Substitutions over infinite alphabet generating $(-\beta)$ -integers

Daniel Dombek

Department of Mathematics FNSPE Czech Technical University in Prague Czech Republic dombedan@fjfi.cvut.cz

1 Introduction

This contribution is devoted to the study of positional numeration systems with negative base introduced by Ito and Sadahiro in 2009, called $(-\beta)$ -expansions. We give an admissibility criterion for more general case of $(-\beta)$ -expansions and discuss the properties of the set of $(-\beta)$ -integers, denoted by $\mathbb{Z}_{-\beta}$. We give a description of distances within $\mathbb{Z}_{-\beta}$ and show that this set can be coded by an infinite word over an infinite alphabet, which is a fixed point of a non-erasing non-trivial morphism.

2 Numeration with negative base

In 1957, Rényi introduced positional numeration system with positive real base $\beta > 1$ (see [7]). The β -expansion of $x \in [0, 1)$ is defined as the digit string $d_{\beta}(x) = 0 \bullet x_1 x_2 x_3 \cdots$, where

$$x_i = \lfloor \beta T_{\beta}^{i-1}(x) \rfloor$$
 and $T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor$.

It holds that

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \cdots$$

Note that this definition can be naturally extended so that any real number has a unique β -expansion, which is usually denoted $d_{\beta}(x) = x_k x_{k-1} \cdots x_1 x_0 \bullet x_{-1} x_{-2} \cdots$, where \bullet , the fractional point, separates negative and non-negative powers of β . In analogy with standard integer base, the set \mathbb{Z}_{β} of β -integers is defined as the set of real numbers having the β -expansion of the form $d_{\beta}(x) = x_k x_{k-1} \cdots x_1 x_0 \bullet 0^{\omega}$.

 $(-\beta)$ -expansions, a numeration system built in analogy with Rényi β -expansions, was introduced in 2009 by Ito and Sadahiro (see [5]). They gave a lexicographic criterion for deciding whether some digit string is the $(-\beta)$ -expansion of some x and also described several properties of $(-\beta)$ -expansions concerning symbolic dynamics and ergodic theory. Note that dynamical properties of $(-\beta)$ -expansions were also studied by Frougny and Lai (see [4]). We take the liberty of defining $(-\beta)$ -expansions in a more general way, while an analogy with positive base numeration can still be easily seen.

Definition 1. Let $-\beta < -1$ be a base and consider $x \in [l, l+1)$, where $l \in \mathbb{R}$ is arbitrary fixed. We define the $(-\beta)$ -expansion of x as the digit string $d(x) = x_1x_2x_3\cdots$, with digits x_i given by

$$x_i = \lfloor -\beta T^{i-1}(x) - l \rfloor, \tag{1}$$

where T(x) stands for the generalised $(-\beta)$ -transformation

$$T: [l, l+1) \to [l, l+1), \quad T(x) = -\beta x - \lfloor -\beta x - l \rfloor.$$
⁽²⁾

P. Ambrož, Š. Holub and Z. Masáková (Eds.): 8th International Conference WORDS 2011 EPTCS 63, 2011, pp. 115–121, doi:10.4204/EPTCS.63.16 It holds that

$$x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \cdots$$

and the fractional point is again used in the notation, $d(x) = 0 \bullet x_1 x_2 x_3 \cdots$.

The set of digits used in $(-\beta)$ -expansions of numbers (in the latter referred to as the alphabet of $(-\beta)$ -expansions) depends on the choice of *l* and can be calculated directly from (1) as

$$\mathscr{A}_{-\beta,l} = \left\{ \left\lfloor -l(\beta+1) - \beta \right\rfloor, \dots, \left\lfloor -l(\beta+1) \right\rfloor \right\}.$$
(3)

We may demand that the numeration system possesses various properties. Let us summarise the most natural ones:

- The most common requirement is that zero is an allowed digit. We see that 0 ∈ A_{-β,l} is equivalent to 0 ∈ [l, l+1) and consequently l ∈ (-1,0]. Note that this implies d(0) = 0 0^ω.
- We may require that $\mathscr{A}_{-\beta,l} = \{0, 1, \dots, \lfloor \beta \rfloor\}$. This is equivalent to the choice $l \in \left(-\frac{\lfloor \beta \rfloor + 1}{\beta + 1}, -\frac{\beta}{\beta + 1}\right]$.
- So far, (-β)-expansions were defined only for numbers from [l, l + 1). In Rényi numeration, the β-expansion of arbitrary x ∈ ℝ⁺ (expansions of negative numbers differ only by "-" sign) is defined as d_β(x) = x_kx_{k-1}···x₁x₀ x₋₁x₋₂···, where k ∈ ℕ satisfies x/β^k ∈ [l, l + 1) and d_β(x/β^k) = 0 x_kx_{k-1}x_{k-2}···. The same procedure does not work for (-β)-expansions in general. A necessary and sufficient condition for the existence of unique d(x) for all x ∈ ℝ is that -1/β[l, l+1) ⊂ [l, l+1). This is equivalent to the choice l ∈ (-β/β+1, -1/β+1]. Note that this choice is disjoint with the previous one, so one cannot have uniqueness of (-β)-expansions and non-negative digits bounded

Let us stress that in the following we will need 0 to be a valid digit. Therefore, we shall always assume $l \in (-1,0]$. Note that we may easily derive that the digits in the alphabet $\mathscr{A}_{-\beta,l}$ are then bounded by $\lceil \beta \rceil$ in modulus.

3 Admissibility

by β at the same time.

In Rényi numeration there is a natural correspondence between ordering on real numbers and lexicographic ordering on their β -expansions. In $(-\beta)$ -expansions, standard lexicographic ordering is not suitable anymore, hence a different ordering on digit strings is needed.

The so-called alternate order was used in the admissibility condition by Ito and Sadahiro and it will work also in the general case. Let us recall the definition. For the strings

$$u, v \in (\mathscr{A}_{-\beta,l})^{\mathbb{N}}, \quad u = u_1 u_2 u_3 \cdots \text{ and } v = v_1 v_2 v_3 \cdots$$

we say that $u \prec_{alt} v$ (*u* is less than *v* in the alternate order) if $u_m(-1)^m < v_m(-1)^m$, where $m = \min\{k \in \mathbb{N} \mid u_k \neq v_k\}$. Note that standard ordering between reals in [l, l+1) corresponds to the alternate order on their respective $(-\beta)$ -expansions.

Definition 2. An infinite string $x_1x_2x_3\cdots$ of integers is called $(-\beta)$ -admissible (or just admissible), if there exists an $x \in [l, l+1)$ such that $x_1x_2x_3\cdots$ is its $(-\beta)$ -expansion, i.e. $x_1x_2x_3\cdots = d(x)$.

We give the criterion for $(-\beta)$ -admissibility (proven in [2]) in a form similar to both Parry lexicographic condition (see [6]) and Ito-Sadahiro admissibility criterion (see [5]). **Theorem 3.** ([2]) An infinite string $x_1x_2x_3\cdots$ of integers is $(-\beta)$ -admissible, if and only if

$$l_1 l_2 l_3 \cdots \preceq_{alt} x_i x_{i+1} x_{i+2} \cdots \prec_{alt} r_1 r_2 r_3 \cdots, \qquad for \ all \ i \ge 1,$$

$$\tag{4}$$

where $l_1 l_2 l_3 \cdots = d(l)$ and $r_1 r_2 r_3 \cdots = d^* (l+1) = \lim_{\epsilon \to 0+} d(l+1-\epsilon)$.

Remark 4. Ito and Sadahiro have described the admissibility condition for their numeration system considered with $l = -\frac{\beta}{\beta+1}$. This choice imply for any β the alphabet of the form $\mathscr{A}_{-\beta,l} = \{0, 1, \dots, \lfloor \beta \rfloor\}$. They have shown that in this case the reference strings used in the condition in Theorem 3 (i.e. $d(l) = l_1 l_2 l_3 \cdots$ and $d^*(l+1) = r_1 r_2 r_3 \cdots$) are related in the following way:

$$r_1r_2r_3\cdots=0l_1l_2l_3\cdots$$

if d(l) is not purely periodic with odd period length, and,

$$r_1r_2r_3\cdots=\left(0l_1l_2\cdots l_{q-1}(l_q-1)\right)^{\omega},$$

if $d(l) = (l_1 l_2 \cdots l_q)^{\omega}$, where q is odd.

Remark 5. Besides Ito-Sadahiro case and the general one, we may consider another interesting example, the choice $l = -\frac{1}{2}$, $\beta \notin 2\mathbb{Z} + 1$. This leads to a numeration defined on "almost symmetric" interval $[-\frac{1}{2}, \frac{1}{2})$ with symmetric alphabet

$$\mathscr{A}_{-\beta,-\frac{1}{2}} = \left\{ \overline{\left\lfloor \frac{\beta+1}{2} \right\rfloor}, \dots, \overline{1}, 0, 1, \dots \left\lfloor \frac{\beta+1}{2} \right\rfloor \right\}$$

Note that we use the notation $(-a) = \overline{a}$ for shorter writing of negative digits. If we denote the reference strings as usual, i.e. $d(-\frac{1}{2}) = l_1 l_2 l_3 \cdots$ and $d^*(\frac{1}{2}) = r_1 r_2 r_3 \cdots$, the following relation can be shown:

$$r_1r_2r_3\cdots=\overline{l_1l_2l_3\cdots}$$

if d(l) is not purely periodic with odd period length, and,

$$r_1r_2r_3\cdots = \left(\overline{l_1l_2\cdots l_{q-1}(l_q-1)}l_1l_2\cdots l_{q-1}(l_q-1)\right)^{\omega}$$

if $d(l) = (l_1 l_2 \cdots l_q)^{\omega}$, where q is odd.

4 $(-\beta)$ -integers

We have already discussed basic properties of $(-\beta)$ -expansions and the question of admissibility of digit strings. In the following, $(-\beta)$ -admissibility will be used to define the set of $(-\beta)$ -integers.

Let us define a "value function" γ . Consider a finite digit string $x_{k-1} \cdots x_1 x_0$, then $\gamma(x_{k-1}, \cdots x_1 x_0) = \sum_{i=0}^{k-1} x_i (-\beta)^i$.

Definition 6. We call $x \in \mathbb{R}$ a $(-\beta)$ -integer, if there exists a $(-\beta)$ -admissible digit string $x_k x_{k-1} \cdots x_0 0^{\omega}$ such that $d(x) = x_k x_{k-1} \cdots x_1 x_0 \bullet 0^{\omega}$. The set of $(-\beta)$ -integers is then defined as

$$\mathbb{Z}_{-\beta} = \{x \in \mathbb{R} \mid x = \gamma(a_{k-1}a_{k-2}\cdots a_1a_0), a_{k-1}a_{k-2}\cdots a_1a_00^{\omega} \text{ is } (-\beta)\text{-admissible }, \|x-\beta\| \le 1, \|x-\beta\| \le$$

or equivalently

$$\mathbb{Z}_{-\beta} = \bigcup_{i \ge 0} (-\beta)^i T^{-i}(0)$$

Note that $(-\beta)$ -expansions of real numbers are not necessarily unique. As was said before, uniqueness holds if and only if $l \in \left(-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}\right]$. Let us demonstrate this ambiguity on the following example.

Example 7. Let β be the greater root of the polynomial $x^2 - 2x - 1$, i.e. $\beta = 1 + \sqrt{2}$, and let $[l, l+1) = \left[-\frac{\beta^9}{\beta^9+1}, \frac{1}{\beta^9+1}\right)$. Note that [l, l+1) is not invariant under division by $(-\beta)$.

If we want to find the $(-\beta)$ -expansion of number $x \notin [l, l+1)$, we have to find such $k \in \mathbb{N}$ that $\frac{x}{(-\beta)^k} \in [l, l+1)$, compute $d(\frac{x}{(-\beta)^k})$ by definition and then shift the fractional point by k positions to the right. The problem is that, in general, different choices of the exponent k may give different $(-\beta)$ -admissible digit strings which all represent the same number x.

Let us find possible $(-\beta)$ -expansions of 1. It can be shown that $\frac{1}{(-\beta)^k} \in [l, l+1)$ if and only if $k \in \mathbb{N} \setminus \{0, 2, 4, 6, 8\}$ and there are $5(-\beta)$ -admissible digit strings representing 1, computed from $(-\beta)$ -expansions of $\frac{1}{(-\beta)^k}$ for k = 1, 3, 5, 7, 9 respectively:

 $1 \bullet 0^{\omega} = 120 \bullet 0^{\omega} = 13210 \bullet 0^{\omega} = 1322210 \bullet 0^{\omega} = 13222210 \bullet 0^{\omega}.$

Let us mention some straightforward observations on the properties of $\mathbb{Z}_{-\beta}$:

- $\mathbb{Z}_{-\beta}$ is nonempty if and only if $0 \in \mathscr{A}_{-\beta,l}$, i.e. if and only if $l \in (-1,0]$.
- The definition implies $-\beta \mathbb{Z}_{-\beta} \subset \mathbb{Z}_{-\beta}$.
- A phenomenon unseen in Rényi numeration arises, there are cases when the set of (−β)-integers is trivial, i.e. when Z_{-β} = {0}. This happens if and only if both numbers ¹/_β and -¹/_β are outside of the interval [l,l+1). This can be reformulated as

$$\mathbb{Z}_{-\beta} = \{0\} \quad \Leftrightarrow \quad \beta < -\frac{1}{l} \text{ and } \beta \leq \frac{1}{l+1},$$

and it can be seen that the strictest limitation for β arises when $l = -\frac{1}{2}$. This implies for any choice of $l \in \mathbb{R}$:

$$\mathbb{Z}_{-\beta} \neq \emptyset \text{ and } \beta \geq 2 \quad \Rightarrow \quad \mathbb{Z}_{-\beta} \supsetneq \{0\}.$$

• It holds that $\mathbb{Z}_{-\beta} = \mathbb{Z}$ if and only if $\beta \in \mathbb{N}$.

Remark 8. As was shown in Example 7, in a completely general case of $(-\beta)$ -expansions, there is a problem with ambiguity. Because of this, in the following we shall limit ourselves to the choice $l \in [-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}]$. Note that we allow Ito-Sadahiro case $l = -\frac{\beta}{\beta+1}$, which also contains ambiguities, but only in countably many cases, which can be avoided by introducing a notion of strong $(-\beta)$ -admissibility.

Definition 9. Let $x_1x_2x_3 \dots \in \mathscr{A}_{-\beta,l}$. We say that

$$x_1x_2x_3\cdots$$
 is strongly $(-\beta)$ -admissible if $0x_1x_2x_3\cdots$ is $(-\beta)$ -admissible.

Remark 10. Note that if $l \in \left(-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}\right]$, the notions of strong admissibility and admissibility coincide. In the case $l = -\frac{\beta}{\beta+1}$, the only numbers with non-unique expansions are those of the form $(-\beta)^k l$, which have exactly two possible expansions using digit strings $l_1 l_2 l_3 \cdots$ and $1 l_1 l_2 l_3 \cdots$. While both are $(-\beta)$ -admissible, only the latter is also strongly $(-\beta)$ -admissible.

In order to describe distances between adjacent $(-\beta)$ -integers, we will study ordering of finite digit strings in the alternate order. Denote by $\mathscr{S}(k)$ the set of infinite $(-\beta)$ -admissible digit strings such that erasing a prefix of length k yields 0^{ω} , i.e. for $k \ge 0$, we have

$$\mathscr{S}(k) = \{a_{k-1}a_{k-2}\cdots a_0 0^{\omega} \mid a_{k-1}a_{k-2}\cdots a_0 0^{\omega} \text{ is } (-\beta)\text{-admissible}\},\$$

in particular $\mathscr{S}(0) = \{0^{\omega}\}$. For a fixed k, the set $\mathscr{S}(k)$ is finite. Denote by $\operatorname{Max}(k)$ the string $a_{k-1}a_{k-2}\cdots a_00^{\omega}$ which is maximal in $\mathscr{S}(k)$ with respect to the alternate order and by $\operatorname{max}(k)$ its prefix of length k, i.e. $\operatorname{Max}(k) = \operatorname{max}(k)0^{\omega}$. Similarly, we define $\operatorname{Min}(k)$ and $\operatorname{min}(k)$. Thus,

 $Min(k) \leq_{alt} r \leq_{alt} Max(k)$, for all digit strings $r \in \mathscr{S}(k)$.

With this notation we can give a theorem describing distances in $\mathbb{Z}_{-\beta}$ valid for cases $l \in \left[-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}\right]$. Note that for case $l = -\frac{\beta}{\beta+1}$ it was proven in [1].

Theorem 11. Let x < y be two consecutive $(-\beta)$ -integers. Then there exist a finite string w over the alphabet $\mathscr{A}_{-\beta,l}$, a non-negative integer $k \in \{0, 1, 2, ...\}$ and a positive digit $d \in \mathscr{A}_{-\beta,l} \setminus \{0\}$ such that $w(d-1)\operatorname{Max}(k)$ and $wd\operatorname{Min}(k)$ are strongly $(-\beta)$ -admissible strings and

$$\begin{aligned} x &= \gamma(w(d-1)\max(k)) &< y = \gamma(wd\min(k)) & \text{for } k \text{ even}, \\ x &= \gamma(wd\min(k)) &< y = \gamma(w(d-1)\max(k)) & \text{for } k \text{ odd}. \end{aligned}$$

In particular, the distance y - x between these $(-\beta)$ -integers depends only on k and equals to

$$\Delta_k := \left| (-\beta)^k + \gamma (\min(k)) - \gamma (\max(k)) \right|.$$
(5)

5 Coding $\mathbb{Z}_{-\beta}$ by an infinite word

Note that in order to get an explicit formula for distances from Theorem 3, knowledge of reference strings $\min(k)$ and $\max(k)$ is necessary. These depend on both reference strings d(l) and $d^*(l+1)$. Concerning the form of $\min(k)$ and $\max(k)$ we provide the following proposition.

Proposition 12. Let $\beta > 1$. Denote $d(l) = l_1 l_2 l_3 \cdots$, $d^*(l+1) = r_1 r_2 r_3 \cdots$.

- $\min(0) = \max(0) = \varepsilon$,
- for $k \ge 1$ either $\min(k) = l_1 l_2 \cdots l_k$ or there exists $m(k) \in \{0, \cdots, k-1\}$ such that

$$\min(k) = \begin{cases} l_1 l_2 \cdots (l_{k-m(k)}+1) \min(m(k)) & \text{if } k-m(k) \text{ even} \\ \\ l_1 l_2 \cdots (l_{k-m(k)}-1) \max(m(k)) & \text{if } k-m(k) \text{ odd} \end{cases}$$

• for $k \ge 1$ either $\max(k) = r_1 r_2 \cdots r_k$ or there exists $m'(k) \in \{0, \cdots, k-1\}$ such that

$$\max(k) = \begin{cases} r_1 r_2 \cdots (r_{k-m'(k)} - 1) \max(m'(k)) & \text{if } k - m'(k) \text{ even} \\ \\ r_1 r_2 \cdots (r_{k-m'(k)} + 1) \min(m'(k)) & \text{if } k - m'(k) \text{ odd} \end{cases}$$

Computing $\min(k)$ and $\max(k)$ for a general choice of l may lead to difficult discussion, however, in special cases an important relation between d(l) and $d^*(l+1)$ arises and eases the computation. Examples were given in Remarks 4 and 5.

Let us now describe how we can code the set of $(-\beta)$ -integers by an infinite word over the infinite alphabet \mathbb{N} .

Let $(z_n)_{n \in \mathbb{Z}}$ be a strictly increasing sequence satisfying

$$z_0 = 0$$
 and $\mathbb{Z}_{-\beta} = \{z_n \mid n \in \mathbb{Z}\}$

We define a bidirectional infinite word over an infinite alphabet $\mathbf{v}_{-\beta} \in \mathbb{N}^{\mathbb{Z}}$, which codes the set of $(-\beta)$ -integers. According to Theorem 11, for any $n \in \mathbb{Z}$ there exist a unique $k \in \mathbb{N}$, a word w with prefix 0 and a letter d such that

$$z_{n+1}-z_n = \left|\gamma(w(d-1)\max(k)) - \gamma(wd\min(k))\right|.$$

We define the word $\mathbf{v}_{-\beta} = (v_i)_{i \in \mathbb{Z}}$ by $v_n = k$.

Theorem 13. Let $\mathbf{v}_{-\beta}$ be the word associated with $(-\beta)$ -integers. There exists an antimorphism Φ : $\mathbb{N}^* \to \mathbb{N}^*$ such that $\Psi = \Phi^2$ is a non-erasing non-identical morphism and $\Psi(\mathbf{v}_{-\beta}) = \mathbf{v}_{-\beta}$. Φ is always of the form

$$\Phi(2l) = S_{2l}(2l+1)\widetilde{R_{2l}} \quad and \quad \Phi(2l+1) = R_{2l+1}(2l+2)\widetilde{S_{2l+1}}$$

where \tilde{u} denotes the reversal of the word u and words R_j , S_j depend only on j and on $\min(k), \max(k)$ with $k \in \{j, j+1\}$.

The proof is based on the self-similarity of $\mathbb{Z}_{-\beta}$, i.e. $-\beta\mathbb{Z}_{-\beta} \subset \mathbb{Z}_{-\beta}$, and on the following idea. Let $x = \gamma(w(d-1)\max(k)) < y = \gamma(wd\min(k))$ be two neighbours in $\mathbb{Z}_{-\beta}$ with gap Δ_k and suppose only k even. If we multiply both x and y by $(-\beta)$, we get a longer gap with possibly more $(-\beta)$ -integers in between. It can be shown that between $-\beta y$ and $-\beta x$ there is always a gap Δ_{k+1} . Hence the description is of the form $\Phi(k) = S_k(k+1)\widetilde{R}_k$, where the word S_k codes the distances between $(-\beta)$ -integers in $[\gamma(wd\min(k)0), \gamma(wd\min(k+1))]$ and, similarly, R_k encodes distances within the interval $[\gamma(w(d-1)\max(k)0), \gamma(w(d-1)\max(k+1))]$.

As it turns out, in some cases (mostly when reference strings $l_1 l_2 l_3 \cdots$ and $r_1 r_2 r_3 \cdots$ are eventually periodic of a particular form) we can find a letter-to-letter projection to a finite alphabet $\Pi : \mathbb{N} \to \mathscr{B}$ with $\mathscr{B} \subset \mathbb{N}$, such that $\mathbf{u}_{-\beta} = \Pi \mathbf{v}_{-\beta}$ also encodes $\mathbb{Z}_{-\beta}$ and it is a fixed point of a an antimorphism $\varphi = \Pi \circ \Phi$ over the finite alphabet \mathscr{B} . Clearly, the square of φ is then a non-erasing morphism over \mathscr{B} which fixes $\mathbf{u}_{-\beta}$.

Let us mention that $(-\beta)$ -integers in the Ito-Sadahiro case $l = -\frac{\beta}{\beta+1}$ are also subject of [8]. For β with eventually periodic d(l), Steiner finds a coding of $\mathbb{Z}_{-\beta}$ by a finite alphabet and shows, using only the properties of the $(-\beta)$ -transformation, that the word is a fixed point of a non-trivial morphism. Our approach is of a combinatorial nature, follows a similar idea as in [1] and shows existence of an antimorphism for any base β .

To illustrate the results, let us conclude this contribution by an example.

Example 14. Let β be the real root of $x^3 - 3x^2 - 4x - 2$ (β Pisot, ≈ 4.3) and $l = -\frac{1}{2}$. The admissibility condition gives us for any admissible digit string $(x_i)_{i\geq 0}$:

$$201^{\omega} \leq_{alt} x_i x_{i+1} x_{i+2} \cdots \leq_{alt} \overline{2}0\overline{1}^{\omega} \quad for \ all \ x \geq 0.$$

We obtain

$$\min(0) = \varepsilon, \quad \min(1) = 2, \quad \min(2) = 20$$

Daniel Dombek

and

$$\min(2k+1) = 20(11)^{k-1}0, \quad \min(2k+2) = 20(11)^k \quad \text{for } k \ge 1$$

Clearly it holds that $\max(i) = \overline{\min(i)}$ for all $i \in \mathbb{N}$.

Theorem 11 gives us the following distances within $\mathbb{Z}_{-\beta}$ *:*

$$\Delta_0 = 1, \quad \Delta_1 = -1 + \frac{4}{\beta} + \frac{2}{\beta^2}, \quad and \quad \Delta_{2k} = 1 - \frac{2}{\beta} - \frac{2}{\beta^2}, \quad \Delta_{2k+1} = 1 + \frac{2}{\beta} + \frac{2}{\beta^2} \quad for \ k \ge 1.$$

Finally, the antimorphism $\Phi : \mathbb{N}^* \to \mathbb{N}^*$ is given by

$$\begin{array}{l} 0 \rightarrow 0^2 10^2 \\ 1 \rightarrow 2 \, , \\ 2 \rightarrow 3 \, , \end{array}$$

and for $k \ge 1$

$$2k+1 \rightarrow 0^2 10(2k+2)010^2$$
,
 $2k+2 \rightarrow 2k+3$.

It can be easily seen that a projection from \mathbb{N} to a finite alphabet exists and a final antimorphism φ : $\{0,1,2,3\}^* \rightarrow \{0,1,2,3\}^*$ is of the form

$$0 \rightarrow 0^{2}10^{2},$$

$$1 \rightarrow 2,$$

$$2 \rightarrow 3,$$

$$3 \rightarrow 0^{2}102010^{2}.$$

Bibliography

- [1] P. Ambrož, D. Dombek, Z. Masáková, E. Pelantová, *Numbers with integer expansion in the numeration system with negative base*, preprint (2011), 25pp. arXiv:0912.4597v3 [math.NT]
- [2] D. Dombek, Z. Masáková, E. Pelantová, Number representation using generalized $(-\beta)$ -transformation, preprint (2011), 22pp. arXiv:1102.3079v1 [cs.DM]
- [3] S. Fabre, Substitutions et β -systèmes de numération, Theoret. Comput. Sci. 137, 219–236 (1995). doi:10. 1016/0304-3975(95)91132-A
- [4] Ch. Frougny and A. C. Lai, On negative bases, Proceedings of DLT 09, Lectures Notes in Computer Science 5583 (2009). doi:10.1007/978-3-642-02737-6_20
- [5] S. Ito and T. Sadahiro, *Beta-expansions with negative bases*, INTEGERS 9, 239–259 (2009). doi:10.1515/ INTEG.2009.023
- [6] W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hung. 11, 401–416 (1960).
- [7] A. Rényi, *Representations for real numbers and their ergodic properties*, Acta Math. Acad. Sci. Hung. 8, 477–493 (1957).
- [8] W. Steiner, On the structure of $(-\beta)$ -integers, preprint (2010), 15pp. arXiv:1011.1755v1 [math.NT]
- [9] W. P. Thurston, *Groups, tilings, and finite state automata*, AMS Colloquium Lecture Notes, American Mathematical Society, Boulder (1989).