Dynamical generalizations of the Lagrange spectrum

Sébastien Ferenczi
(Institut de Mathématiques de Luminy, CNRS - UMR 6206)

We compute two invariants of topological conjugacy, the upper and lower limits of the inverse of Boshernitzan's ne_n, where e_n is the smallest measure of a cylinder of length n, for three families of symbolic systems, the natural codings of rotations and three-interval exchanges and the Arnoux-Rauzy systems. The sets of values of these invariants for a given family of systems generalize the Lagrange spectrum, which is what we get for the family of rotations with the upper limit of 1/ne_n.

In Petr Ambrož, Štěpán Holub and Zuzana Masáková: Proceedings 8th International Conference Words 2011 (WORDS 2011), Prague, Czech Republic, 12-16th September 2011, Electronic Proceedings in Theoretical Computer Science 63, pp. 122–128.
Published: 17th August 2011.

ArXived at: http://dx.doi.org/10.4204/EPTCS.63.17 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org