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We consider the following problem. Let us fix a finite alphabet o/ = {1,2,--- ,d}; for any d-uple

of letter frequencies (f1,---,fs) € [0,1]¢ with Y&, f; = 1, how to construct an infinite word u over
the alphabet .o satisfying the following conditions: u has linear complexity function, u is uniformly
balanced, the letter frequencies in u are given by (f1,---, fy). This paper investigates a construction

method for such words based on the use of mixed multidimensional continued fraction algorithms.
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1 Introduction

We consider the following problem: let us fix a finite alphabet .« = {1,2,--- ,d}; for any d-uple of letter
frequencies (fi,---, fs) € [0,1]¢ with ¥¢_, f; = 1, how to construct an infinite word u over the alphabet
&/ satisfying the following conditions:

1. u has linear complexity function
2. u is uniformly balanced
3. the letter frequencies in u are given by (f1,---, f4).

Let us first recall several definitions in order to clarify the previous statement. A word u € o7" is said to
be uniformly balanced if there exists a constant C > 0 such that for any pair of factors of the same length
v, w of u, and for any letter i € <7,

[Vl = [wlil <C,

where the notation |x|; stands for the number of occurrences of the letter j in the factor x. A word u has
linear complexity function if there exists a constant C’ > 0 such that the number of factors of u of length
n is smaller than C’ - n, for every positive integer n. The frequency f; of a letter i € o7 in u = (up)nen
is defined as the limit (when n tends towards infinity), if it exists, of the number of occurrences of i in
uol - . .uy—1 divided by n.
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This problem has several motivations. The first one comes from discrete geometry: such an infinite
word can be seen as a coding of a discrete line in Z¢. Indeed one associates with any infinite word over
the alphabet .7 a broken line obtained as a stair made of a union of segments of unit length directed
according to the coordinate axes, whose vertices are obtained by replacing each of the letters of u by one
of the canonical basis vectors and by concatenating these vectors. Let1: A* — N" w—(|wlq,,...,|W|q,)
stand for the abelianisation map or the Parikh mapping. More precisely, the set of vertices of this broken
line is equal to {I(ug---un—_1) | N € N}. The question is to know how well the line associated with the
word u approximates the Euclidean line directed by the vector of letter frequencies of u, when they exist.
There exist various strategies for defining and generating discrete lines in the three-dimensional space.
With no claim for being exhaustive, let us quote e.g. [2, |9, (14, 23]. Nevertheless, they do not fulfill
Condition 1. on the linear complexity. Note that the notion of discrete line defined in [2] corresponds
to billiard words. Condition 1. means here that these discrete lines are “simple” in terms of number of
local configurations.

The second motivation comes from symbolic dynamical systems and Diophantine approximation: is
it possible to define a Rauzy fractal associated with any translation of the torus? More precisely, assume
we are given a translation x — x+ (0, - 0¢7) defined on T¢ = R /Z4; the Rauzy fractal Z associated
with an infinite word u over the d-letter alphabet < is defined by projecting along the frequency vector
of u on a transverse hyperplane the vertices of the broken line associated with u (such as described above)
and then, by taking the closure. For more on Rauzy fractals, see e.g. [8]. The problem now becomes
the following: is it possible to construct an infinite word u over the d-letter alphabet <7 such that # is a
compact set that tiles periodically this transverse hyperplane and such that « has linear complexity? Let
us explain in this context the requirement concerning linear complexity (Condition 1.): we would like to
recover from the dynamical and combinatorial properties of the infinite word u arithmetical information
on the parameters underlying the translation on the torus. This will be easier if u# has low complexity
function, i.e., a low numbers of factors. Let us quote as a further motivation uniform distribution and the
so-called chairman assignment problem, see e.g. [22], and the references therein.

There exist families of words that satisfy Conditions 2. and 3. but not Condition 1. Billiard words
are defined as codings of trajectories of billiards in a cube; they are shown to have quadratic complexity
(see [4,16]). They satisfy Conditions 2. and 3. Let us also quote the construction described in [[12] which
produces step by step a broken line whose vertices belong to Z3 that approximates a given direction by
choosing at each step the closest point. It is proved in [12] that such a broken line can be obtained by
selecting integer points by shifting a polygonal window along the line. The complexity is here again
quadratic. The corresponding infinite words satisfy Conditions 2. and 3. Note that 1-balanced words
over a higher-alphabet do not seem to be good candidates for describing discrete segments in the space:
not all frequencies can be reached. Fraenkel’s conjecture states that the possible frequencies for 1-
balanced words are rational and uniquely determined, when they are assumed to be distinct [16]. In
particular, when k = 3, the only possible 1-balanced word is (1213121) (if frequencies are distinct), up
to a permutation of letters and up to shifts. For the irrational case, see L8] and [[17]. For more references
on the subject, see also the survey [24]]. Note also that Arnoux-Rauzy words (see e.g. [, 11} [10]) are
infinite words that do not satisfy Condition 2., such as proved in [[11], but that do satisfy Conditions 1.
and 3. Furthermore, they are not defined for every d-uple of letter frequencies, but only for a set of zero
measure in [0, 1. For an illustration, see Figure 4}
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2 Multidimensional continued fractions and frequencies

The strategy we consider here for constructing infinite words satisfying the three above mentioned con-
ditions consists in applying a multidimensional continued fraction algorithm to the frequency vector
(fi,-+,fa), according to [7]. We then associate with the steps of the algorithm substitutions, that is,
rules that replace letters by words, with these substitutions having the matrices produced by the contin-
ued fraction algorithm as incidence matrices. More precisely, a substitution ¢ over the alphabet o7 is
an endomorphism of the free monoid .7*, and the incidence matrix of the substitution ¢ is the square
matrix M with entries m; ; = |o(j)|; for all i, j € .

Let us recall the most classical multidimensional continued fraction algorithms such as described e.g.
in [20], and in [11} 10, 25] for Arnoux-Rauzy algorithm. For the sake of simplicity, we express them in
dimension d = 3:

e Jacobi-Perron: let 0 < uy,up < us,
u u3
(ur,up,u3) = (ug — [—=Juy,uz — [—=ur,uy).
ui ui

e Brun: we subtract the second largest entry from the largest one; for instance, if 0 < u; < up < u3,
(ur,uz,u3) — (u1,u2,u3 — uz).

e Poincaré: we subtract the second largest entry to the largest one, and the smallest entry from the
second largest one; for instance, if 0 < u; < up < u3,

(ur,up,uz) — (ur,up —uy,uz —uy).

e Selmer: we subtract the smallest positive entry from the largest one; for instance, if 0 < u; < upy <
us,

(ur,uz,u3) — (uy,uz,u3 —uy).

e Fully subtractive: we subtract the smallest positive entry from all the largest ones; for instance, if
0<u <uy <us,

(ur up,u3) = (uy,up —uy,uz —uy).
e Arnoux-Rauzy: let 0 < u; <up < uz with uz > uj + up,
(uy,uz,u3) = (uy,uz,u3 —uy —uz).

otherwise the algorithm stops.

Let T be one of these algorithms applied to some vector (f1, f>, f3) € [0,1]>. With each matrix M pro-
duced by T, we associate a substitution whose incidence matrix is given by M. We thus obtain a word
by iterating these substitutions in an S-adic way. We recall that a word is said to be S-adic if it is gen-
erated by composing a finite number of substitutions. This covers various families of words with a rich
dynamical behavior such as Sturmian sequences; for more on S-adic words, see e.g. [3}[13].
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3 Fusion algorithms

We can also mix these algorithms by performing at each step one among these rules, and this still yields
S-adic generated words. We call such algorithms fusion algorithms. We focus on fusion algorithms ob-
tained by applying Arnoux-Rauzy algorithm when possible, and otherwise, consistently one algorithm
among Brun, Poincaré, Selmer, or the Fully Subtractive algorithms. Indeed, experimental studies indicate
that a combination of Arnoux-Rauzy steps with Brun steps, or with Poincaré steps produces good perfor-
mances (see Table[I|and Figure [5|below), and even better performances than when performing only one
algorithm. Furthermore, this allows us to exploit and extend the good mean behaviour of Arnoux-Rauzy
algorithm to a larger set of parameters (compare Figure 4] and Figure [5).

The aim of this lecture is to study the properties of such fusion algorithms for both finite (rational
frequencies) and infinite expansions (irrational frequencies). In particular, we will focus on the almost
everywhere convergence properties and ergodic properties of these fusion algorithms when the frequency
vector has irrational coordinates. The proof relies on classic techniques such as described e.g. in [20]].

Minimum | Mean | Maximum Std

Arnoux-Rauzy 0.6000 | 0.9055 1.200 0.1006

Fully subtractive 0.6000 5.982 13.92 4.388

Fully subtractive as possible 0.6000 4.172 25.00 4.440

Selmer 0.5000 2.184 12.75 2.070
Brun 0.5000 1.114 2.000 0.2664

Brun Multiplicative 0.6000 1.117 2.000 0.2681

Poincaré 0.6000 2.527 11.13 2.261

Jacobi-Perron 0.6000 2.731 25.00 3.456

Random reduction 0.5000 2.426 24.99 2.779

Fusion of Arnoux-Rauzy and Fully subtractive 0.6000 1.095 2.800 0.3105
Fusion of Arnoux-Rauzy and Selmer 0.6000 | 0.9678 1.450 0.1438
Fusion of Arnoux-Rauzy and Brun Multiplicative | 0.6000 | 0.9132 1.400 0.1143
Fusion of Arnoux-Rauzy and Poincaré 0.6000 | 0.8941 1.200 0.09733

Table 1: Statistics (minimum, mean, maximum, standard deviation) for the discrepancy for triplets of
nonnegative rational vectors (aj/N,az/N,a3/N) such that a; +a, +az = N with N = 100.

Consider now the case of rational frequencies. Table 1| displays some experimental results. We
work here in dimension d = 3 with rational frequency vectors of the form f = (a;/N,a,/N,a3/N), with
a; € N,i=1,2,3, and with a; +a> + a3 = N being a positive integer. We apply a fusion algorithm to
such a triplet, until we reach a vector whose entries are all equal to O but one. This produces a finite
sequence of matrices, and thus, of substitutions, having these matrices as incidence matrices. Note that
we have several choices for these substitutions, even if the incidence matrices have entries in {0,1}.
Given a matrix M, we thus have to decide in which order letters will be chosen in the image of a letter
by a substitution o having M as incidence matrix. We choose as a convention to put the most frequent
letter first. (This (partly) explains why the triangles obtained in Figure [T} 2| [3| {] [5] are not perfectly
symmetric.) Let us apply now to f a finite sequence of steps of a fusion algorithm together with a choice
of substitutions associated with the produced matrices. One has f = M, - - - M, f,,, where the vector f,, has
two coordinates equal to 0, and one non-zero coordinate of index, say w, € {1,2,3}. The associated
substitutions are denoted by oy, for 1 < k < n. The following diagram illustrates how we produce finite
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words w with frequency vector f:

M M M M,
f=f, L1 G X R f,

(o] () 03 On
w=wy wi wo wy € {1,2,3}

The experimental results of Table[T|indicate that the fusion algorithm obtained when applying Arnoux-
Rauzy algorithm when possible, and otherwise, Poincaré algorithm, behaves in an efficient way with
respect to the discrepancy. The discrepancy of a finite word ug - - - u, € /™! is defined as

max ik —luo- - ugi|-
ied,0§k§n|fl ’ 0 k’l’
This distance is considered e.g. in [22] and [1], and is intimately connected with the following balance
measure. The balance of ug---u, € 7™ is defined as

~max |[v[;—wlil,
iced, [v|l=|w|

(here v, w are factors of u of the same length |v| = |w|). We have chosen here to use the discrepancy for
our numerical experiments in order to compare our results with the bound discussed in [22]. Indeed, in
[22], an algorithm is given that produces, for any given frequency vector (fi,---, f4), an infinite word
whose discrepancy is smaller than or equal to 1 — 1/(2d —2) (this yields 3/4 for d = 3). However, the
lowest possible asymptotic order for the factor complexity of such a word does not seem to be known;
nothing seems a priori to prevent it from being linear. In the fusion algorithm obtained by combining
Arnoux-Rauzy algorithm with Poincaré algorithm, one obtains a mean discrepancy equal to 0.8910 when
N = 100. More generally, Figure[T] 2] 3] 4 [5| below illustrate the behaviour of the discrepancy for triplets
of nonnegative rational vectors (a;/N,a2/N,a3/N) such that a; +a, + a3 = N for a given N.

(1,1,18) 3
2.5
min | 0.6000
mean | 1.484 2
max 3.000
std | 0.6137 1.5
1

Figure 1: Discrepancy for triplets of nonnegative rational vectors (a; /N,a; /N,a3/N) such that a; +a, +
a3z = N with N = 20 using Poincaré algorithm.
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12

min | 0.6000

mean | 5.982
max 13.92

std 4.388

(98,1,1) (1,98,1)

Figure 2: Discrepancy for triplets of nonnegative rational vectors (a; /N,az/N,as/N) such that a; +a, +
a3z = N with N = 100 using Fully subtractive algorithm.

(1,1,98)
10
8
min | 0.6000
mean | 2.527 6
max 11.13
std 2.261
4
2

(98,1,1) (1,98,1)

Figure 3: Discrepancy for triplets of nonnegative rational vectors (a;/N,az/N,as/N) such that a; +a, +
a3z = N with N = 100 using Poincaré algorithm.
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1.2
min | 0.6000 1
mean | 0.9055
max 1.200
std | 0.1006 0.8
e“*.?y;}ﬂ gooo. Q;u&:@ 45{%;% OOQS !“,éyi,;%o
SRS Sy * g kY34 ﬁif§3ff° ‘
(98,1,1) (1,98,1) 0.6

Figure 4: Discrepancy for triplets of nonnegative rational vectors (a; /N,az/N,as/N) such that a; +a, +
a3z = N with N = 100 using Arnoux-Rauzy algorithm. This algorithm is defined only for vectors whose
largest entry is greater than or equal to the sum of the other two.

(1,1,98) 1.2

min | 0.6000 1
mean | 0.8941

max 1.200

std | 0.09733 08

Figure 5: Discrepancy for triplets of nonnegative rational vectors (a; /N,az/N,as/N) such that a; +a, +
a3z = N with N = 100 using a fusion of Arnoux-Rauzy and Poincaré algorithms.
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