
H. Cirstea, S. Escobar (Eds.): Third International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE’16).
EPTCS 235, 2017, pp. 46–61, doi:10.4204/EPTCS.235.4

An Extension of Proof Graphs for Disjunctive Parameterised
Boolean Equation Systems

Yutaro Nagae
Graduate School of Information Science

Nagoya University
nagae y@trs.cm.is.nagoya-u.ac.jp

Masahiko Sakai
Graduate School of Information Science

Nagoya University
sakai@is.nagoya-u.ac.jp

Hiroyuki Seki
Graduate School of Information Science

Nagoya University
seki@is.nagoya-u.ac.jp

A parameterised Boolean equation system (PBES) is a set of equations that defines sets as the least
and/or greatest fixed-points that satisfy the equations. This system is regarded as a declarative pro-
gram defining functions that take a datum and returns a Boolean value. The membership problem of
PBESs is a problem to decide whether a given element is in the defined set or not, which corresponds
to an execution of the program. This paper introduces reduced proof graphs, and studies a technique
to solve the membership problem of PBESs, which is undecidable in general, by transforming it into
a reduced proof graph.

A vertex X(v) in a proof graph represents that the data v is in the set X, if the graph satisfies
conditions induced from a given PBES. Proof graphs are, however, infinite in general. Thus we
introduce vertices each of which stands for a set of vertices of the original ones, which possibly
results in a finite graph. For a subclass of disjunctive PBESs, we clarify some conditions which
reduced proof graphs should satisfy. We also show some examples having no finite proof graph
except for reduced one. We further propose a reduced dependency space, which contains reduced
proof graphs as sub-graphs if a proof graph exists. We provide a procedure to construct finite reduced
dependency spaces, and show the soundness and completeness of the procedure.

1 Introduction

A Parameterised Boolean Equation System (PBES) [7, 9] is a set of equations denoting some sets as the
least and/or greatest fixed-points. PBESs can be used as a powerful tool for solving a variety of problems
such as process equivalences [1], model checking [8], and so on.

We explain PBESs by an example PBES E1, which consists of the following two equations:

νX(n : N) = X(n + 1)∨Y(n)
µY(n : N) = Y(n + 1)

X(n : N) denotes that n is a natural number and a formal parameter of X. Each of the predicate variables
X and Y represents a set of natural numbers regarding that X(n) is true if and only if n is in X. These
sets are determined as fixed-points that satisfy the equations, where µ (resp. ν) represents the least (resp.
greatest) fixed-point. In the PBES E1, Y is an empty set since Y is the least fixed-point satisfying that
Y(n) iff Y(n+1) for any n ≥ 0. Similarly, X is equal to N since X is the greatest fixed-point satisfying that
X(n) iff X(n + 1)∨Y(n) for any n ≥ 0.

http://dx.doi.org/10.4204/EPTCS.235.4

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 47

The membership problem for PBESs is undecidable in general, and some techniques have been pro-
posed to solve the problem for some subclasses of PBESs: one by instantiating a PBES to a Boolean
Equation System (BES) [11] and one by constructing a proof graph [4]. In the latter method, the mem-
bership problem is reduced to an existence of a proof graph. A proof graph that justifies X(0) for E1 is
shown as follows:

X(0) // X(1) // X(2) // · · · ,

where each vertex X(n) represents that the predicate X(n) holds. If there exists a finite proof graph for a
given instance of the problem, it is not difficult to find it mechanically. However, finite proof graphs do
not always exist.

In this paper, we extend proof graphs and propose reduced proof graphs, where vertices stands for
a set of vertices in the original ones. We clarify some conditions which reduced proof graphs for data-
quantifier free and disjunctive PBESs should satisfy, where data-quantifier free and disjunctive PBESs
are a subclass of disjunctive PBESs [10]. We also provide a reduced dependency space and show that it
contains reduced proof graphs as sub-graphs if a proof graph exists. We give a procedure to construct a
finite reduced dependency space, and show soundness and completeness of the procedure. We also show
examples having no finite proof graph but finite reduced ones.

2 PBESs and Proof Graphs

We follow [4] and [9] for basic notions related to PBESs and proof graphs.
We assume non-empty data sorts. For every data sort D, we assume a setVD of data variables and a

semantic domain D corresponding to it. In this paper, we assume the existence of a sort B corresponding
to the Boolean domain B = {t,f} and a sort N corresponding to the natural numbers N. A data environ-
ment δ is a function that maps each data variable to a value of the associated type. A data environment
update δ[v/d] for a data variable d of a sort D and v ∈ D is a mapping defined by δ[v/d](d′) = v if d = d′

and δ[v/d](d′) = δ(d′) otherwise. We assume appropriate data functions on D, and use [[e]]δ to represent
a value in D obtained by the evaluation of a data expression e of a sort D under a data environment δ.
A data expression interpreted to a value in B is called a Boolean expression. In this paper, we use usual
operators and constants like true, false, ≤, 0, 1, +, −, and so on, as data functions in examples without
stating.

A Parameterised Boolean Equation System (PBES) is a set of equations defined as follows. The
syntax of PBESs is given through the following grammar:

E ::= ∅ | (νX (d : D) = ϕ)E | (µX (d : D) = ϕ)E
ϕ ::= b | ϕ∧ϕ | ϕ∨ϕ | ∀d:D ϕ | ∃d:D ϕ | X(e)

Here, ∅ is used for the empty PBES, and quantifiers µ,ν are used to indicate the least and greatest fixed-
points, respectively. ϕ is a predicate formula, X is a predicate variable sorted with D→ B, b is a Boolean
expression, d is a data variable of a sort D, and e is a data expression.

A PBES is regarded as a sequence of equations,

E = (σ1X1 (d : D) = ϕ1) · · · (σnXn (d : D) = ϕn)

where σi ∈ {µ,ν} (1 ≤ i ≤ n). We say E is closed if it contains no free predicate variables as well as no
free data variables. Note that the negation is allowed only in expressions b or e as a data function.

48 An Extension of Proof Graphs for Disjunctive PBESs

Example 1 A PBES E2 is given as follows:

νX1(d : N) = (true∧X1(d + 1)) ∨ (d ≥ 1∧X2 (d))
µX2(d : N) = (true∧X2(d + 1)) ∨ (d = 0∧X1 (d))

Obviously the occurrences of ’true’ are redundant in the expressions. They are necessary for the subclass
introduced in Section 3.

Since the definition of the semantics is complex, we will give an intuition by an example before intro-
ducing the formal definition. The meaning of a PBES is determined in the bottom-up order. Considering
a PBES E2 in Example 1, we first look at the second equation, which defines a set X2. The set X2 is fixed
depending on the free variable X1, i.e., the equation should be read as that X2 is the least set satisfying
the following condition for any v ∈ N:

v ∈ X2 iff v+ 1 ∈ X2 ∨ (v = 0∧ v ∈ X1).

Thus the set X2 is fixed as

X2 =

{0} if 0 ∈ X1

∅ otherwise
,

i.e., X2(v) iff X1(v)∧ v = 0 for any v ∈ N. Next, we replace the occurrence of X2 in the first equation,
which results in the following equation:

νX1(d : N) = X1(d + 1) ∨ (d ≥ 1∧ (X1 (d)∧d = 0)) .

Since this is simplified as νX1(d : N) = X1(d + 1), the set X1 is fixed as the greatest set satisfying that
v ∈ X1 iff v+1 ∈ X1 for any v ∈N. All in all, we obtain X1 =N and X2 = {0}. This is formally defined [9]
as shown below.

We assume a predicate environment θ :P→ (D→ B) for a set P of predicate variables, i.e., θ assigns
a function to each predicate variable. We define a predicate environment update θ[f /X] in a similar way
to a data environment update. The semantics of a predicate formula ϕ is defined as follows:

[[b]]θδ = [[b]]δ
[[X(e)]]θδ = θ(X)([[e]]δ)

[[ϕ1⊕ϕ2]]θδ = [[ϕ1]]θδ⊕ [[ϕ2]]θδ
[[�d:D ϕ]]θδ = �v ∈ D [[ϕ]]θδ[v/d]

where ⊕ ∈ {∨,∧} and � = {∀,∃}.

Definition 2 For a PBES E, a predicate environment θ, and a data environment δ, the tuple 〈E, θ,δ〉 is
an interpreted PBES. The solution of an interpreted PBES is a predicate environment [[E]]θδ determined
by the interpretation defined as follows:

[[∅]]θδ = θ

[[(σX(d : D) = ϕ)E]]θδ = [[E]]θ[σT/X]δ

where σ ∈ {µ,ν} and T : (D→ B)→ (D→ B) is the predicate transformer defined by

T = λ f ∈ BD.λv ∈ D.[[ϕ]] ([[E]]θ[f /X]δ)δ[v/d].

Note that the solution does not depend on the environments θ or δ if the system is closed.

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 49

Example 3 For E2 given in Example 1, the solution [[E]]θδ is characterized such that ([[E]]θδ)(X1) (resp.
([[E]]θδ)(X2)) is a function that values t if and only if an arbitrary natural number (resp. 0) is given.

The membership problem for PBESs is a problem that answers whether X(d) holds or not for a given
interpreted PBES and X and d. In the sequel, we explain proof graphs introduced in [4] in order to
characterize the membership problem.

For a PBES E = (σ1X1 (d : D) = ϕ1) · · · (σnXn (d : D) = ϕn) , the rank of Xi (1 ≤ i ≤ n) is the number
of alternations of µ and ν in the sequence νσ1 · · ·σn. Note that the rank of Xi bound with ν is even and
the rank of Xi bound with µ is odd. For Example 1, rankE2(X1) = 0 and rankE2(X2) = 1. Bound variables
are predicate variables Xi that occur in the left-hand sides of equations in E. The set of bound variables
are denoted by bnd(E). The signature sig(E) in E is defined by sig(E) = {(Xi, v) | Xi ∈ bnd(E), v ∈ D}. We
use Xi(v) to represent (Xi, v) ∈ sig(E). We use the notation u• for the post set {u′ ∈ V | u→ u′} of a vertex
u in a directed graph 〈V,→〉.

Definition 4 Let 〈E, θ,δ〉 be an interpreted PBES, V ⊆ sig(E), → ⊆ V ×V, and r ∈ B. If both of the
following conditions hold for any Xi(v) ∈ V, the tuple 〈V,→,r〉 is called a proof graph for the PBES.

(1) [[ϕi]](θ[¬r/sig(E)][r/Xi(v)•])(δ[v/d]) = r

(2) For any infinite sequence Z0(x0)→ Z1(x1)→ ·· · that begins from Xi(v), the minimum rank of Z∞

is even, where Z∞ is the set of Zi that occurs infinitely often in the sequence.

The condition (1) says that ϕi = r must hold if we assume that the successors of Xi(v) are r and the other
signatures are ¬r.

We say that a proof graph 〈V,→,r〉 proves Xi(v) = r if and only if Xi(v) ∈ V . In the sequel, we assume
r = t.

Example 5 Consider the following graph and E2 in Example 1:

X1(0) // X1(1) // X1(2) // · · ·

X2(0)

OO

This graph is a proof graph proving X2(0) = t, which is justified as follows. We have that if X1(0) = t then
X2(0) = t, and if X1(n + 1) = t then X1(n) = t for any n ≥ 0. Therefore, this graph satisfies the condition
(1) in Definition 4. Moreover, X1 occurs infinitely often in an infinite path in the graph and rank of X1 is
even. Thus, the condition (2) is satisfied.

The next theorem states the relation between proof graphs and the membership problem on a PBES.

Theorem 6 ([4]) For an interpreted PBES 〈E, θ,δ〉 and a Xi(v) ∈ sig(E), the existence of a proof graph
〈V,→,r〉 such that Xi(v) ∈ V coincides with [[Xi(v)]]θδ = r.

3 Reduced Proof Graphs

This section extends proof graphs, called reduced proof graphs, in which each vertex is a set of vertices
with the same predicate symbol in the original proof graphs. We write a vertex as Xi(C), which stands
for {Xi(v) | v ∈C ⊆ D}. We begin with an example.

50 An Extension of Proof Graphs for Disjunctive PBESs

Example 7 A reduced proof graph for E2 in Example 1 is shown as follows:

X1({0}) // X1({d | d ≥ 1})GG

X2({0})

OO

The vertices X1({0}) and X2({0}) naturally correspond to X1(0) and X2(0) in Example 5, respectively. On
the other hand, the vertex X1({d | 1 ≤ d}) represents the infinite set of vertices {X1(1),X1(2), . . .}.

For consistency, an edge from a vertex Xi(C) to a vertex X j(C′) is allowed, if for any v ∈ C there
exists v′ ∈ C′ such that the edge from Xi(v) to X j(v′) meets the condition (1) in Definition 4. This is the
main difference with the original definition.

In the rest of this paper, we focus on a restricted class of PBESs, where the graph construction in
Section 5 makes sense under such a restriction.

Definition 8 A closed PBES is data-quantifier free and disjunctive if it is in the following forms:

σ1X1(d : D) =
∨

1≤k≤m1

(
ϕ1k(d)∧Xa1k

(
f1k(d)

))
...

σnXn(d : D) =
∨

1≤k≤mn

(
ϕnk(d)∧Xank

(
fnk(d)

))
where fik(d) is a data expression possibly containing variable d, and ϕik(d) is a predicate formula,
defined by the grammar ϕ ::= b | ∀d′:D ϕ | ∃d′:D ϕ, containing no free variables except for d.

E2 in Example 1 is data-quantifier free and disjunctive. This class is a subclass of disjunctive PBESs
introduced in [10]. In disjunctive PBESs, the right hand sides of the equations are in the following form:∨

1≤k≤mn

∃e : Ek
(
ϕik(d,e)∧Xaik

(
fik(d,e)

))
Here, the value of fik(d,e) satisfying ϕik(d,e) varies according to the value of e for a parameter d. From
the restriction “data-quantifier free”, we get the unique fik(d) for a parameter d. We use this fact to argue
reduced proof graphs. For closed PBESs, we abbreviate [[E]]θδ as [[E]].

PBESs in the subclass inherit the following important property that holds for the disjunctive
PBESs [10].

Proposition 9 For a data-quantifier free and disjunctive PBES E and an Xi(v) ∈ sig(E), the property
[[E]](Xi)(v) = t coincides with the existence of a proof graph such that Xi(v) ∈ V and |w•| = 1 for every
vertex w in the graph.1

For data-quantifier free and disjunctive PBESs, we can reformulate the proof graphs as in the follow-
ing lemma.

Lemma 10 Let E be a data-quantifier free and disjunctive PBES, and G = 〈V,→〉 be a graph with V ⊆
sig(E) and → ⊆ V ×V. If G is a proof graph that proves X(v) = t, then there exists a proof graph that
proves X(v) = t and satisfies all of the following conditions:

1 It is stated that |w•| ≤ 1 in [10]. The equality is, however, easily derived from the disjunctivity. If w is in a proof graph,
then |w•| ≥ 1 must hold from the form of disjunctive PBES to satisfy the condition (1) of the proof graph.

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 51

(1) Each vertex has exactly one out-going edge from it.

(2) For any (Xi(v),X j(v′)) ∈→, there exists k ∈ N such that j = aik, fik(v) = v′, and ϕik(v) = t.

(3) For any infinite sequence Z0(v0)→ Z1(v1)→ ·· · along the graph, the minimum rank of Z∞ is even,
where Z∞ is the set of Zi that occurs infinitely often in the sequence.

Conversely, if G satisfies all of these conditions, then it is a proof graph for E.

Proof Let G be a proof graph. Then, by Proposition 9, there exists a proof graph G′ = 〈V ′,→′〉 that
satisfies the condition (1). To prove the condition (2) of the lemma, assume (Xi(v),X j(v′)) ∈ →′. Then,
from the condition (1) of the proof graph, we obtain [[ϕi]]θ[f/sig(E)][t/Xi(v)•]δ[v/d] = t for the right-
hand side ϕi of Xi. From the definition of data-quantifier free and disjunctive PBESs, it follows that there
exists k such that ϕik(v) = t and Xaik (fik(v)) ∈ Xi(v)•. Thus, the condition (2) of the lemma holds. The
condition (3) for G′ is immediate from the condition (2) of the proof graph.

Next, let G satisfy the conditions of the lemma. Consider the condition (1) in the definition of proof
graphs for Xi(v) ∈ V . From the condition (1) of the lemma, we have an edge (Xi(v),X j(v′)) ∈→ for some
X j(v′) ∈ V . From the condition (2) of the lemma, there exists k such that j = aik, fik(v) = v′, and ϕik(v) = t.
The condition (2) of the proof graph follows from the condition (3) of the lemma. Thus, we can conclude
that G is a proof graph. ut

Now, we define reduced proof graphs for data-quantifier free and disjunctive PBESs.

Definition 11 For a data-quantifier free and disjunctive PBES E, a directed graph G = 〈V,→〉 with
V ⊆ bnd(E)× 2D and → ⊆ V ×V is a reduced proof graph if and only if it satisfies all of the following
conditions:

(1) Each vertex has exactly one out-going edge from it.

(2) For any (Xi(C),X j(C′)) ∈→, there exists k ∈N such that j = aik, fik(C) ⊆C′, and ϕik(v) = t for any
v ∈C.

(3) For any infinite sequence Z0(C0)→ Z1(C1)→ ·· · along the graph, the minimum rank of Z∞ is even,
where Z∞ is the set of Zi that occurs infinitely often in the sequence.

We say that a reduced proof graph G proves Xi(v) = t if and only if there exists some vertex Xi(C) ∈ V
such that v ∈C. We can show the relationship between reduced proof graphs and (normal) proof graphs.

Lemma 12 For a data-quantifier free and disjunctive PBES and X(v) ∈ sig(E), the existence of a proof
graph that proves X(v) = t coincides with the existence of a reduced proof graph that proves X(v) = t.

Proof By Lemma 10, there exists a proof graph that satisfies all of the conditions in Lemma 10. The
proof graph is transformed into a reduced one by replacing each vertex X(w) with X({w}). Then, it is
trivial that the obtained graph is a reduced proof graph that proves X(v) = t.

Next, we give a construction of a proof graph G′ that proves X(v) = t from a given reduced proof
graph G. There exists an infinite path π in G starting from X(C0) such that v ∈ C0 from the condition (1)
in Definition 11. Let π be the following sequence:

π : X`0(C0)→ X`1(C1)→ ·· ·

for some sequence `0, `1, . . . such that X`0 = X. We construct a sequence

π′ : X`0(v0)→ X`1(v1)→ ·· ·

by choosing vm from Cm as follows:

52 An Extension of Proof Graphs for Disjunctive PBESs

• v0 = v

• vm = f`m−1k(vm−1) for k determined by Definition 11 (2).

Then, we can regard π′ as a graph G′. Since it is easy to show that G′ satisfies the conditions in
Lemma 10, the obtained graph G′ is a proof graph that proves X(v) = t by Lemma 10. ut

From Theorem 6 and Lemma 12, the membership problem for data-quantifier free and disjunctive
PBESs is reduced to the problem finding a reduced proof graph. Moreover, there exists an instance
of the membership problem having a finite reduced proof graph but no finite proof graph as shown in
Examples 5 and 7. In Example 15, we will show that there exists no finite proof graph for E2 by using
its dependency space introduced in Section 4.

4 Dependency Spaces

In this section, we extend the notion of dependency spaces [10] for reduced proof graphs. Before pro-
ceeding, we recall the notion of congruence on algebra, which we use in this section.

LetA = 〈A,FA〉 be a pair such that

• A is a non-empty set, called carrier, and

• FA is a set of partial functions αA : A→ A.

Then A is called a partial algebra. An equivalence relation ≡ (⊆ A×A) is congruent, if the following
conditions hold for any αA ∈ FA and a,b ∈ A satisfying a ≡ b:

(1) αA(a) is defined if and only if αA(b) is defined, and

(2) if αA(a) is defined, then αA(a) ≡ αA(b).

The quotient algebra of A with respect to a congruence relation ≡, denoted by A/≡, is the algebra
B = 〈A/≡,FB〉, where FB consists of the following functions αB for every αA ∈ FA:

αB([a]≡) =

{
[αA(a)]≡, if αA(a) is defined
undefined, otherwise

Note that [a]≡ denotes the equivalence class containing a.
A reduced dependency space includes at least one reduced proof graph if it exists. Then, we can

construct a reduced proof graph by deleting vertices and edges from a reduced dependency space so that
it satisfies all of the conditions of Definition 11.

Definition 13 For a partial algebra A = 〈A,FA〉, the graph induced from A is defined as the directed
graph 〈A,→〉, where

→ = {(u,αA(u)) | u ∈ A, αA ∈ FA, αA(u) is defined}.

A congruence on the dependency space for a given PBES determines a reduced dependency space.

Definition 14 The dependency space of a given data-quantifier free and disjunctive PBES E (we use the
notation of Definition 8), is the graph induced from the following partial algebraA = 〈A,FA〉, where

• A = {Xi(v) | v ∈ D, i ∈ {1, . . . ,n}}, and

• FA = {αA
ik | i ∈ {1, . . . ,n}, k ∈ {1, . . . ,mi}}, where

αA
ik(X j(v)) =

{
Xaik (fik(v)), if i = j and ϕik(v) = t
undefined, otherwise

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 53

Moreover, the graph induced from A/≡ for a congruence relation ≡ with respect to A is a reduced
dependency space of PBES E.

Note that the equivalence classes are not always finite.

Example 15 The algebraA for the PBES E2 in Example 1 is 〈A, {αA
11,α

A
12,α

A
21,α

A
22}〉, where

A = {X1(v),X2(v) | v ∈ N},
α11(X1(v)) = X1(v+ 1) for any v ∈ N,
α12(X1(v)) = X2(v) if v ≥ 1,
α21(X2(v)) = X2(v+ 1) for any v ∈ N,
α22(X2(v)) = X1(v) if v = 0.

This is illustrated as follows:

X1(0)
α11 // X1(1)

α11 //

α12

��

X1(2)
α11 //

α12

��

· · ·

X2(0)

α22

OO

α21 // X2(1)
α21 // X2(2)

α21 // · · ·

The dependency space induced fromA is the graph obtained from the above graph by removing function
symbols on the edges.

Remark that the dependency space contains every proof graph as a sub-graph for a disjunctive
PBES [10]. Because a proof graph must have exactly one out-going edge, it is trivial that there ex-
ists no finite proof graph for E2.

Let ≡ be a congruence relation described below.

X1(v) ≡ X1(w) for v and w such that v ≥ 1∧w ≥ 1
X2(v) ≡ X2(w) for v and w such that v ≥ 1∧w ≥ 1

Then, the carrier A/≡ of the quotient algebraA/≡ is {{X1(0)}, {X1(v) | v ≥ 1}, {X2(0)}, {X2(v) | v ≥ 1}}. The
following graph is the reduced dependency space induced from the quotient algebra:

{X1(0)}
α11 // {X1(v) | v ≥ 1}

α12

��

α11

��

{X2(0)}

α22

OO

α21 // {X2(v) | v ≥ 1}

α21

WW

Note that the vertices are also written as X1({0}),X1({1,2, . . .}),X2({0}),X2({1,2, . . .}), respectively. From
this dependency space, we can easily extract the reduced proof graph in Example 7.

Hereafter, we use the above notation to describe a reduced dependency space.

Example 16 Consider the data-quantifier free and disjunctive PBES E3 given as follows:

νX(d : N) = (d mod 3 < 2∧X (d + 1)) ∨ (d mod 3 = 1 ∧ X (d + 2))

54 An Extension of Proof Graphs for Disjunctive PBESs

The following graph is a reduced dependency space of E3:

X(N0) // X(N1)oo // X(N2)

where Ni = {n | n mod 3 = i} for each i ∈ {0,1,2}. This reduced dependency space includes a reduced
proof graph shown below:

X(N0) // X(N1)oo

We can see [[E3]](X)(d) = t iff d ∈ N0∪N1 from the reduced proof graph.

We show a property of dependency spaces.

Lemma 17 Let S be a reduced dependency space for a data-quantifier free and disjunctive PBES E. If
there exists a proof graph that proves X(v) = t for E, then there exists a sub-graph of S that is a reduced
proof graph proving X(v) = t.

Proof We give a way to construct a sub-graph of S from a given proof graph G. By Proposition 9, G
consists of an infinite path π starting from X(v). Let π be the following sequence:

π : X(v) = X`0(v0)→ X`1(v1)→ ·· ·

for some sequence `0, `1, Let G′ be the graph consisting of the following sequence π′

π′ : [X`0(v0)]≡→ [X`1(v1)]≡→ ·· ·

where ≡ is the congruence relation that characterizes S .
First, we show that G′ is a sub-graph of S . Obviously, all vertices in G′ are also in S . Let m≥ 0. Since

X`m(vm)→ X`m+1(vm+1) appears in the proof graph G, there exists k ∈ N such that a`mk = `m+1, f`mk(vm) =

vm+1 and ϕ`mk(vm) = t from Lemma 10. From the definition of congruence relations, αA
`mk(X`m(vm)) is

defined and its value is X`m+1(vm+1). Thus, we have [αA
`mk(X`m(vm))]≡ = [X`m+1(vm+1)]≡, and [X`m(vm)]≡→

[X`m+1(vm+1)]≡ also appears in S .
Next, we show that G′ is a reduced proof graph. The conditions (1) and (3) in Definition 11 hold im-

mediately from the form of π′ and the condition (1) in Lemma 10. Since ≡ is congruent and αA
`mk(X`m(vm))

is defined, it follows that X`m+1(f`mk(v)) ∈ [X`m+1(vm+1)]≡ for any X`m(v) ∈ [X`m(vm)]≡. Therefore, the con-
dition (2) holds. ut

From Lemma 17, if a proof graph exists then there exists a reduced proof graph as a sub-graph of the
dependency space. For example, we see that the reduced proof graph in Example 7 is a sub-graph of the
dependency space shown in Example 15.

Note that data-quantifier free and conjunctive PBESs can be defined dually to data-quantifier free
and disjunctive PBESs, and we have the dual results for data-quantifier free and conjunctive PBESs.

5 Graph Construction

In this section, we propose a procedure to construct the reduced dependency space induced from the
maximal congruence, where the maximal congruence induces the most general reduced dependency
space. We start from n vertices {X1(v) | v ∈D}, . . . , {Xn(v) | v ∈D} and divide the sets until the conditions of
the congruence relation are satisfied. This procedure is captured as repetition of division operations on a
partition of D for each i ∈ {1, . . . ,n}, where a family Φ of sets is a partition of D if every two different sets

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 55

in Φ are disjoint and the union of Φ is equal to D. At the end of this section, we prove soundness and
completeness of the procedure, i.e., the procedure returns the most general reduced dependency space if
it is finite.

We define a function H that takes a tuple of partitions 〈Ψ1, . . . ,Ψn〉 and returns a tuple of partitions
obtained by doing necessary division operations to elements Ψi’s. The procedure repeatedly applies F to
the initial tuple of partitions until it saturates. If it halts, the resulted tuple induces a reduced dependency
space. In the procedure, Boolean expressions are used to denote (possibly infinite) subsets of the data
domainD. In other words, a Boolean expression φ(d) can be regarded as a set {v ∈D | φ(v)}. In the sequel,
we abuse operations on sets to denote Boolean operations. For example, we may use the binary operators
∩ (resp. ⊆) on sets for intersection (resp. implication) in Boolean expressions.

We give intuitive explanation of the division. Suppose a formula ϕik(d) is d < 10 in a given PBES.
Then, we have to divide the data domain D into {v ∈D | v < 10} and {v ∈D | v ≮ 10}, because the condition
(1) of the congruence relation requires the coincidence of the defined-ness of αik for all data in a set,
where αik(v) is defined if and only if ϕik(v) holds. The condition (2) requests a similar division. Now we
prepare this operation. In general, we must divide each set in a partition Φ according to a formula ψ. We
define this division operation as follows:

Φ⊗ψ := {φ∩ψ | φ ∈ Φ}∪ {φ∩ψ | φ ∈ Φ}

This operator obviously satisfies (Φ⊗ψ1)⊗ψ2 = (Φ⊗ψ2)⊗ψ1, thus we can naturally extend it on sets of
formulas as follows:

Φ⊗{ψ1, . . . ,ψp} = Φ⊗ψ1⊗ · · ·⊗ψp

It is easily shown that if Φ is a partition of D, then Φ⊗Ψ′ is also a partition of D for a set Ψ′ of formulas.
In constructing partitions of data sets, it is not necessary to apply the division due to the condition (1)

for the congruence more than once. Thus we use partitions resulted by such a division as the initial ones.
The tuple of initial partitions are 〈Ω1, . . . ,Ωn〉, where Ωi = {D} ⊗ {ϕi1, . . . ,ϕimi}. Note that Ωi consists of
at most 2mi sets, because each element ω is included in ϕik or ϕik.

The condition (2) for the congruence requires that Xi(v) ≡ Xi(w) =⇒ αA
ik(Xi(v)) ≡ αA

ik(Xi(w)) if
αA

ik(Xi(v)) is defined. We recall this condition by an example. We assume the current partitions 〈Φ1,Φ2〉=

〈{d ≤ 0, d > 0}, {d ≤ 0, d > 0}〉 and a clause d > 0∧X2(d−1) in the equation for X1. The set represented
by d > 0 in Φ1 obviously satisfies the formula d > 0 in the clause, thus all elements in {d−1 | d > 0} should
be included in a set in Φ2, but they are not included in. Therefore, we will divide the set represented by
d > 0 in Φ1 into two sets as illustrated by {d > 0}⊗ {d−1 ≤ 0, d−1 > 0} = {d > 0∧d ≤ 1, d > 1}. This is
formalized as follows.

Definition 18 The partition function Hik for each i and k is defined as follows:

Hik(〈Ψ1, . . . ,Ψn〉) := 〈Ψ′1, . . . ,Ψ
′
n〉

Ψ′j =

 Ψ j (i , j)
{ψ ∈ Ψ j | ψ ⊆ ϕik}∪

(
{ψ ∈ Ψ j | ψ ⊆ ϕik}⊗Ψaik [fik(d)/d]

)
(i = j)

where Ψ[d′/d] is the set of formulas each of which is obtained from a formula in Ψ by replacing d with
d′.

Here ψ satisfying ψ ⊆ ϕik is not divided, because αA
ik(Xi(v)) is not defined for v in the set represented by

ψ. On the other hand, ψ satisfying ψ ⊆ ϕik is divided so that the image fik(ψ) is included in some set in
Ψaik , because αA

ik(Xi(v)) is defined.

56 An Extension of Proof Graphs for Disjunctive PBESs

Partition functions are bundled as follows:

H(〈Ψ1, . . . ,Ψn〉) := (H1 ◦ · · · ◦Hn) (〈Ψ1, . . . ,Ψn〉)
Hi(〈Ψ1, . . . ,Ψn〉) :=

(
Hi1 ◦ · · · ◦Himi

)
(〈Ψ1, . . . ,Ψn〉)

where ◦ denotes composition, i.e., (f ◦g)(x) = g(f (x)). The function Hi denotes the partition of Ψi using
some functions Hi1, . . . ,Himi . The function H takes a series of partitionings due to the condition (2) for
the congruence.

We define the partition procedure that applies the partition function H to initial partitions 〈Ω1, . . . ,Ωn〉

until it saturates. We write the family of the partitions obtained from the procedure as H∞(〈Ω1, . . . ,Ωn〉).

Example 19 Consider the data-quantifier free and disjunctive PBES E4 given as follows:

νX1(d : N) = (true∧X1(d + 1)) ∨ (d ≥ 1 ∧ X2 (d−1))
µX2(d : N) = (true∧X2(d + 1)) ∨ (d ≤ 0 ∧ X1 (d))

The reduced dependency space for E4 is:

X1({0}) // X1({1}) //

ww

X1({d | d > 1})
��

vv
X2({0})

OO

// X2({d | d > 0})WW

In order to construct this, we first calculate initial partitions.

Ω1 = ({true}⊗ true)⊗ (d ≥ 1) = {true}⊗ (d ≥ 1) = {d ≥ 1,d < 1}
Ω2 = ({true}⊗ true)⊗ (d ≤ 0) = {true}⊗ (d ≤ 0) = {d ≤ 0,d > 0}

We omit the element equivalent to false from partitions because it represents an empty set.
Next, we apply H to 〈Ω1,Ω2〉.

(H11 ◦H12)(〈Ω1,Ω2〉) = H12(〈∅∪ ({d ≥ 1,d < 1}⊗ {d + 1 ≥ 1,d + 1 < 1}),Ω2
〉
)

= H12(〈{d ≥ 1,d < 1},Ω2〉)
= 〈{d < 1}∪ ({d ≥ 1}⊗ {d−1 ≤ 0,d−1 > 0}),Ω2〉

= 〈{d < 1,d = 1,d > 1},Ω2〉

We also apply H21 and H22 in a similar way, and Ω2 does not change. As a result, we obtain H(〈Ω1,Ω2〉) =

〈{d < 1,d = 1,d > 1},Ω2〉, which is already a fixed point. Hence, the procedure returns

H∞ (〈Ω1,Ω2〉) = 〈{d < 1,d = 1,d > 1}, {d ≤ 0,d > 0}〉

This partition induces the set of vertices in the reduced dependency space.

We prepare some technical lemmas on the operation H.

Lemma 20 For a tuple Ω = 〈Ω1, . . . ,Ωn〉 of initial partitions, the tuple H∞(Ω) of the partitions is the
quotient set of the algebra induced from a PBES E for some congruence. In other words, letting H∞(Ω)
= 〈Ω′1, . . . ,Ω

′
n〉, the following two properties hold:

∀i,∀k,∀ω ∈Ω′i , (ω ⊆ ϕik)∨ (ω ⊆ ϕik),
∀i,∀k,∀ω ∈Ω′i ,∀ω

′ ∈Ω′aik
, (ω ⊆ ϕik)⇒ ((ω ⊆ ω′[fik(d)/d])∨ (ω ⊆ ω′[fik(d)/d]))

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 57

Proof The former property for Ωi’s follows from the definition of initial partitions and the fact that H
preserves the property. We prove the latter property by contradiction. Let ω ⊆ ϕik, ω * ω′[fik(d)/d], and
ω * ω′[fik(d)/d] for some i,k,ω ∈ Ω′i , and ω′ ∈ Ω′aik

. Then, we have ω∩ω′′ , ∅ and ω∩ ω′′ , ∅, where
ω′′ denotes ω′[fik(d)/d]. This implies that {ω}⊗ω′′ results in two non-empty sets ω∩ω′′ and ω∩ω′′ by
division of ω. Combining this and the fact that Ω′1 is a partition, it follows that 〈Ω′1, . . . ,Ω

′
n〉 is not a fixed

point of Hik, which contradicts the assumption. ut

For a tuple of partitions Ψ = 〈Ψ1, . . . ,Ψn〉 on a data-quantifier free and disjunctive PBES E, we define
a relation ∼Ψ on the partial algebra 〈A,FA〉 defined by E (see Definition 13) as follows:

Xi(v) ∼Ψ X j(v′) iff i = j∧∃ψ ∈ Ψ j (ψ(v)∧ψ(v′))

Note that it is trivial that ∼Ψ is an equivalence relation since each Ψi is a partition of D.

Lemma 21 Let 〈Ω′1, . . . ,Ω
′
n〉 be a fixed point of H. Then ∼Ω′ is congruent.

Proof Let X j(v) ∼Ω′ X j(v′). Then there exists ω ∈ Ω′j such that ω(v) and ω(v′) hold. Suppose αA
ik(X j(v))

is defined, then i = j and ϕik(v) hold. From the former property of Lemma 20, ϕik(v′) holds. Thus,
αA

ik(X j(v′)) is also defined, which shows (1) of the definition of congruence.
If αA

ik(X j(v)) is defined, it is equal to Xaik (fik(v)) and also αA
ik(X j(v′)) = Xaik (fik(v′)). Since Ω′aik

is
a partition, there exists ω′ ∈ Ω′aik

such that ω′(fik(v)) holds. From the second property of Lemma 20,
ω′(fik(v′)) also holds, which shows (2) of the definition of congruence. ut

The following theorem follows from this lemma.
Theorem 22 If the procedure terminates, then the partitions H∞(〈Ω1, . . . ,Ωn〉) are the vertices of a re-
duced dependency space.

We prepare lemmas for proving the completeness of H∞(〈Ω1, . . . ,Ωn〉).
Lemma 23 Let ≡ be a congruence on a given data-quantifier free and disjunctive PBES, and Ω =

〈Ω1, . . . ,Ωn〉 be the tuple of initial partitions. Then, ∼Ω ⊇ ≡.

Proof We show the lemma by contradiction. Suppose there exist Xi(v) and Xi(w) such that Xi(v) ≡ Xi(w)
and Xi(v) /Ω Xi(w) for some v,w ∈ D and i ∈ {1, . . . ,n}. Since Ωi is a partition, there exists a ω ∈ Ωi such
that ω(v) holds. Because Xi(v) /Ω Xi(w), ω(w) does not hold. This means from the definition of initial
partition that φik(v) holds but φik(w) does not for some k ∈ {1, . . . ,mi}. Thus, αA

ik(Xi(v)) is defined but
αA

ik(Xi(v)) is not defined, which contradicts Xi(v) ≡ Xi(w). ut

Lemma 24 Let ≡ be a congruence on E, and Ψ be a tuple of partitions. Then, ∼Ψ ⊇ ≡ implies ∼H(Ψ) ⊇ ≡.

Proof From the definition of H, it is enough to show that ∼Ψ ⊇≡ implies ∼Hik(Ψ) ⊇≡ for arbitrary 1≤ i≤ n
and 1 ≤ k ≤mi. We show this by contradiction. We assume ∼Ψ ⊇ ≡ and ∼Hik(Ψ) + ≡. Let Ψ = 〈Ψ1, . . . ,Ψn〉

and Hik(Ψ) = 〈Ψ′1, . . . ,Ψ
′
n〉. Then, from the definition of Hik, we have Ψ′ j = Ψ j for any j (, i). This

implies that Xi(v) ≡ Xi(w) and Xi(v) /Hik(Ψ) Xi(w) for some v,w ∈ D. Note that

Ψ′i = {ψ ∈ Ψi | ψ ⊆ ϕik}∪
(
{ψ ∈ Ψi | ψ ⊆ ϕik}⊗Ψaik [fik(d)/d]

)
.

From Xi(v) ≡ Xi(w) and ∼Ψ ⊇ ≡, there exists ψ ∈ Ψi such that ψ(v) and ψ(w) hold. Since ψ < Ψ′i
due to Xi(v) /Hik(Ψ) Xi(w), the formula ψ is divided by a formula ω[fik(d)/d] for some ω ∈ Ψaik . Thus,
ω[fik(d)/d](v) holds but ω[fik(d)/d](w) does not without loss of generality, and ϕik(v) and ϕik(w) also
hold. The former means that ω(fik(v)) holds but ω(fik(w)) does not. Since αik(Xi(v)) = Xaik (fik(v)) and
αik(Xi(w)) = Xaik (fik(w)), we obtain αik(Xi(v))/Ψ αik(Xi(w)). Since ∼Ψ ⊇≡, we get αik(Xi(v)). αik(Xi(w)),
which contradicts the assumption Xi(v) ≡ Xi(w). ut

58 An Extension of Proof Graphs for Disjunctive PBESs

The completeness follows from these lemmas.

Theorem 25 Let Ω′ be the least fixed point of H containing the tuple Ω of initial partitions. Then ∼Ω′ is
the maximal congruence. Thus, H∞(Ω) induces the most general reduced dependency space.

The following corollary can be immediately obtained from the above theorem.

Corollary 26 For a given PBES, H∞(Ω) induces a finite reduced dependency space, if it exists.

This corollary says that a finite reduced dependency space is eventually found by H∞(〈Ω1, . . . ,Ωn〉) if it
exists. There exists, however, a data-quantifier free and disjunctive PBES having a finite reduced proof
graph but no finite reduced dependency space. This is shown by the following example.

Example 27 Consider the following data-quantifier free and disjunctive PBES:

νX1(d : N) = (true∧X1(d + 1))
µX2(d : N) = (d > 0∧X2(d−1))∨ (true∧X1(d)) .

There is an infinite proof graph of X2(0) as shown below, but no finite one.

X1(0) // X1(1) // · · ·

X2(0)

OO

On the other hand, there is a finite reduced proof graph of X2(0) shown as follows:

X1({0,1, . . .})
��

X2({0})

OO

There exists, however no finite reduced dependency space, because H∞(Ω) induces the following infinite
reduced dependency space.

X1({0,1, . . .})
��

X2({0})

OO

X2({1})

ff

oo · · ·

jj

oo

This example shows that a reduced dependency space may be possibly infinite although a finite reduced
proof graph exists.

Considering an implementation of this procedure, it is reasonable to use a set of Boolean expressions
for representing a partition. The division operation ⊗ in the procedure may produce unsatisfiable expres-
sions, which is unnecessary in partitions and hence should be removed. An incomplete unsatisfiability
check easily causes a non-termination of the procedure for a PBES, even if the procedure with complete
satisfiability check terminates. Thus, the unsatisfiability check of Boolean expressions is one of the most
important issues in implementing the procedure.

For instance, examples illustrated in this paper are all in the class of Presburger arithmetic, which is
the first-order theory of the natural numbers which has addition. It is known that the unsatisfiability check
of Boolean expressions in this class is decidable [12]. Therefore, the procedure enjoys the completeness
property for this class.

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 59

6 An Example: Trading Problem

This section illustrates a simple but more realistic application of our method.
There are villages A,B and they trade with each other. The trade is taken by using a truck initially

located in A. Whenever the truck moves, each village earns profit according to the moving path of the
truck, and requires fixed cost for a living. Moreover, there is a place C which supplies the truck with
fuel. We consider the following problem: Is there a schedule for the truck satisfying that the balance of
each village is always positive and the truck visits place C infinitely often?

The following graph shows the restriction of the truck movement, where the pair (x, y) on each arrow
denotes the amount of money which A and B get by trading, respectively.

C

(0,0)
��

A

(0,0)
??

(a,b) // B
(c,d)
oo

We write the living expenses of A (resp. B) as EA (resp. EB).
This problem is encoded as a PBES in the following way. The PBES has three predicate variables

XA, XB, and XC , where Xα(x, y) is true if and only if there is a successful track schedule from the con-
figuration, where the amounts of money in A and B are x and y, respectively, and the truck is located in
α.

νXC(x, y) = x−EA ≥ 0∧y−EB ≥ 0∧XB(x−EA, y−EB)
µXA(x, y) = (x−EA ≥ 0∧y−EB ≥ 0∧XC(x−EA, y−EB))

∨(x + a−EA ≥ 0∧y+ b−EB ≥ 0∧XB(x + a−EA, y+ b−EB))
µXB(x, y) = x + c−EA ≥ 0∧y+ d−EB ≥ 0∧XA(x + c−EA, y+ d−EB)

Let (a,b,c,d) = (4,3,3,4) and EA = EB = 1, then the PBES can be simplified as below:

νXC(x, y) = x ≥ 1∧y ≥ 1∧XB(x−1, y−1)
µXA(x, y) = (x ≥ 1∧y ≥ 1∧XB(x−1, y−1))∨ (true∧XB(x + 3, y+ 2))
µXB(x, y) = true∧XA(x + 2, y+ 3)

For this problem, our procedure produces the partitions 〈{C1,C2}, {A1,A2,A3}, {B1}〉, where

C1 = x ≥ 1∧y ≥ 1, C2 = ¬(x ≥ 1∧y ≥ 1),
A1 = ¬(x ≥ 1∧y ≥ 1), A2 = (x ≥ 1∧y ≥ 1)∧¬(x ≥ 2∧y ≥ 2), A3 = x ≥ 2∧y ≥ 2, and
B1 = true.

The reduced dependency space induced from these partitions is illustrated in Figure 1.
We show a reduced proof graph in Figure 2. Since there is no reduced proof graph of XC(x, y) satis-

fying C1 nor XA(x, y) satisfying A1, the displayed reduced proof graph characterizes initial configuration
having successful track schedules. Considering the case that the initial location of the truck is in A, the
condition for the initial amount x for A and y for B is A2∨A3, which is simplified as x ≥ 1∧y ≥ 1.

7 Related Work

Approaches to transforming an infinite domain (or state space) into an equivalent finite domain (or state
space) with regard to a certain criterion such as behavioral equivalence or congruence with operations
can be found in various topics in logics and formal verification.

60 An Extension of Proof Graphs for Disjunctive PBESs

XC(C1) XC(C2)

��

XA(A1) XA(A2)

OO

yy

XA(A3)

ee

tt
XB(B1)

44

Figure 1: reduced dependency space

XC(C2)

��

XA(A2)

OO

XA(A3)

ee

XB(B1)

44

Figure 2: reduced proof graph

First, of course, the minimization algorithms of state transition systems such as finite automata and
tree automata use a technique of iteratively dividing the state space until being congruent with state
transitions, which can be regarded as simple cases for the construction in this paper.

Predicate abstraction [6] is a standard abstraction method in software model checking. This method
divides an infinite state space by introducing appropriate number of predicates that serve as state com-
ponents and determining the state transitions between subspaces using weakest preconditions. CEGAR
(Counterexample-Guided Abstraction Refinement) [2] iterates the above abstraction by using a pseudo-
counterexample until the abstracted system satisfies a given verification property or a real counterexam-
ple to the verification property is found.

Timed automata (TA) is one of the most popular models of timed systems. The state space of a TA is
infinite because a state contains clocks, which are real numbers. For model-checking a TA, the (infinite)
state space of the TA is transformed into a finite state space by region construction or zone construction
(see Chapter 17 of [3]). Those constructions divide the whole state space into finite number of subspaces
so that subspaces are congruent with state transitions. These constructions are similar to the construction
in this paper although the former only concern TAs.

All of the above-mentioned methods do not deal with fixed-point operations. LFP (logics with fixed-
point operations) refers to a family of logics which are extensions of first-order logic by adding least
and greatest fixed-point operations. Finite model theory for LFP have been investigated in depth (see
Chapters 2 and 3 of [5] for example), that assumes only finite models. In contrast, PBES was proposed
for investigating the model checking problem of first-order µ-calculus that assumes infinite models in
general.

8 Conclusions

We have introduced reduced proof graphs and have shown that the existence of a proof graph for data-
quantifier free and disjunctive PBESs coincides with the existence of a reduced proof graph. The notion
of reduced proof graphs is valuable because there exists a PBES having a finite reduced proof graph but
corresponding proof graphs are all infinite. We also have shown a way to find a reduced proof graph by
constructing the dependency space. From these results, we obtained a method to solve data-quantifier
free and disjunctive PBESs characterized by infinite proof graphs.

Removing data-quantifier free restriction is one of future works.

Acknowledgements

We thank the anonymous reviewers very much for their useful comments to improve this paper.

Yutaro Nagae, Masahiko Sakai & Hiroyuki Seki 61

References
[1] T. Chen, B. Ploeger, J. van de Pol & T. A. C. Willemse (2007): Equivalence Checking for Infinite Systems

Using Parameterized Boolean Equation Systems. In: Proceedings of the 18th International Conference on
Concurrency Theory, CONCUR’07, Springer-Verlag, Berlin, Heidelberg, pp. 120–135. Available at http:
//dl.acm.org/citation.cfm?id=2392200.2392211.

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu & H. Veith (2003): Counterexample-guided Abstraction Refinement
for Symbolic Model Checking. J. ACM 50(5), pp. 752–794, doi:10.1145/876638.876643.

[3] E. M. Clarke, Jr., O. Grumberg & D. A. Peled (1999): Model Checking. MIT Press, Cambridge, MA, USA.
[4] S. Cranen, B. Luttik & T. A. C. Willemse (2013): Proof Graphs for Parameterised Boolean Equation Systems,

pp. 470–484. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-40184-8 33.
[5] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema & S. Weinstein (2005): Fi-

nite Model Theory and Its Applications (Texts in Theoretical Computer Science. An EATCS Series). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

[6] S. Graf & H. Saidi (1997): Construction of abstract state graphs with PVS, pp. 72–83. Springer Berlin
Heidelberg, Berlin, Heidelberg, doi:10.1007/3-540-63166-6 10.

[7] J. F. Groote & T. Willemse (2004): Parameterised Boolean Equation Systems, pp. 308–324. Springer Berlin
Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-540-28644-8 20.

[8] J. F. Groote & T. A. C. Willemse (2005): Model-checking Processes with Data. Sci. Comput. Program. 56(3),
pp. 251–273, doi:10.1016/j.scico.2004.08.002.

[9] J. F. Groote & T. A. C. Willemse (2005): Parameterised boolean equation systems. Theoretical Computer
Science 343(3), pp. 332 – 369, doi:10.1016/j.tcs.2005.06.016.

[10] R. P. J. Koolen, T. A. C. Willemse & H. Zantema (2015): Using SMT for Solving Fragments of Parameterised
Boolean Equation Systems, pp. 14–30. Springer International Publishing, Cham, doi:10.1007/978-3-319-
24953-7 3.

[11] B. Ploeger, J. W. Wesselink & T. A. C. Willemse (2011): Verification of reactive systems via instantia-
tion of Parameterised Boolean Equation Systems. Information and Computation 209(4), pp. 637 – 663,
doi:10.1016/j.ic.2010.11.025.

[12] M. Presburger (1931): Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in
welchem die Addition als einzige Operation hervortritt. publisher not identified. Available at https://
books.google.co.jp/books?id=7agKHQAACAAJ.

http://dl.acm.org/citation.cfm?id=2392200.2392211
http://dl.acm.org/citation.cfm?id=2392200.2392211
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-642-40184-8_33
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-540-28644-8_20
http://dx.doi.org/10.1016/j.scico.2004.08.002
http://dx.doi.org/10.1016/j.tcs.2005.06.016
http://dx.doi.org/10.1007/978-3-319-24953-7_3
http://dx.doi.org/10.1007/978-3-319-24953-7_3
http://dx.doi.org/10.1016/j.ic.2010.11.025
https://books.google.co.jp/books?id=7agKHQAACAAJ
https://books.google.co.jp/books?id=7agKHQAACAAJ

	1 Introduction
	2 PBESs and Proof Graphs
	3 Reduced Proof Graphs
	4 Dependency Spaces
	5 Graph Construction
	6 An Example: Trading Problem
	7 Related Work
	8 Conclusions

