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We explore space improvements in LRP, a polymorphically typed call-by-need functional core lan-
guage. A relaxed space measure is chosen for the maximal size usage during an evaluation. It
abstracts from the details of the implementation via abstract machines, but it takes garbage collection
into account and thus can be seen as a realistic approximation of space usage. The results are: a con-
text lemma for space improving translations and for space equivalences; all but one reduction rule of
the calculus are shown to be space improvements, and for the exceptional one we show bounds on
the space increase. Several further program transformations are shown to be space improvements or
space equivalences, in particular the translation into machine expressions is a space equivalence. We
also classify certain space-worsening transformations as space-leaks or as space-safe. These results
are a step forward in making predictions about the change in runtime space behavior of optimizing
transformations in call-by-need functional languages.

1 Introduction

The focus of this paper is on providing methods for analyzing optimizations for call-by-need functional
languages. Haskell [10, 4] is a functional programming language that uses lazy evaluation, and employs
a polymorphic type system. Programming in Haskell is declarative, which avoids overspecifying imper-
ative details of the actions at runtime. Together with the type system this leads to a compact style of high
level programming and avoids several types of errors.

The declarative features must be complemented with a more sophisticated compiler including opti-
mization methods and procedures. Declarativeness in connection with lazy evaluation (which is call-by-
need [1, 12] as a sharing variant of call-by-name) gives a lot of freedom to the exact execution and is
accompanied by a semantically founded notion of correctness of the compilation. Compilation is usually
a process that translates the surface program into a core language, where the optimization process can be
understood as a sequence of transformations producing a final program.

Evaluation of a program or of an expression in a lazily evaluating functional language is connected
with variations in the evaluation sequences of the expressions in function bodies, depending on the
arguments. Optimization exploits this and usually leads to faster evaluation. The easy-to-grasp notion of
time improvements is contrasted by an opaque behavior of the evaluation w.r.t. space usage, which in the
worst case may lead to space leaks (high space usage during evaluation, which perhaps could be avoided
by correctly transforming the program before evaluation). Programmers may experience space leaks as
unpredictability of space usage, generating rumors like “Haskell’s space usage prediction is a black art”
and in fact a loss of trust into the optimization. [6, 7, 2] observed that semantically correct modifications
of the sequence of evaluation (for example due to strictness information) may have a dramatic effect on
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space usage, where an example is (head xs) eqBool (last xs) vs. (last xs) eqBool (head xs) where
xs is bound to an expression that generates a long list of Booleans (using the Haskell-conventions).

Early work on space improvements by Gustavsson and Sands [6, 7] provides deep insights and
founded methods to analyze the dynamic space usage of programs in call-by-need functional languages.
Our work is a reconsideration of the same issues, but there are some differences: their calculus has a
restricted syntax (for example the arguments of function calls must be variables), whereas our calculus
is unrestricted; they investigate an untyped calculus, whereas we investigate a typed calculus. Measuring
space is also slightly different: whereas [6, 7] counts only the heap bindings, we count the whole ex-
pression, but instead omit parts of the structure (for example variables are not counted). The difference
in space measuring appears to be arbitrary, however, our measure turns out to ignore the right amount
of noise and subtleties of space behavior, but nevertheless sufficiently models the reality, and leads to
general and good estimations.

The focus of this paper is to contribute to a better understanding of the space usage of lazy functional
languages and to enable tools for a better predictability of space requirements. The approach is to ana-
lyze a polymorphically typed and call-by-need functional core language LRP that is a lambda calculus
extended with the constructs letrec, case, constructors, seq, type-abstraction, and with call-by-need eval-
uation. Call-by-need evaluation has a sharing regime and due to the recursive bindings by a letrec, in fact
a sharing graph is used. Focusing on space usage enforces to include garbage collection into the model,
i.e. into the core language. This model is our calculus LRPgc.

The contributions and results of this paper are: a definition (Def. 3.3) of the space measure spmax
as an abstract version of the maximally used space by an abstract machine during an evaluation, and a
corresponding definition of transformations to be max-space-improvements or -equivalences, where the
criterion is that this holds in every context. A context lemma (Prop. 3.4) is proved that eases proofs
of transformations being space improvements or equivalences. The main result is a classification in
Sect. 4 of the rules of the calculus (but one) used as transformations, and of further transformations as
max-space improvements and/or max-space equivalences, or as increasing max-space, or even as space-
leaks. These results imply that the transformation into machine expressions keeps the max-space usage
which also holds for the evaluations on the abstract machine. We also classify some space-worsening
transformations as well-behaved (space-safe up to) or as space-leaks. We also argue that the typed
calculus has more improvements than its untyped version. This is a contribution to predicting the space
behavior of optimizing transformations, which in the future may lead also to a better control of powerful,
but space-hazardous, time-optimizing transformations.

We discuss some previous work on time and space behavior for call-by-need functional languages.
Examples of research on the correctness of program transformations are in [13, 9, 20], examples of
the use of transformations in optimization in functional languages are in [14, 21]. A theory of (time)
optimizations of call-by-need functional languages was started in [11] for a call-by-need higher order
language, also based on a variant of Sestoft’s abstract machine [22]. An example transformation with a
high potential to improve efficiency is common subexpression elimination, which is considered in [11],
but not proved to be a time improvement (but it is conjectured), and which is proved correct in [17],
and proved in this paper as space leak. Hackett and Hutton [8] applied the improvement theory of [11]
to argue that optimizations are indeed improvements, with a particular focus on (typed) worker/wrapper
transformations (see e.g. [3] for more examples). The work of [8] uses the same call-by-need abstract
machine as [11] with a slightly modified measure for the improvement relation. Further work that analy-
ses space-usage of a lazy functional language is [2], for a language without letrec and using a term graph
model, and comparing different evaluators.

The structure of the paper is to first define the calculi LRP in Sect. 2.1 and a variant LRPgc with
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Syntax of expressions and types: Let type variables a,ai ∈ TVar and term variables x,xi ∈ Var. Every
type constructor K has an arity ar(K) ≥ 0 and a finite set DK of data constructors cK,i ∈ DK with an
arity ar(cK,i)≥ 0.

Types Typ and polymorphic types PTyp are defined as follows:
τ ∈ Typ ::= a | (τ1→ τ2) | (K τ1 . . . τar(K))

ρ ∈ PTyp ::= τ | ∀a.ρ
Expressions Expr are generated by this grammar with n≥ 1 and k ≥ 0:
r,s, t ∈ Expr ::= u | x::ρ | (s τ) | (s t) | (seq s t) | (cK,i::(τ) s1 . . . sar(cK,i))

| (letrec x1::ρ1 = s1, . . . ,xn::ρn = sn in t)
| (caseK s of {(PatK,1-> t1) . . . (PatK,|DK |-> t|DK |)})

PatK,i ::= (cK,i :: (τ) (x1 :: τ1) . . . (xar(cK,i) :: τar(cK,i)))

u ∈ PExpr ::= (Λa1.Λa2. . . .Λak.λx :: τ.s)

Figure 1: Syntax of expressions and types of LRP

garbage collection in Sect. 2.2. Sect. 3 defines space improvements and contains the context lemmata.
Sect. 4 discusses space-safeness and space-leaks, and contains a detailed treatment of space improving
transformations, and discusses specific examples. Sect. 5 contains experiments measuring space- and
time-usage for an inlining transformation, which cannot be derived from the current theory. Missing
explanations, arguments and proofs can be found in the technical report [15].

2 Polymorphic and Untyped Lazy Lambda Calculi

We introduce the polymorphically typed calculus LRP, and the variant LRPgc with garbage collection,
since numerous complex transformations have their nice space improving property under all circum-
stances (in all contexts) only in a typed language. Technically, this shows up in the proofs when we have
to argue over all contexts, which are strictly less than without types. For example, case analyses have to
inspect less cases, in particular for list-processing functions (i.e. a smaller number and simpler forking
diagrams).

2.1 LRP: The Polymorphic Variant

Let us recall the polymorphically typed and extended lazy lambda calculus (LRP) [18, 17, 16, 19]. We
motivate and introduce several necessary extensions of LRP which support realistic space analyses.

LRP [16] is LR (an extended call-by-need lambda calculus with letrec, e.g. see [20]) extended
with types. I.e. LRP is an extension of the lambda calculus by polymorphic types, recursive letrec-
expressions, case-expressions, seq-expressions, data constructors, polymorphic abstractions Λa.s to
express polymorphic functions and type applications (s τ) for type instantiations. The syntax of expres-
sions and types of LRP is defined in Fig. 1.

An expression is well-typed if it can be typed using typing rules that are defined in [16]. LRP is a
core language of Haskell and is simplified compared to Haskell, because it does not have type classes
and is only polymorphic in the bindings of letrec variables. But LRP is sufficiently expressive for
polymorphically typed lists and functions working on such data structures.

From now on we use E as abbreviation for a multiset of bindings of the form x = e, also called
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(lbeta) ((λx.s)sub r)→ (letrec x = r in s)
(Tbeta) ((Λa.u)sub τ)→ u[τ/a]
(cp-in) (letrec x1 = vsub,{xi = xi−1}m

i=2,E in C[xvism ])→ (letrec x1 = v,{xi = xi−1}m
i=2,E in C[v])

where v is a polymorphic abstraction
(cp-e) (letrec x1 = vsub,{xi = xi−1}m

i=2,E,y =C[xvism ] in r)
→ (letrec x1 = v,{xi = xi−1}m

i=2,E,y =C[v] in r)
where v is a polymorphic abstraction

(llet-in) (letrec E1 in (letrec E2 in r)sub)→ (letrec E1,E2 in r)
(llet-e) (letrec E1,x = (letrec E2 in t)sub in r)→ (letrec E1,E2,x = t in r)
(lapp) ((letrec E in t)sub s)→ (letrec E in (t s))
(lcase) (caseK (letrec E in t)sub of alts)→ (letrec E in (caseK t of alts))
(lseq) (seq (letrec E in s)sub t)→ (letrec E in (seq s t))
(seq-c) (seq vsub t)→ t if v is a value
(seq-in) (letrec x1 = (c #»s )sub,{xi = xi−1}m

i=2,E in C[(seq xvism t)])
→ (letrec x1 = (c #»s ),{xi = xi−1}m

i=2,E in C[t])
(seq-e) (letrec x1 = (c #»s )sub,{xi = xi−1}m

i=2,E,y =C[(seq xvism t)] in r)
→ (letrec x1 = (c #»s ),{xi = xi−1}m

i=2,E,y =C[t] in r)
(case-c) (caseK csub of {. . .(c-> t) . . .})→ t if ar(c) = 0, otherwise:

(caseK (c #»s )sub of {. . .((c #»y )-> t) . . .})→ (letrec {yi = si}ar(c)
i=1 in t)

(case-in) (letrec x1 = csub,{xi = xi−1}m
i=2,E in C[(caseK xvism of {(c->r) . . .})])

→ (letrec x1 = c,{xi = xi−1}m
i=2,E in C[r]) if ar(c) = 0; otherwise:

(letrec x1 = (c #»t )sub,{xi = xi−1}m
i=2,E in C[(caseK xvism of {((c #»z )->r) . . .})])

→ (letrec x1 = (c #»y ),{yi = ti}ar(c)
i=1 ,{xi = xi−1}m

i=2,E in C[letrec {zi = yi}ar(c)
i=1 in r])

(case-e) (letrec x1 = csub,{xi = xi−1}m
i=2,u =C[(caseK xvism of {(c->r1) . . .})], E in r2)

→ (letrec x1 = c,{xi = xi−1}m
i=2,u =C[r1],E in r2) if ar(c) = 0; otherwise:

(letrec x1 = (c #»t )sub,{xi = xi−1}m
i=2,u =C[(caseK xvism of {. . .((c #»z )->r) . . .})],E in s)

→ (letrec x1 = (c #»y ),{yi = ti}ar(c)
i=1 ,{xi = xi−1}m

i=2,u =C[letrec {zi = yi}ar(c)
i=1 in r],E in s)

The variables yi are fresh ones in (case-in) and (case-e).

Figure 2: Basic LRP-reduction rules [16]

letrec-environment. We also use {xg(i) = s f (i)}m
i= j for xg( j) = s f ( j), . . . ,xg(m) = s f (m) and alts for case-

alternatives. Bindings in letrec-environments can be commuted. We use FV (s) and BV (s) to de-
note free and bound variables of an expression s, LV (E) to denote the binding variables of a letrec-
environment, and we abbreviate (cK,i s1 . . . sar(cK,i)) with c #»s and λx1. . . .λxn.s with λx1, . . . ,xn.s. The
data constructors Nil and Cons are used to represent lists, but we may also use the Haskell-notation []

and (:) instead. A context C is an expression with exactly one (typed) hole [·τ ] at expression position. A
surface context, denoted S, is a context where the hole is not within an abstraction, and a top context, de-
noted T , is a context where the hole is not in an abstraction nor in a case-alternative. A reduction context
is a context where reduction may take place, and it is defined using a labeling algorithm that indicates the
call-by-need reduction positions [16]. Reduction contexts are for example [·], ([·] e), (case [·] . . .) and
letrec x = [·],y = x, . . . in (x True). Note that reduction contexts are surface as well as top-contexts.
A value is an abstraction λx.s, a polymorphic abstraction u or a constructor application c #»s .

We explain the rules in Fig. 2. The classical β -reduction is replaced by the sharing (lbeta). (Tbeta)
is used for type instantiations concerning polymorphic type bindings. The rules (cp-in) and (cp-e) copy
abstractions which are needed when the reduction rules have to reduce an application ( f a) where f
is an abstraction defined in a letrec-environment. The rules (llet-in) and (llet-e) are used to merge
nested letrec-expressions; (lapp), (lcase) and (lseq) move a letrec-expression out of an application, a
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(gc1) letrec {xi = si}n
i=1,E in t→ letrec E in t if ∀i : xi 6∈ FV(t,E),n > 0

(gc2) letrec x1 = s1, . . . ,xn = sn in t→ t if for all i : xi 6∈ FV(t)

Figure 3: Garbage collection transformation rules for LRPgc

seq-expression or a case-expression; (seq-c), (seq-in) and (seq-e) evaluate seq-expressions, where the
first argument has to be a value or a value which is reachable through a letrec-environment. (case-c),
(case-in) and (case-e) evaluate case-expressions by using letrec-expressions to realize the insertion of
the variables for the appropriate case-alternative.

The following abbreviations are used: (cp) is the union of (cp-in) and (cp-e); (llet) is the union of
(llet-in) and (llet-e); (lll) is the union of (lapp), (lcase), (lseq) and (llet); (seq) is the union of (seq-c),
(seq-in), (seq-e); (case) is the union of (case-c), (case-in), (case-e).

Definition 2.1 (Normal order reduction). A normal order reduction step s LRP−−→ t is performed (uniquely)
if the (top-down) labeling algorithm in [16] terminates on s inserting the (superscript) labels sub (subex-
pression) and vis (visited) and the applicable rule (i.e. matching also the labels) of Fig. 2 produces t.

The reduction sequence
LRP,∗−−−→ is the reflexive, transitive closure,

LRP,+−−−→ is the transitive closure of LRP−−→
and

LRP,k−−−→ denotes k LRP−−→-steps.

The labeling algorithm proceeds top-down in an expression, marks the demanded subexpressions and
finally detects the reduction position. It also marks the target position for a copy operation (see (cp-e) as
an example), and the indirection chains used in (case)- and (seq)-reductions. In Fig. 2 we omit the types
in all rules with the exception of (Tbeta) for simplicity. Note that normal-order reduction is type safe.

Definition 2.2. A weak head normal form (WHNF) in LRP is a value v, or an expression letrec E in v,
where v is a value, or an expression letrec x1 = c #»t ,{xi = xi−1}m

i=2,E in xm. An expression s converges

to an expression t (s↓t or s↓ if we do not need t) if s
LRP,∗−−−→ t where t is a WHNF. Expression s diverges

(s↑) if it does not converge.

Definition 2.3. For LRP-expressions s, t of the same type τ , s ≤c t holds iff ∀C[·τ ] : C[s]↓ ⇒C[t]↓, and
s∼c t holds iff s≤c t and t ≤c s. The relation≤c is called contextual preorder and∼c is called contextual
equivalence.

The following notions of reduction length are used for measuring the time behavior in LRP.

Definition 2.4. For a closed LRP-expression s with s↓s0, let rln(s) be the sum of all (lbeta)-, (case)- and
(seq)-reduction steps in s↓s0, let rlnLCSC(s) be the sum of all a-reduction steps in s↓s0 with a ∈ LCSC,
where LCSC = {(lbeta),(cp),(case),(seq)}, and let rlnall(s) be the total number of reduction steps,
but not (Tbeta), in s↓s0.

2.2 LRPgc: LRP with Garbage Collection

As extra reduction rule in the normal order reduction we add garbage collection (gc), which is the union
of (gc1) and (gc2), but restricted to the top letrec (see Fig. 3).

Definition 2.5. We define LRPgc, which employs all the rules of LRP and (gc) (see Fig. 3) as follows:

Let s be an LRP-expression. A normal-order-gc (LRPgc) reduction step s
LRPgc−−−→ t is defined by two cases:

1. If a (gc)-transformation is applicable to s in the empty context, i.e. s
gc−→ t, then s

LRPgc−−−→ t, where
the maximal possible set of bindings in the top letrec-environment of s is removed.
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size(x) = 0
size(s t) = 1+size(s)+size(t)
size(λx.s) = 1+size(s)
size(case e of alt1 . . .altn) = 1+size(e) +∑

n
i=1size(alti)

size((c x1 . . .xn) -> e) = 1+size(e)
size(c s1 . . .sn) = 1+∑size(si)
size(seq s1 s2) = 1+size(s1)+size(s2)
size(letrec x1 = s1, . . . , xn = sn in s) = size(s)+∑size(si)

Figure 4: Definition of size

2. If (1) is not applicable and s LRP−−→ t, then s
LRPgc−−−→ t.

A sequence of LRPgc-reduction steps is called a normal-order-gc reduction sequence or LRPgc-

reduction sequence. A WHNF without
LRPgc,gc−−−−−→-reduction possibility is called an LRPgc-WHNF. If the

LRPgc-reduction sequence of an expression s halts with a LRPgc-WHNF, then we say s converges w.r.t.
LRPgc, denoted as s ↓LRPgc, or s ↓, if the calculus is clear from the context.

The extension of LRP-normal-order reduction by garbage collection steps does not change the con-
vergence and correctness:
Theorem 2.6. The calculus LRP is convergence-equivalent to LRPgc. I.e. for all expressions s: s↓ ⇐⇒
s↓LRPgc. Contextual equivalence and preorder are the same for LRP and LRPgc.

3 Definitions of Space Improvements

From now on we use the calculus LRPgc as defined in Definition 2.5. We define an adapted (weaker) size
measure than the size of the syntax tree, which is useful for measuring the maximal space required to
reduce an expression to a WHNF. The size-measure omits certain components. This turns into an advan-
tage, since it enables proofs for the exact behavior w.r.t. our space measure for a lot of transformations.
Definition 3.1. The size size(s) of an expression s is defined in Fig. 4.

The size-measure does not count variables, it counts letrec-bindings only by the size of the bound
expressions, and it ignores the type expressions and type annotations. A justification for this omission
is that this corresponds to the size (number of nodes) of the sharing graph of the whole program. A
technical justification for defining size(x) as 0 is that let-reduction rules do not change the size, and
that this is compatible with the size in the machine language. For example, the bindings x = y do not
contribute to the size. This is justified, since the abstract machine ([5]) does not create x = y bindings
(not even implicit ones) and instead makes an immediate substitution.
Definition 3.2. The space measure spmax(s) of the reduction of a closed expression s is the maximum

of those size(si), where si
LRPgc−−−→ si+1 is not a (gc), and where the reduction sequence is s = s0

LRPgc−−−→
s1

LRPgc−−−→ ·· · LRPgc−−−→ sn, and sn is a WHNF. If s↑, then spmax(s) is defined as ∞.
For a (partial) reduction sequence Red = s1 → ··· → sn, we define spmax(Red) = maxi{size(si) |

si→ si+1 is not a (gc), and also sn is not LRPgc-reduccible with a (gc)-reduction}
Counting space only if there is no (LRPgc,gc) possible is consistent with the definition in [7]. It also

has the effect of avoiding certain small and short peaks in the space usage. The advantage is a better
correspondence with the abstract machine and it leads to comprehensive results.
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Definition 3.3. Let s, t be two expressions with s ∼c t and s↓. Then s is a space-improvement of t,
s ≤spmax t, iff for all contexts C such that C[s], C[t] are closed, spmax(C[s]) ≤ spmax(C[t]) holds.
The expression s is space-equivalent to t, s ∼spmax t, iff for all contexts C such that C[s], C[t] are

closed, spmax(C[s]) = spmax(C[t]) holds. A transformation Trans−−−→ is called a space-improvement (space-
equivalence) if s Trans−−−→ t implies that t is a space-improvement of (space-equivalent to, respectively) s.

Note that ≤spmax is a precongruence, i.e. it is transitive and s≤spmax t implies C[s]≤spmax C[t], and
that ∼spmax is a congruence. Note also that s≤spmax t implies size(s)≤ size(t), using C = λx.[.].

Let s, t be two expressions with s∼c t and s↓. The relation s≤R,spmax t holds, provided the following
holds. For all reduction contexts R such that R[s], R[t] are closed, we have spmax(R[s]) ≤ spmax(R[t]).
The relation s∼R,spmax t holds iff s≤R,spmax t and t ≤R,spmax s.
Lemma 3.4 (Context Lemma for Maximal Space Improvement). In LRPgc the following holds: If
size(s)≤ size(t), FV(s)⊆ FV(t), and s≤R,spmax t, then s≤spmax t.

Proof. (Sketch [15]) The proof is by generalizing the claim to multiple pairs (si, ti) of expressions in
multicontexts M, i.e. by comparing M[s1, . . . ,sn] and M[t1, . . . , tn], where the assumptions must hold for
all pairs si, ti. The induction proof is (i) on the number of LRPgc-reduction steps of M[t1, . . . , tn], and (ii)
on the number of holes of M. The various cases of reductions of M[t1, . . . , tn] are analyzed, and in all
cases the claim can be shown using the induction hypothesis.

Note that the proof technique would not work for call-by-name variants of the calculus. The reason
is that substitution is incompatible with the proof technique.

Corollary 3.5 (Context Lemma for Maximal Space Equivalence). If size(s) = size(t), FV(s) =FV(t),
and s∼R,spmax t, then s∼spmax t.

The context lemmas also hold if the (stronger) condition s ≤X ,spmax t, or s ∼X ,spmax t, respectively,
holds where X means surface- or top-contexts.

We also consider useful program-transformations that are runtime optimizations, but may increase
the space usage during runtime, and distinguish acceptable and bad behavior w.r.t. space usage. Transfor-
mations that applied in reduction contexts lead to a space increase of at most a fixed (additive) constant
are considered as controllable and safe, whereas the case that after the transformation the space increase
may exceed any constant (depending on the usage of the expressions), is considered uncontrollable, and
we say it is a space leak.

Definition 3.6. Let T be a transformation and let s T−→ t be an instance with expressions s, t.

1. We say that the s T−→ t is space-safe up to the constant c, if for all reduction contexts R: spmax(R[t])≤
c+ spmax(R[s]).

2. If for some c, (1) holds for all instances s T−→ t, then we say T is space-safe up to the constant c.

3. The transformation s T−→ t is a space leak, iff for every b ∈ R, there is a reduction context R, such
that spmax(R[t])≥ b+ spmax(R[s]).

4. If there is one instance s T−→ t that is a space leak, then we also say T is a space leak.
This (simplistic) definition is a first criterion for a classification of transformations. Definition 3.6 for
a classification of transformations makes sense insofar as space-improvements are not space leaks and
space leaks cannot be space improvements.

We will see below that there are examples of transformations that are not space-improvements but
are space-safe up to an additive constant, and there are also transformations that are improvements w.r.t.
runtime, but space leaks, like (cp), (cse), and (soec).
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(cpx-in) (letrec x = y,E in C[x])→ (letrec x = y,E in C[y]) where y is a variable and x 6= y
(cpx-e) (letrec x = y,z =C[x],E in t)→ (letrec x = y,z =C[y],E in t) (same as above)
(cpcx-in) (letrec x = c #»t ,E in C[x])→ (letrec x = c #»y ,{yi = ti}ar(c)

i=1 ,E in C[c #»y ])
(cpcx-e) (letrec x = c #»t ,z =C[x],E in t)→ (letrec x = c #»y ,{yi = ti}ar(c)

i=1 ,z =C[c #»y ],E in t)
(abs) (letrec x = c #»t ,E in s)→ (letrec x = c #»x ,{xi = ti}ar(c)

i=1 ,E in s) where ar(c)≥ 1
(abse) (c #»t )→ (letrec {xi = ti}ar(c)

i=1 in c #»x ) where ar(c)≥ 1
(xch) (letrec x = t,y = x,E in r) → (letrec y = t,x = y,E in r)
(ucp1) (letrec E,x = t in S[x])→ (letrec E in S[t])
(ucp2) (letrec E,x = t,y = S[x] in r)→ (letrec E,y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t] where in the three (ucp)-rules, x has at most

one occurrence in S[x], no occurrence in E, t,r; and S is a surface context.

Figure 5: Extra transformation rules

(case-cx) (letrec x = (cT, j x1 . . .xn),E in C[caseT x ((cT, j y1 . . .yn)->s) alts])
→ letrec x = (cT, j x1 . . .xn),E in C[(letrec y1 = x1, . . . ,yn = xn in s)]

(case-cx) letrec x = (cT, j x1 . . .xn),E, y =C[caseT x ((cT, j y1 . . .yn)->s) alts] in r
→ letrec x = (c x1 . . .xn),E, y =C[(letrec y1 = x1, . . . ,yn = xn in s)] in r

(case-cx) in all other cases: like (case)
(case*) is defined as (case) if the scrutinized data expression is of the form (c s1 . . .sn),

where (s1, . . . ,sn) is not a tuple of different variables, and otherwise it is (case-cx)
(gc=) letrec x = y,y = s,E in r → letrec y = s,E in r where x 6∈ FV(s,E,r),

and y = s cannot be garbage collected
(caseId) (caseK s (pat1-> pat1) . . .(pat|DK |-> pat|DK |))→ s

Figure 6: Variations of transformation rules (space improvements)

4 Space-Safe and Unsafe Transformations

More transformations are defined in Fig. 5: (cpx) is the union of (cpx-in) and (cpx-e) and copies variables,
(cpcx) is the union of (cpcx-in) and (cpcx-e) and copies constructor applications with variable-only-
arguments, (abs), (abse) abstracts subexpressions by putting them in a binding environment, and (ucp) is
the union of (ucp1), (ucp2), and (ucp3) and is a (cp) into a unique occurrence of x, followed by a garbage
collection. Further transformations are defined and mentioned in Fig. 6 and 7: (case-cx) and (case*) are
variants of (case) which behave different if the tested expressions is of the form (c x1 . . .xn) by optimizing
the heap-bindings; (cpS) is (cp) where the target for copying is an S-context1; (cpcxT) is a variant of
(cpcx), where the target context is a T -context; (caseId) is a typed transformation that detects case-
expressions that are trivial; (cse) means common subexpression elimination; (gc=) is a specialization
of (gc) where a single binding x = y in s is removed, where y is not free, and there is a binding for
y that cannot be garbage collected after the removal of x = y; and the transformation (soec) means a
correct change only of the evaluation order by inserting seq-expressions, due to strictness knowledge.

The notation like
(T,(cpcxT ))−−−−−−→ means (cpcxT) applied in a T -context, and similar for others.

1S,T -contexts are defined in Section 2.1
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(cpS) is (cp) restricted such that only surface contexts S for the target context C are permitted
(cpcxT) is (cpcx) restricted such that only top contexts T for the target context C are permitted
(cse) letrec x = s,y = s,E in r → letrec x = s,E[x/y] in r[x/y] where x 6∈ FV(s)
(soec) changing the sequence of evaluation due to strictness knowledge by inserting seq.

Figure 7: Some special transformation rules (space-worsening)

4.1 On the Space-Safety of Transformations

An overview of the results for max-space-improvements, -equivalences and space-worsening transfor-
mations are in the following theorem where further transformations are in Figs. 3, 5, 6 and 7. The proof
technique for most of the proofs consists of computing complete sets of forking diagrams between trans-
formation steps and the normal-order reduction steps and an appropriate induction proof on the length
of reduction sequences (see [20] for more explanations), where computation of diagrams is simplified
thanks to the context lemma (see [15] for details).

Theorem 4.1. The following table shows the space-improvement and -safety properties of the mentioned
transformations.

Improvement rules
�spmax (lbeta), (case), (seq), (lll), (gc), (case*), (caseId)
∼spmax (cpx), (abs), (abse), (xch), (ucp), (case-cx), (cpxT), (gc=)
6�spmax (cpcx), (cpS)
space-safe up to 1 (T,(cpcxT))
space-safe up to size(v) (S,(cpS))

where v is the copied abstraction
space-leak (cp), (cse), (soec)

Proof. Complete Proofs for the space-safety can be found in [15], and sketches and remarks in the
remainder of this section. As an example, we treat (cpx) in more detail:
Claim. The transformation (cpx) is a space-equivalence.
Due to the context lemma it is sufficient to check forking diagrams in top contexts, however, we permit
that (cpx) may copy into arbitrary contexts.

An analysis of forking overlaps between LRPgc-reductions and (cpx)-transformations in top contexts
shows that the following set of three diagrams is complete, where all concrete (cpx)-transformations in a
diagram copy from the same binding x = y:

s
T,cpx

//

n,a
��

s′

n,a
��

s1 T,cpx,∗
// s′1

s
T,cpx

//

n,a6=gc

��

s′

n,gc,0∨1��
s′1

n,a
��

s2 T,cpx,∗
// ·

T,gc=,0∨1
// s′2

s
T,cpx

//

n,gc

��

s′

n,gc,0∨1��
s′1

n,gc
��

s2 T,cpx,∗
// ·

T,gc=,0∨1
// s′2

We also need the diagram-property that s1
n,a←− s

T,gc=−−−→ s′ can be joined by s1
T,gc=,0∨1−−−−−−→ s′1

n,a←− s′. We
will apply the context lemma for space equivalence (Proposition 3.5), which also holds for T -contexts.
Let s0

cpx−−→ t0, and let s = T [s0] and s′ = T [t0]. Then size(s) = size(s′) as well as FV(s) = FV(s′).
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We have to show spmax(s) = spmax(s′), which can be shown by an induction on the number of LRPgc-
reductions of T [s0]. The claim to be proved by induction is sharpened: in addition the number of LRPgc-
reductions of T [s0] is not greater than for T [t0].
Since (cpx) as well as (gc=) do not change the size, we have the same maximal space usage for s and s′.
An application of the context lemma for top contexts and for space equivalence finishes the proof.

Note that a majority of the reasoning and proofs is done in the untyped calculi LR and LRgc (see
[15]).

We investigate the space-properties of (cp): Used as transformation (cpS) in an S-context it increases
max-space at most by size(v) where v is the copied abstraction; and in general the size-increase can be
bounded by (rln(s)+ 2) ∗ size(v) where s is the initial expression. This enables very useful estima-
tions of the effects of optimizing transformations w.r.t. their max-space-behavior for the transformations
mentioned in this paper, in particular for optimizations by partial evaluation.

Proposition 4.2. The following estimations hold for (cp) and (cpS), where s
cp−→ t, and where v is the

copied abstraction:

1. The transformation s
(S,cpS)−−−−→ t increases max-space at most by size(v).

2. The transformation s
cp−→ t increases max-space at most by (rln(s)+2)∗size(v), i.e. spmax(t)≤

(rln(s)+2)∗size(v)+ spmax(s).

A consequence is that the space usage of several transformations
(S,cpS)−−−−→ that are space-safe up to the

additive constant c can be estimated:

Corollary 4.3. Let t be an expression. If t is transformed into t ′ by an arbitrary number of space
improvements that do not increase the size of abstractions, including at most n transformations that

increase max-space by at most ci for i= 1, . . . ,n, and also by m transformations
(S,cpS)−−−−→, then spmax(t ′)≤

spmax(t)+(∑ci)+m ·V , where V is the maximum of the size of abstractions in t.

Proof. This follows from Proposition 4.2 and since
(S,cpS)−−−−→ does not increase the size of abstractions.

Remark 4.4. Using (cp) as transformation with general contexts for the target, for example copying
into an abstraction, may induce a space-leak, but see Proposition 4.2. More exactly, the max-space of a
reduction sequence may increase linearly with the number of reduction steps, and exponentially with the
number of applications of the (cp)-transformation. Examples of this behavior can be constructed as in
Example 4.5.

Note that there are instances of (cp) that behave much better, for example versions of inlining (see
below in Section 5), or if the copied abstraction can be garbage collected after (cp) or transformed
further, and also the special case of (ucp)-transformations.

4.2 Specific Examples and Comparison with Previous Work

Now we explain several examples and compare with related work.

Example 4.5. We show that common subexpression elimination is a space leak. We reuse an example
which is similar to the example in [2]. The expression is given in a Haskell-like notation, using integers,
but can also be defined in LRPgc: s := if (last [1..n]) > 0 then [1..n] else Nil, where [1..n] is
the expression that lazily generates a list [1, . . . ,n]. The evaluation of s expands the list until the last
element is generated and then evaluates the same expression to obtain 1 : [2..n]. Due to eager garbage
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collection, it is not hard to see that the evaluation sequence requires constant max-space, independent
of n (assuming constant space for integers). Note that this evaluation will also generate indirection
chains of the form . . . ,x1 = x2,x2 = x3, . . ., which are ignored by our space measure. As shown in [5] an
evaluation on an abstract machine will really use constant space, if shortening indirections is performed
by the abstract machine.

Now let s′ = letrec x = [1..n] in if (last x)> 0 then x else Nil. The evaluation of s′ behaves
different to s: it first evaluates the list, and stores it in full length, and then the second expression will
be evaluated with an already evaluated list. The size required is a linear function in n. Seen from a
complexity point of view, there is no real bound on this max-space increase: the example can be adapted
using any computable function f on n by modifying the list to [1.. f (n)]. Obviously this example is a
space leak according to our definition, where the reduction contexts contains the list definition.

There may be instances of common subexpression elimination which are not space leaks, however,
we leave the development of corresponding analyzes for future research.

The example and arguments in [2] show that correctly changing the sequence of evaluations may be
a transformation that is a space leak: this means that (soec) is classified as a space leak.

Example 4.6. An example that illustrates the definitions and may contribute to the discussion on the
boundaries between space-safe and -unsafe transformation is the following: Let s = True and t =
(id True). Then clearly s ≤spmax t, and the transformation s → t is space-safe. Let s′ = λx.s and
t ′ = λx.t. Then s′→ t ′ is a space leak according to our definition:
Let R = (letrec y = [·],z = rn in (and z) && (last z)), where rn is the list [(y 0), . . . ,(y 0)] of length
n, and is the function that computes the logical conjunction of all list entries, and && is the logical
conjunction. Then the difference spmax(R[t])− spmax(R[s]) is a linear function in n that exceeds all
bounds, hence s′→ t ′ is a space leak.

Associativity of append. In [7], the re-bracketing of ((xs ++ ys) ++ zs) was analyzed, and the results
had to use several variants of their improvement orderings; in particular their observation of stack and
heap space made the analysis rather complex. We got results that are easier to obtain and to grasp due to
our relaxed measure of space.

Our analysis of applying the associative law to the recursively defined append function ++ shows
that ((xs ++ ys) ++ zs) ≥spmax (xs ++ (ys ++ zs)), where xs,ys,zs are variables. We know that the two
expressions are contextually equivalent. The proof uses the context lemma for space improvement and in
particular the space-equivalence of (ucp) which allows to inline uniquely used bindings, and an induction
argument. The exact analysis shows that within reduction contexts, which exactly enforce the evaluation
of the spine of the lists like (last [·|), the spmax-difference is exactly 4. However, for example in a
reduction context (seq (last [·]) s), where the evaluation of s requires (much) more space than the
expression (last [s]), there is no max-space difference, since we analyze the maximally used space.
The general estimation is that in reduction contexts R, we have spmax(R[((xs ++ ys) ++ zs)]) ≤ 4+
spmax(R[(xs ++ (ys ++ zs))]).

For the three sum-of-list-examples in [7], the analysis using our size-measure results in comparable
conclusions: they compare three functions: a plain recursively defined sum of a list of numbers, the tail-
recursive function sum′ with a non-strictly used accumulator and the tail-recursive sum′′ with a strictly
used accumulator for the result.

sum requires space linear in the length of the list, and the same holds for sum′. However, sum, sum′

and sum′′ as functions are not related by any improvement relation due to the change in the evaluation
order of the spine and elements of the argument list, in case the list is not completely evaluated. In the
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Without inlining:
foldl = λ f ,z,xs.case xs of {([] -> z) ((y : ys) -> foldl f ( f z y) ys)}
foldl′ = λ f ,z,xs.case xs of {([] -> z) ((y : ys) -> let w = ( f z y) in seq w (foldl′ f w ys))}
foldr = λ f ,z,xs.case xs of {([] -> z) ((y : ys) -> f y (foldr f z ys))}

With inlining using xor as function:
xor = λx,y.case x of {(True -> case y of {(True -> False) (False -> True)}) (False -> y)}
foldl = λ f ,z,xs.case xs of {([] -> z)

((y : ys) -> foldl f (case z of{(True -> case y of{(True -> False)
(False -> True)})

(False -> y)}) ys)}
The inlining of foldl′ and foldr is analogous to the inlining of foldl.

Figure 8: Definitions of foldl, foldl′ and foldr

latter case transforming one into the other may indeed be a space-leak, independent of the length of the
list since it would be an instance of (soec).

(weak-value-beta) in Fig. 2 in [6]: As a further comparison we check and compare our results
(see Proposition 4.2) with those for weak improvement in Fig. 2 in [6]: the claim on (weak-value-beta)
there appears to be practically almost useless, (at least for a special case): copying once indeed can
only increase the space by a linear function in the size of the program (and as parameter the number of
reductions in our formulation (see Prop. 4.2)), even copying into an abstraction is permitted. However,
repeating (weak-value-beta) n-times may increase the program exponentially (in n) by repeated doubling.
The transformation rule in [6] permits letrec x = V [x] in C[x]→ letrec x = V [V [x]] in C[V [x]] →
letrec x =V [V [V [V [x]]]] in C[V [V [V [x]]]], where V is a value as context. Hence, a sequence of several
weak improvement steps is not space-safe in the intuitive sense. According to our definition it is a space
leak for this particular example.

Our foundations allow to improve the claims on the space-properties of the two last let-shuffling rules
of [6], which are (strong) space-improvements w.r.t. our measure and definitions, since we have proved
that (lll) is a space equivalence.

Typed Transformations The rule (caseId) is also the heart of other type-dependent transformations,
which are also only correct under typing, and is a space-improvement. Examples of more general trans-
formations of a similar kind are: (map λx.x)→ id, filter (λx.True)→ id, and foldr (:) []→ id,
where we refer to the usual Haskell-functions and constructors. Note that these transformations are not
correct in the untyped calculi.

Translating into Machine Language An efficient implementation of the evaluation of programs or
program expressions first translates expressions into a machine format that can be executed by an abstract
machine. We consider a translation into a variant of the Sestoft machine [22, 11] extended by (eager)
garbage collection. The translation ψ into machine expressions (see also [17]) in particular translates
ψ(s t) to letrec y = ψ(t) in (ψ(s) y), which is the same as an inverse (ucp). Our results, in particular
the results on (ucp) (Thm. 4.1), show that the complete translation ψ is a space-equivalence. Note that
the abstract machine uses extra data structures for evaluation.

5 Experimental Analysis of Inlining and fold Using the Tool LRPi

We use our interpreter LRPi that executes LRPgc-programs using an abstract machine approach and
measures the runtime and space behavior (for more details see [5]) and apply it to several fold-variants.
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k 100 200 300 400 500 600 700 800 900 1000
foldl False xor (take k lst)

rln 1214 2414 3614 4814 6014 7214 8414 9614 10814 12014
spmax 825 1625 2425 3225 4025 4825 5625 6425 7225 8025

after inlining:
rln 1012 2012 3012 4012 5012 6012 7012 8012 9012 10012
spmax 882 1682 2482 3282 4082 4882 5682 6482 7282 8082

foldl′ False xor (take k lst)

rln 1315 2615 3915 5215 6515 7815 9115 10415 11715 13015
spmax 63 63 63 63 63 63 63 63 63 63

after inlining:
rln 1113 2213 3313 4413 5513 6613 7713 8813 9913 11013
spmax 75 75 75 75 75 75 75 75 75 75

foldr False xor (take k lst)

rln 1115 2215 3315 4415 5515 6615 7715 8815 9915 11015
spmax 66 66 66 66 66 66 66 66 66 66

after inlining:
rln 913 1813 2713 3613 4513 5413 6313 7213 8113 9013
spmax 84 84 84 84 84 84 84 84 84 84

Figure 9: Experimental Results

The correctness of the space measurement of the abstract machine is described in [18] (see Thm. 4.1).
We analyze the space behavior of fold using exclusive-or as function, False as neutral element

and a list lst starting with a single True followed by k− 1 False-elements generated using a take-
function/list generator approach. We already compared the three fold variants concerning runtime and
space consumption with each other in this scenario in [5], but now we focus on the impact of inlining,
i.e. how does inlining affect the space consumption in the same scenario?

The current version of LRPi uses Peano-encoding for positive integers, but treats arbitrary Peano
numbers as of size 1, which makes it is easier to analyze the results. Hence the current statistics differs
from that in [5]. The fold-functions are defined in Fig. 8. Inlining copies the defining lambda-expression
for xor to a call site and then applies (lbeta), (ucp), (cpx), (gc) perhaps several times to obtain the inlined
definitions in Fig. 8. In order to keep the experiment simple and interpretable, we omit further obvious
optimizations. Since inlining copies into an abstraction (in addition into a recursive definition), our
theoretical results do not give good guarantees on the space behavior and also do not preclude that the
transformation might be a space leak. Here further research is needed.

Fig. 9 uses Haskell-notation where k is the length of the input list, rln is the runtime measure, i.e.
the number of (essential) reduction steps (see Def. 2.4), spmax is our space measure (see Def. 3.2).

For foldl the runtime decreases linearly after inlining, since this decreases the number of reduction
steps by a constant for each list element. In contrast the inlining increases the space consumption by
a constant. Space consumption is linear in the length of the input list, which is caused by the left-
associativity of foldl since we get a linear number of nested case-expressions caused by the xor. The
constant increase of space consumption after inlining is caused by the constant additional space that is
needed by the inlined xor-function.

If we use the strict variant of foldl (i.e. foldl′), then the accumulator is evaluated each time and
therefore no nested case-expressions are constructed. As expected we see that the space consumption is
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constant and that the runtime again improves linearly.
For foldr the inlining improves the runtime linearly. Moreover the space consumption also only

increases by a constant (similar to the foldl′-variant). The reason is the right-associativity of foldr:
since xor is strict in the first argument, foldr runs over the whole list, but depending on the left argu-
ment, xor either evaluates the second argument or returns the argument. Since the list is lazily generated
and contains only False-elements (up to one occurrence), each element gets directly generated and
consumed and therefore only constant space is needed.

The example suggests that it is a good idea to invest (a bit of) space for time, since for foldl’ and
foldr the runtime improves linearly while the space consumption only increases by a constant. Our
experiment shows a nice behavior in the considered empty context, but does not show the behavior in
other contexts, or other uses of the functions.

6 Conclusion and Future Research

We successfully derived results on the space behavior of transformations in lazy functional languages,
by defining a relaxed space measure and reasoning about space improvements and space equivalences.
We developed and justified a criterion for classifying transformations as space safe or space leaks. An
impact of our results could be a controlled runtime optimization during compile time by applying time-
improving transformations, but taking into account the knowledge of their impact on the max-space
usage. We contributed by detailing and refining this knowledge for call-by-need functional languages.

Future work is to extend the analysis of transformations to larger and more complex transformations
in the polymorphic typed setting. A generalisation of top contexts to surface contexts is also of value
for several transformations. To develop methods and justifications for space-improvements involving
recursive definitions is left for future work, as well as the exploration of the use of space-ticks as in [7]
to improve the computation of estimations.

Acknowledgements We thank David Sabel for lots of discussions and helpful hints, and reviewers for
their constructive comments.
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