {

return false;
}
public A getValue( ) {

return value;
}
}

public class Motif〈A, B〉 {
public Pattern〈B〉 apply(Pattern〈A〉 p);
public 〈C〉 Motif〈C, B〉 then(Motif〈C, A〉 m);
public List〈A〉 eagerBindings(B target);
public Iterable〈A〉 lazyBindings(B target);
}

// miscellaneous
public static 〈A〉 Pattern〈A〉 test(Predicate〈A〉 p);
public static Pattern〈Object〉 isInstanceOf(Class〈?〉. . . c);
public static Pattern〈Object〉 eq(Object o);

public static 〈A, B〉 Motif〈A, B〉 transform(Function〈B, A〉 f);
public static 〈A〉 Motif〈A, Object〉 forInstancesOf(Class〈A〉 c);

public static 〈A〉 Motif〈A, A〉 star(Motif〈A, A〉 m);
public static 〈A〉 Motif〈A, A〉 plus(Motif〈A, A〉 m);

Figure 3: Paisley core API
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Motif〈Object, Object〉 pairCar = asPair.then(car);
Motif〈Object, Object〉 pairCdr = asPair.then(cdr);

Motif〈Object, Object〉 nthcdr = star(pairCdr); // any pair cell
Motif〈Object, Object〉 nth = nthcdr.then(pairCar); // any element

Figure 4: Enumeration of LISP list elements with Paisley

where f is a method reference, B::getFoo, or the equivalent lambda expression, (B b)� b.getFoo( ), which
are both significant improvements in expressivity over the pre-Java 8 anonymous class notation:

Motif〈A, B〉 foo = transform(new Function〈B, A〉 ( ) {
public A apply(B b) {

return b.getFoo( );
}
});

Corresponding to the type test operator isInstanceOf, there is an analogous pattern transformation for
casts, forInstancesOf. The pattern transformations of type Motif〈A, A〉 form a Kleene algebra with operators
star and plus, which we have put to good use for relational programming [8].

In order to apply the Paisley framework to the LISP list data model from Figure 1, pattern operators for
the concrete API of class Pair need to be defined. This model layer of Paisley is extensible and typically
user-defined; the libary provides only bindings for elementary data, such as classes from the package
java.lang. Thus users are free to define their own pattern access style, and to use the functionality and
idioms of the Paisley framework pragmatically, in whatever way appears most natural and convenient.
Furthermore, since patterns merely bind to the public API of a data model, no privileged access to source
code or runtime objects is required. The development of pattern bindings for a data model is modularly
independent from the development of internals of the data model itself.

Figure 1 (right) shows a canonical implementation of patterns for class Pair; individual reifications of
the type test and cast operation and getter methods, plus a complex pattern constructor as the inverse of
the data constructor. Compare with Figure 1 (left). Figure 2 (bottom) shows the use of patterns to express
the analog of Figure 2 (center). A clear separation of concerns as three sequential statements has been
achieved by the basic idiom of Paisley pattern usage:

1. allocate pattern variables;

2. construct a complex pattern term that handles testing, casting, projection and temporary variables
internally and transparently;

3. match, manage success, observe variable bindings and react.

In previous applications [7, 8] we have discussed how to further encapsulate variable allocation
and binding and success management for encapsulated search over nondetermistic patterns in logic
and functional–logic style, respectively. For instance, enumerating the pair cells or elements of a list
nondeterministically is a simple matter of a handful of relational pattern combinators, as shown in Figure 4.
The class Motif supports concise encapsulated search, exposed in collection or iterator style, via methods
eagerBindings or lazyBindings, respectively. For instance, enumerate all elements of a list as follows:

for (Object e : nth.lazyBindings(list) )
processElement(e);
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public class Pattern〈A〉 {
. . .

public Pattern〈A〉 andThen(Runnable r);
public Pattern〈A〉 orElse(Runnable r);
}

public static 〈A〉 boolean testThen(A target, Pattern〈A〉 pat, Runnable r) {
return pat.andThen(r).match(target);
}

public static boolean otherwise(Runnable r) {
r.run( );
return true;
}
public static void ensure(boolean success) {

if (!success)
throw new MatchException( );

}

Figure 5: Continuation extensions in core Paisley

In the next section we propose a general, concise, structured imperative usage style, appropriate for
situations where more fine-grained interleaving of pattern-level and user-level code is required.

3 Control for Paisley

The technical contribution of the present paper is an extension of the Paisley framework, with the purpose
of integrating pattern-based control flow – case distinctions where clauses are selected not by plain
Boolean conditions but rather by patterns, such that variable bindings may occur as a side effect and result
in data flow to the selected clause.

Our solution is true to the Paisley principle that object-oriented programmers should be given declara-
tive expressivity without depriving them of operational intuition. Thus, we require a clean separation of
concepts, to the effect that anything that looks like ordinary control flow of the host language actually
behaves as such, and that the entanglement of control and data flow that is specific to pattern matching is
encapsulated and abstracted appropriately. We find the ideal tool for the job in a recent major addition to
the Java language, namely lambda expressions.

Consider a more complex variation of the data query example task from the preceding section, namely
to succeed for any list, and distinguish the four cases of zero, one, two, and three-or-more elements. Of
course, pattern constructs in analogy to Figure 2 (bottom) can be used for each case independently. But the
resulting code would be statically and dynamically redundant, because the common matching effort is not
shared between cases. The solution is to interleave user-level success management code with pattern-level
testing and projection code, in a nested fashion at each level of pair.

Consider Figure 6 (left) ahead for our proposed solution style. The Paisley binding for the data model
is extended by adding a functional interface representing the continuation transform of the data class
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Pair (top). Then a complex clause operator pairThen, along the lines of Figure 2, which handles data flow
and match execution internally, can be defined (center). Its function is to call the continuation in the event
of success, with the data subitems obtained via pattern variable bindings. The success flag is returned for
external cascading management. This yields an idiom for pattern-based clauses, with Boolean expressions
of the form

pairThen(list, (car, cdr) � {. . .})

where the body of the lambda expression that instantiates the continuation interface is executed as a side
effect, if and only if the query finds that the inverse of the construction

list = new Pair(car, cdr)

applies. Additionally, the Boolean expression can be wrapped in a pattern by means of the test factory
(bottom), for immediate use

pair( (car, cdr) � {. . .}).match(list)

or compositional embedding. The resulting style is concise and elegant; data flows directly to well-scoped
variables car and cdr, without need to allocate pattern variables and reason dynamically about their
definedness.

Specific continuations, clause operators and pattern wrappers are user-level constructs specific to a
data model. For their use, only small extensions to the Paisley core level are required; see Figure 5. We
add pattern methods andThen and orElse to affix a parameterless continuation, of functional interface type
Runnable, in the logically obvious way. The generic clause operator testThen corresponds to the wrapped
form andThen. Auxiliary methods otherwise and ensure convert between boolean expressions and void
continuations, respectively, to compensate for the lack of implicit coercions in Java.

Figure 7 explores the space of expressivity of the contination-based notation. There are two inde-
pendent degrees of freedom, namely the Java-level choice of conditional statements versus conditional
operators, and the Paisley-level choice of Boolean clause expressions versus wrapped pattern applications.
Thus we obtained a synopsis of four differently styled but structurally equivalent solutions to the problem
posed above. We feel that neither of these styles takes natural precedence, and leave the choice to the taste
and convenience of the user.

If only the success of a pattern matters, but no data flow of extracted subitems is required, then a
simplified query implementation with parameterless continuations suffices. The corresponding operators
are depicted in Figure 6 (right). Note that the body of pairThen is defined verbosely only for the sake of
synoptic comparison; it can be constructed more concisely in a single expression:

testThen(target, isPair, r)

Omitting unneccessary continuation parameters is beneficial with respect both to choice of efficient
implementation and to temporary variable hygiene.

4 Case Study

We have applied the Paisley style in general, and the control flow notation presented in the previous section
in particular, to a real-world, pre-existing, open-source Java project. We have chosen the Kawa 2.1 [2]
implementation of the Scheme language, a GNU software package, for this purpose. The rationale is that
complex queries of a simple data model, namely the LISP lists introduced as the running example above,
is a pervasive topic in Scheme implementations.
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interface PairContinuation {
void cont(Object car, Object cdr);
}

interface Runnable { // package java.lang
void run( );
}

static boolean pairThen(Object target,
PairContinuation pc) {

Variable〈Object〉 car = new Variable〈〉 ( ),
cdr = new Variable〈〉 ( );

if (pair(car, cdr).match(target) ) {
pc.cont(car.getValue( ), cdr.getValue( ) );
return true;
}
else

return false;
}

static boolean pairThen(Object target,
Runnable r) {

if (isPair.match(target) ) {
r.run( );
return true;
}
else

return false;
}

static Pattern〈Object〉 pair(PairContinuation pc) {
return test(x � pairThen(x, pc) );
}

static Pattern〈Object〉 pair(Runnable r) {
return test(x � pairThen(x, r) );
}

Figure 6: LISP list continuations (top), clause operators (center) and pattern wrappers (bottom); with data
flow (left) and without (right)

if (pairThen(list1, (x, list2) � {
if (pairThen(list2, (y, list3) � {

if (pairThen(list3, (z, list4) � {
case3orMore(x, y, z);
}) );
else case2(x, y);
}) );
else case1(x);
}) );
else case0( );

if (pair( (x, list2) � {
if (pair( (y, list3) � {

if (pair( (z, list4) � {
case3orMore(x, y, z);
}).match(list3) );
else case2(x, y);
}).match(list2) );
else case1(x);
}).match(list1) );
else case0( );

pairThen(list1, (x, list2) � ensure(
pairThen(list2, (y, list3) � ensure(

pairThen(list3, (z, list4) �
case3orMore(x, y, z) )
|| otherwise( ( ) � case2(x, y) ) ) )
|| otherwise( ( ) � case1(x) ) ) )
|| otherwise( ( ) � case0( ) )

pair( (x, list2) �
pair( (y, list3) �

pair( (z, list4) �
case3orMore(x, y, z)

).orElse( ( ) � case2(x, y) ).match(list3)
).orElse( ( ) � case1(x) ).match(list2)

).orElse( ( ) � case0( ) ).match(list1)

Figure 7: Styles of complex list deconstruction with continuations and conditional statements – with clause
operators (left) and pattern wrappers (right); as conditional statements (top) and expressions (bottom)



Trancón y Widemann & Lepper 159

static Pattern〈Object〉 triple(Pattern〈Object〉 x, Pattern〈Object〉 y, Pattern〈Object〉 z) {
return pair(x, pair(y, pair(z, isEmpty) ) ); // cf. Figure 2
}
static Pattern〈Object〉 singleton(Pattern〈Object〉 x) {

return pair(x, isEmpty);
}
static boolean singletonThen(Object target, Runnable r) {

return testThen(target, pair(any, isEmpty), r);
}

Figure 8: Advanced list clause vocabulary

Since we are currently interested in qualitative evaluation, we have not attempted a full reengineering
of the Kawa code. Instead, we have exploited the properties of Paisley as a lightweight embedded
domain-specific language, that can be used locally without impact on the global structure of a program,
and experimented with selected fragments that exhibit typical programming style illustratively.

Figures 9, 10 and 11 (left) each show a code fragment from a source file in kawa/standard/.
Reaction code has been omitted, indicated by . . . markers. The examples corroborate that our depiction
of the naı̈ve, genuinely object-oriented query style in Figure 2 is not a parody but standard practice. The
various concerns are entangled in a way that is highly non-compositional and obscures the programmer’s
intentions, hence the need for a comment. A notable and typical idiom in this style of imperative
programming is the reuse of temporary reference variables in queries, and their assignment as a side effect
in the midst of expressions. We regard the idiom as intensely obfuscated and error-prone.

The right side of each Figure shows the respective equivalent Paisley code. We have aligned all
code vertically to highlight the stuctural correspondence as far as possible, rather than follow the natural
structure of complex Paisley expressions by themselves. Because matching for one-element lists is a
recurring theme in Figures 10 and 11, we add a corresponding clause operator and pattern wrapper to
the model-specific library; see Figure 8. This simple expedient results in considerable code reuse and
simplification.

We trust that the direct comparison speaks for itself regarding simplicity, compositionality and clarity,
but name a few points of particular interest:

• Recurring patterns can be named mnemonically, simultaneously increasing the reuse and the
intentional documentation value of code, and decreasing the room for errors.

• Levels of Paisley abstraction can be mixed; for instance, the lower third of Figure 10 shows a weird
query with doubly negated continuation, nested within a perfectly regular encapsulated search.

• Figure 11 demonstrates that (re)assignment of temporary variables can be abstracted away, thus
achieving full referential transparency, even for complex code.

Apart from the qualitative and stylistic comparison, we have investigated simple quantitative criteria;
see Table 1. For each example, we compare the original and the paisleyfied version with respect to three
code metrics:

1. The number of lines of code pertaining to matching tasks. Reaction code and context are ignored
for this purpose. Note that we have marked some lines of the Paisley version with // ∗, to indicate
that the line break is solely due to alignment with the more verbose original version, and hence
discounted.
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Table 1: Quantitative assessment of case study examples

Example Lines of Code Cyclomatic Complexity Temporary Assignments
original Paisley saving original Paisley saving original Paisley saving

export 18 10 44% 7 1 86% 6 3 50%
module static 26 17 35% 14 3 79% 7 4 43%
IfFeature 28 16 43% 12 2 83% 10 3 70%

2. The contribution of matching code to the cyclomatic complexity of the method. Reaction code and
the baseline of one are ignored for this purpose. Note that control-flow branches are moved into
pattern structure, most notably the logical connectives and and or.

3. The number of assignments to temporary variables during matching. We regard a variable as
temporary only if it is not observed directly by reaction code, and count assignments rather than
declarations to account for the variable-reusing style of the original code. Parameters of Paisley
continuations count as implied assignments.

We find significant improvements for all three metrics, even if the meaningfulness of lines of code and
cyclomatic complexity, both statement-centric metrics, are somewhat diminished in the more expression-
centric Paisley style.

5 Conclusion

We have demonstrated how to implement fine-grained integration of Paisley pattern-matching logic and
data flow with Java control flow, using the novel lambda expressions to encode the right-hand sides of
pattern clauses as continuations. This achievement greatly widens the scope of applicability of Paisley to
more complex situations.

With the Kawa case study, we have demonstrated that the Paisley approach solves a practically relevant
problem, and can be used effectively to reengineer legacy code in a local and incremental fashion. This is
possible because Paisley is lightweight by design, and abstracts only from operational low-level burdens
of matching procedures, without imposing alternative, declarative semantics on data and pattern objects.

5.1 Related Work

The most comprehensive attempt to combine the Java language with nondeterministic pattern matching is
JMatch [3]. Their approach is both semantically more ambitious, adding declarative features to the Java
type system in the form of so-called modal interfaces, and technologically more heavyweight, requiring
implementation mechanisms such as coroutines and continuation-passing style transforms; thus it is
implemented as a proprietary language extension.

In [1] they have reported reductions of program complexity similar to our present findings. Because
of their intrusion into the type system, it is possible to reason statically about the totality of JMatch pattern
clauses, whereas our approach shares the fate of most imperative object-oriented code, and can only be
feasibly verified informally by inspection and testing. On the other hand, because of the heavy-handed
implicit transformation of JMatch programs, the possible interferences with other language features such
as non-local control flow, concurrency, instrumentation and debugging are unclear. Furthermore, despite



Trancón y Widemann & Lepper 161

recent award-winning theoretical publications [1], their implementation is stuck with an obsolete snapshot
of the host language Java 1.4 (sic!), and hence of no practical relevance for contemporary software
production.

5.2 Outlook

Our treatment of pattern matching in conditional control flow enforces deterministic use: the backtracking
method matchAgain is not invoked explicitly during clause selection. Only the first solution of a pattern
is used, and the continuation is accordingly called at most once. However, this does not preclude
internal nondeterminism; subpatterns may have to backtrack in order to find that solution. As a future
generalization, we consider both loop-like (eager) and iterator-like (lazy) control-flow notations for
reentrant continuations selected by nondeterministic patterns.

The refactoring changes to the Kawa code base do not produce sufficient regular dynamic coverage in
order to evaluate the performance of Paisley pattern matching in relation to naı̈ve implementations. We
are looking forward to other case studies where data querying is more predictibly dominant in program
running times. In particular, we are curious about the capability of just-in-time compilers to optimize ‘hot’
Paisley code in realistic scenarios.

As a final optimistic observation, Paisley has proven resilient to evolution of the host language, in
marked contrast to JMatch, because it is lightweight and thus syntactically and semantically reducible.
We have anticipated the use of functional interfaces, based on common-sense extrapolation from Pizza
and Scala, and are now immediately ready to reap the benefits of lambda expressions. Whatever the new
features of Java 9 and 10 will be, the odds are that Paisley can profit.
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