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We give a language-parametric solution to the problem of total correctness, by automatically reduc-

ing it to the problem of partial correctness, under the assumption that an expression whose value

decreases with each program step in a well-founded order is provided. Our approach assumes that

the programming language semantics is given as a rewrite theory. We implement a prototype on top

of the RMT tool and we show that it works in practice on a number of examples.

1 Introduction

The line of work on reachability logic (see [22, 20, 21, 14, 15]) proposes language-parametric verification

tools for programs. We continue this line of work by introducing a language-parametric total correctness

checker. Our checker works by reducing the problem of total correctness to the problem of partial

correctness by a transformation of the semantics of the programming language.

A program is partially correct if its output satisfies the postcondition for all inputs on which it termi-

nates. A program is totally correct if it terminates on all inputs and its output satisfies the postcondition.

Therefore, total correctness is usually proven by splitting the problem into two parts: first establish par-

tial correctness by using various Hoare-like logics (e.g., [7, 15]), and then establish termination using a

specialized termination prover (e.g., [17, 1]).

More rarely, logics that can directly prove total correctness (e.g., [25, 19]) are used. However, recent

work in automated termination proving (e.g., [5, 3, 13, 6, 12]) shows that it is beneficial to use information

obtained by proving properties of a program (e.g., invariants) in the termination argument. Most formal

verification tools V take a (possibly annotated) program P as input and return V (P), which is yes if the

verification is successful and no if there is a counterexample; additionally, because such problems are

typically undecidable, the verifier could return unknown or it could loop indefinitely. In this setting, if

the programming language of P changes (e.g., when a new language standard is published), the verifier

V needs to be upgraded as well and also proved sound – which may not be trivial. Another downside of

this approach is that the same verification techniques need to be implemented and proved sound for all

languages of interest.

In our line of work (see [22, 20, 21, 14, 15]), we propose to build language-parametric verifiers V :

in this parametric setting, V takes as input both the (possibly annotated) program P and the operational

semantics S of the programming language of P. Then V (S,P) returns yes, no or unknown (or loops

indefinitely), depending on the particular property that it checks of the program P in the operational

semantics S. The advantage of this approach is that the verifier is proved sound once and can then be

used for various programming languages.

Reachability logic, which is a sound and relatively complete proof system for partial correctness,

was introduced in [14]. For a verifier V that implements this logic, V (S,P) checks whether the (anno-

tated) program P is partially correct, when interpreted using the operational semantics S. In the present
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2 Reducing Total Correctness to Partial Correctness

Id ::= x | y | z | . . . identifiers (program variables)

Int ::= 0,1,−1, . . . integers

Bool ::= True | False booleans

AE ::= Int | Id | AE+AE | . . . arithmetic expressions

BE ::= Bool | AE = AE | AE < AE | not BE | . . . boolean expressions

Stmt ::= skip empty statement

| Stmt; Stmt sequence of statements

| Id := AE assignment

| while BE do Stmt while loop

| if BE then Stmt else Stmt conditional statement

Figure 1: The abstract syntax, in BNF-like notation, of the IMP language, which is used throughout the

paper as a running example.

article, we propose to construct a language-parametric verifier Vt(S,P) that checks total correctness of

the program P in the operational semantics S. Our approach works by applying a transformation on

S and the program P. We develop and prove the soundness of a transformation function θ such that

Vt(S,P) = V (θ(S),θ(P)). This means that total correctness of the program P in the semantics S is the

same as partial correctness of the program θ(P) in the semantics θ(S) and therefore the existing partial

correctness verifier can be used in conjunction with the transformation θ to obtain a total correctness

prover for any language.

Our approach assumes that the operational semantics S of the language in question is given as a

rewrite theory with rules of the form

l ⇒ r if b,

where l and r are two terms representing program configurations and b is a boolean constraint. For our

running example, we use a simple imperative language that we call IMP (see, e.g., [26]), whose abstract

syntax is presented in Figure 1. IMP configurations are pairs 〈c1 c2 · · · cn  Nil | env〉 where

c1,c2, . . . ,cn is a list of expressions or statements that are to be evaluated/executed in order and env is a

map from program identifiers (program variables) to integers. The notation Nil stands for the empty list.

The semantics of IMP consists of rewrite rules like

〈(v := i) l | env〉 ⇒ 〈l | update(v, i,env)〉 and

〈(if b then s1 else s2) l | env〉 ⇒ 〈s1 l | env〉 if b = True,

which define the meaning of all language operators. The two rules above illustrate parts of the semantics

of the assignment statement and of the if-then-else statement, respectively. The full details on the syntax

and semantics of IMP are formally given in Section 2. However, we note that it is possible to faithfully

model a variety of languages in this manner, as shown in [24]. Given a language semantics S as a

parameter, reachability logic (defined in [14]) can prove sequents of the form

S ⊢ l ∧φl ⇒
∀ ∃x̃.(r∧φr),

where l and r are configuration terms and φl,φr are constraints. The intuitive meaning of a sequent is

that any instance of the configuration l satisfying constraint φl either diverges (does not terminate) or

it reaches (along any path, hence the ∀) in a finite number of steps an instance of the configuration r

satisfying constraint φr and agreeing with l on all variables except x̃. The full syntax and semantics of
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the sequents are presented formally in Section 2. Note that such sequents subsume the notion of partial

correctness. For example, the partial correctness of the SUM program

s := 0

while not (m = 0) do s := s + m; m := m - 1

is represented by the following partial correctness sequent

S ⊢ 〈SUM | env1〉∧ lookup(m,env1) = z∧ z ≥ 0 ⇒∀

∃env2.(〈skip | env2〉∧ lookup(s,env2) = z(z+1)/2),

which is derivable using reachability logic. The sequent states that if we run the SUM program in a

configuration where the environment env1 maps the program identifier m to a positive integer z, then the

program eventually reaches a configuration where there is nothing left to execute (hence the skip) and

where the identifier s is mapped to the sum of the first z positive naturals. The sequent

S ⊢ 〈SUM | env1〉∧ lookup(m,env1) = z ⇒∀

∃env2.(〈skip | env2〉∧ lookup(s,env2) = z(z+1)/2)

is also derivable (note that the constraint z ≥ 0 does not appear anymore). The sequent is valid when

interpreted in a partial correctness sense, since the program loops forever when z < 0. We propose a

language transformation that builds an artificial semantics θ(S) from the semantics S by adding to the

configuration a parameter that decreases with each rewrite step. The formal expression that is used for

the parameter is a program variant (i.e., an expression whose value decreases with each program step).

For example, the previously illustrated rewrite rules for the assignment statement and respectively for the

conditional statement become:

(〈(v := i) l | env〉,n) ⇒ (〈l | update(v, i,env)〉,n−1) and

(〈(if b then s1 else s2) l | env〉,n) ⇒ (〈s1 l | env〉,n−1) if b = True.

In the new semantics, θ(S), all programs terminate, since the variant is in a well-founded order and

therefore it cannot decrease indefinitely. Therefore, in order to prove total correctness of a program P in

S, it is sufficient to prove partial correctness of (P,B) in θ(S), where B is a sufficiently large bound. For

our running example, we can establish that

θ(S) ⊢ (〈SUM | env1〉,200|z|+200)∧ lookup(m,env1) = z∧ z ≥ 0 ⇒∀

∃g,env2.((〈skip | env2〉,g)∧ lookup(s,env2) = z(z+1)/2),

which implies by our soundness theorem that SUM is totally correct, under the precondition that the

program variable m starts with a nonnegative value. We have chosen the upper bound 200|n|+200, since

it is sufficiently large to allow for the program to finish. The variable g captures the number of execution

steps remaining from the initial 200|n|+ 200 steps. The sequent above can be proven automatically

(by relying on an invariant-like annotation for the while loop) in our implementation. However, by our

soundness theorem, there is no bound B such that

θ(S) ⊢ (〈SUM | env1〉,B)∧ lookup(m,env1) = z ⇒∀

∃g,env2.((〈skip | env2〉,g)∧ lookup(s,env2) = z(z+1)/2),

meaning that it is impossible to prove the total correctness of the program SUM if there is no precondition

for the initial value of the program variable m.
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In contrast with some other automated termination provers (discussed in Section 4), our method

requires to provide the upper bound on the number of steps manually. In the example above, we picked

200|n|+200 because, intuitively, the program has a linear-time complexity. The constant 200 should be

large enough to allow the program to terminate.

The advantage and novelty of our method is that it is language-parametric (the semantics of the

language is given as an input to our reduction). The main technical difficulties are to find a sound

but general enough transformation θ (given in Definition 3.3) and the right statement of the soundness

theorem (Theorem 3.1).

Contributions.

1. We propose a language-parametric method of proving total correctness;

2. Our approach works by reducing total correctness to partial correctness using a language transfor-

mation and therefore it can also be seen as an argument for semantics-parametric program verifiers;

3. We implement the reduction in the RMT [10] tool and we use it to prove several interesting exam-

ples.

Organization. In Section 2, we briefly introduce our notations for many-sorted algebras and we recall

matching logic and reachability logic, which are the formalisms that we use to define and reason about

the operational semantics of languages. In Section 3, we present our transformation, which reduces total

correctness to partial correctness, we prove its soundness and we present the main difficulties. Section 4

discusses related work and Section 5 concludes the paper, including possible directions for future work.

2 Preliminaries: Proving Partial Correctness using Reachability Logic

This section fixes notations for many-sorted algebra and recalls matching logic and reachability logic.

We denote by S∗ the set of ordered tuples, possibly empty, with elements in S; we say that a set T is

S-indexed if T = {Ts | s ∈ S} is a collection of sets, each one corresponding to a different item in S. For

ease of notation, we sometimes write x ∈ T instead of x ∈ Ts when s is clear from context. A many-sorted

signature Σ is an ordered pair Σ = (S,F), where S is the set of sorts, and F = {Fw,s | w ∈ S∗,s ∈ S} is the

(S∗× S)-indexed set of function symbols. If f ∈ Fw,s, we say that f is a function symbol of arity (w,s).
If w = (s1, . . . ,sn), we sometimes write f : s1, . . . ,sn → s instead of f ∈ Fw,s, which indicates that the

function symbol f has arguments of sorts s1, . . . ,sn and a result of sort s ( f ∈ Fw,s).

A Σ-algebra is a pair A = (A, IA), where A = {As | s ∈ S} is an S-indexed set called the carrier set of

A and IA( f ) is a function, IA( f ) : As1
× . . .×Asn

→ As, for all f ∈ F(s1,...,sn),s. That is, the interpretation

map IA assigns to each function symbol in F a function of the appropriate arity. For convenience, we

sometimes refer to the algebra A as a set, in which case we mean its carrier set A. We assume as

usual that As 6= /0 for any s ∈ S. Given an S-indexed set of symbols Var, we denote by TermΣ,s(Var)
the set of terms of sort s built with function symbols in Σ and variables in Var and by TermΣ(Var) the

S-indexed set of all terms with variables in Var. Given a Σ-algebra A with carrier set A = {As | s ∈ S},

a valuation ρ :
⋃

s∈S Vars →
⋃

s∈S As is a function that assigns to each variable an element in A of the

appropriate sort. Valuations extend homomorphically to terms as usual. We now recall matching logic,

as introduced in [14]. Fix an algebraic signature Σ = (S,F) with a distinguished sort Cfg ∈ S called

the sort of configurations, an S-indexed set of variables Var and a Σ-algebra T with carrier set T . T is
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· : Int → AE

[·] : Id → AE

plus : AE×AE → AE

· : Bool → BE

eq : AE×AE → BE

not : BE → BE

assign : Id×AE → Stmt

seq : Stmt×Stmt → Stmt

ite : BE×Stmt×Stmt → Stmt

while : BE×Stmt → Stmt

skip : → Stmt

T·U : AE → Code

J·K : Stmt → Code

V·W : BE → Code

Nil : → Stack

· · : Code×Stack → Stack

ε : → Env

〈· | ·〉 : Stack×Env → Cfg

isInt : AE→Bool

isBool : BE→Bool

·+ · : Int×Int→ Int

·= · : Int×Int→Bool

!· : Bool→Bool

lookup : Id×Env→ Int

update : Id×Int×Env→Env

plushl : AE→AE

plushr : AE→AE

eqhl : BE→BE

eqhr : BE→BE

noth : →BE

assignh : Id→Stmt

iteh : Stmt×Stmt→Stmt

Figure 2: The symbols in the signature Σ used in our running example. For the infixed symbols, a

centered dot represents an argument.

called the configuration model. The elements of the algebra T of sort Cfg, denoted by TCfg, are called

configurations. Matching logic is a logic of program configurations.

Example 2.1. We consider a running example where the elements of T of sort Cfg are programs, running

in an environment, written in a simple imperative language that we call IMP. We work in the signature

(S,Σ), where S = {Int,Bool,AE,BE, Id,Stmt,Stack,Env,Cfg,Code} and where the function symbols in

Σ are presented in Figure 2. The first set of symbols is used to represent the syntax of IMP programs.

The second set of symbols is required to represent configurations, which consist of a stack of code to be

executed/evaluated, and an environment mapping identifiers to integers. The third set of symbols repre-

sents mathematical operations. The last set consists of several auxiliary symbols, which are necessary

to specify the rules of the operational semantics. For brevity, not all operators are presented; there are

additional operations for less-than, boolean connectives, etc. The sorts Int and Bool are interpreted by

mathematical integers and booleans, respectively. The sorts AE, BE and Stmt are the sorts for arithmetic

expressions, boolean expressions and statements, respectively. The sort Id is for program identifiers (pro-

gram variables). There are injections T·U, V·W and J·K from AE, BE and Stmt, respectively, into the sort

Code. Therefore Code refers to either arithmetic or boolean expressions, or statements. Env is the sort

of maps from Ids to Integers. The sort Stack refers to a stack of Codes that should be evaluated/executed

in order, starting with the top of the stack. Configurations (of sort Cfg) consist of a Stack and of an en-

vironment of sort Env. The symbols in the signature Σ are presented in Figure 2. It includes all function

symbols needed to represent the initial configuration, but also helper symbols that occur during program

execution.

Example 2.2. The SUM program introduced earlier, placed in an initial configuration with the empty

environment, ε , is represented by the following term of sort Cfg:

〈Jseq(assign(s,0),
while(not(eq(0, [m])),seq(assign(s,plus([s], [m])),

assign(m,plus([m],−1)))))K Nil | ε〉.
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The rest of this section recalls definitions from [14].

Definition 2.1. A matching logic formula (or pattern), is a first-order logic (FOL) formula that addi-

tionally allows terms in TermΣ,Cfg(Var), called basic patterns, as atomic formulae. We recall that by

TermΣ,Cfg(Var) we denote the terms of sort Cfg in the Σ-algebra of terms. We say that a pattern is struc-

tureless if it contains no basic patterns. More formally, a matching logic formula is defined as follows:

1. if π ∈ TermΣ,Cfg(Var), then π is a formula;

2. if w = (s1, . . . ,sn), ti ∈ TermΣ,si
(Var) for all i ∈ {1, . . . ,n} and P ∈ Fw,Bool, then P(t1, . . . , tn) is a

formula;

3. if ϕ1 and ϕ2 are formulae, then ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2 are formulae;

4. if ϕ is a formula, then ¬ϕ is a formula;

5. if ϕ is a formula and x ∈ Var, then ∃xϕ and ∀xϕ are formulae.

By PT we denote the set of all patterns over an algebra T .

Definition 2.2. For a fixed algebra T = (A, I), we define satisfaction (γ ,ρ) |= ϕ over configurations

γ ∈ TCfg, valuations ρ : Var → T and patterns ϕ as follows:

1. (γ ,ρ) |= P(t1, t2, . . . , tn) if and only if (I(P))(ρ(t1),ρ(t2), . . . ,ρ(tn)) =⊤;

2. (γ ,ρ) |= π iff γ = ρ(π) where π ∈ TermΣ,Cfg(Var);

3. (γ ,ρ) |= (ϕ1 ∧ϕ2) iff (γ ,ρ) |= ϕ1 and (γ ,ρ) |= ϕ2;

4. (γ ,ρ) |= (ϕ1 ∨ϕ2) iff (γ ,ρ) |= ϕ1 or (γ ,ρ) |= ϕ2;

5. (γ ,ρ) |= ¬ϕ iff (γ ,ρ) 6|= ϕ ;

6. (γ ,ρ) |= ∃Xϕ iff (γ ,ρ ′) |= ϕ for some ρ ′ : Var → T with ρ ′(y) = ρ(y) for all y ∈Var\{X};

7. (γ ,ρ) |= ∀Xϕ iff (γ ,ρ) 6|= ∃X(¬ϕ).

We write |= ϕ when (γ ,ρ) |= ϕ for all γ ∈ TCfg and all ρ : Var → T .

We now recall all-path reachability logic (as presented in [14]).

Definition 2.3. A (one-path) reachability rule is an ordered pair of patterns (ϕ ,ϕ ′) (which can have free

variables). We write this pair as ϕ ⇒∃ ϕ ′. We say that rule ϕ ⇒∃ ϕ ′ is weakly well-defined iff for any

γ ∈ TCfg and ρ : Var → T with (γ ,ρ) |= ϕ , there exists γ ′ ∈ TCfg such that (γ ′,ρ) |= ϕ ′.

Definition 2.4. A reachability system is a set of reachability rules. A reachability system S is weakly well-

defined iff each rule is weakly well-defined. S induces a transition system (T ,⇒T
S ) on the configuration

model: γ ⇒T
S γ ′ for γ ,γ ′ ∈ TCfg iff there is some rule ϕ ⇒∃ ϕ ′ ∈ S and some valuation ρ : Var → T

such that (γ ,ρ) |= ϕ and (γ ′,ρ) |= ϕ ′. We write ⇒ instead of ⇒T
S when it is clear from context that we

are referring to a particular transition system.

Example 2.3. We consider a fixed Σ-algebra T having the following properties: TInt = Z, TBool =
{True,False}, TId = {x,y,z . . .}, Ta+b = a+ b for all a,b ∈ Z, Tlookup(X ,update(X ,I,env)) = I for all X ∈
TId, I ∈ Z, env ∈ TEnv, Tlookup(Y,update(X ,I,env)) = Tlookup(Y,env) for all Y ∈ TId \ {X}, I ∈ Z, env ∈ TEnv,

Tlookup(X ,ε) = 0 for all X ∈ TId, TisInt(x) = True iff x = y, for some y ∈ Z and TisBool(x) = True iff x = y,

for some y ∈ TBool. The weakly well-defined system S defining the operational semantics of IMP is

presented in Figure 3. For brevity, some rules that are similar to existing rules are missing (e.g., the rules

for eq are similar to those for plus). We discuss the first four rules, which define the assignment operator

and the lookup. The first rule schedules the expression on the rhs of an assignment to be evaluated, if it is
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〈Jassign(X ,A)K T | env〉∧¬isInt(A)⇒∃ 〈TAU Jassignh(X)K T | env〉
〈TaU Jassignh(X)K T | env〉 ⇒∃ 〈Jassign(X ,a)K T | env〉
〈Jassign(X ,a)K T | env〉 ⇒∃ 〈T | update(X ,a,env)〉

〈T[X]U T | env〉 ⇒∃ 〈Tlookup(X,env)U T | env〉

〈JskipK T | env〉 ⇒∃ 〈T | env〉
〈Jseq(S1,S2)K T | env〉 ⇒∃ 〈JS1K JS2K T | env〉
〈Jite(VFalseW,S1,S2)K T | env〉 ⇒∃ 〈JS2K T | env〉
〈Jite(VTrueW,S1,S2)K T | env〉 ⇒∃ 〈JS1K T | env〉
〈Jite(C,S1,S2)K T | env〉∧¬isBool(C)⇒∃

〈VCW Jiteh(S1,S2)K T | env〉
〈VCW Jiteh(S1,S2)K T | env〉∧ isBool(C)⇒∃

〈Jite(C,S1,S2)K T | env〉
〈Jwhile(C,S)K T | env〉 ⇒∃ 〈Jite(C,seq(S,while(C,S)),skip)K T | env〉

〈Tplus(a,b)U T | env〉 ⇒∃ 〈Ta+bU T | env〉
〈Tplus(A,B)U T | env〉∧¬isInt(A)⇒∃ 〈TAU Tplushl(B)U T | env〉
〈Tplus(A,B)U T | env〉∧ isInt(A)∧¬isInt(B)⇒∃

〈TBU Tplushr(A)U T | env〉
〈TAU Tplushl(B)U T | env〉∧ isInt(A)⇒∃ 〈Tplus(A,B)U T | env〉

〈TBU Tplushr(A)U T | env〉∧ isInt(B)⇒∃ 〈Tplus(A,B)U T | env〉

Figure 3: The reachability system S defining the semantics of IMP. Capital letters represent variables of

the appropriate sorts. The variables a,b stand for integers and the variable env for an environment.

not already an integer. Once the expression is evaluated to an integer (using the other rules), the second

rule places the result back into the assignment operator. Once the rhs is an integer, the third rule updates

the environment appropriately. The fourth rule evaluates a variable by looking it up in the environment.

The reachability system S generates the transition relation ⇒T
S on the model T . Note that reachability

rules of the form l ∧φ ⇒∃ r (with l ∧φ and r being matching logic formulae) subsume the rewrite rules

of the form l ⇒ r if ϕ used in the introduction.

Definition 2.5. A ⇒T
S -execution is a sequence γ0 ⇒

T
S γ1 ⇒

T
S · · · , potentially infinite, where γ0,γ1, . . . ∈

TCfg. If a ⇒T
S -execution is finite, we call it a ⇒T

S -path. We say that such a path is complete iff it is not

a strict prefix of any other ⇒T
S -path (i.e., the last element is irreducible).

The following is an example of a complete ⇒T
S -path:

〈Jseq(skip,skip)K Nil | ε〉 ⇒ 〈JskipK JskipK Nil | ε〉 ⇒ 〈JskipK Nil | ε〉 ⇒ 〈Nil | ε〉.

Definition 2.6 (Partial Correctness). An all-path reachability rule is a pair ϕ ⇒∀ ϕ ′. We say that ϕ ⇒∀ ϕ ′

is satisfied by S, denoted by S |= ϕ ⇒∀ ϕ ′, iff for all complete ⇒T
S -paths τ starting with γ ∈ TCfg and

for all ρ : Var → T such that (γ ,ρ) |= ϕ , there exists some γ ′ ∈ τ such that (γ ′,ρ) |= ϕ ′.

The definition above generalizes typical partial correctness of Hoare tuples of the form {ϕ}P{ϕ ′},

as the reachability formula P∧ϕ ⇒∀ 〈skip | env〉∧ϕ ′ can be used instead. See [14] for a more detailed

discussion. Reachability logic has a sound and relatively complete proof system, which derives sequents

of the form S ⊢ ϕ ⇒∀ ϕ ′ if and only if S |= ϕ ⇒∀ ϕ ′ holds. The results in the present paper do not depend

on the proof system, and therefore the proof system is presented in Appendix A.
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3 The Reduction of Total Correctness to Partial Correctness

We now present a transformation that reduces total correctness to the problem of partial correctness. We

first define what it means for a pattern to terminate.

Definition 3.1 (Termination of a Pattern). We say that a pattern ϕ terminates in S if for all γ ∈ TCfg and

all ρ : Var → T such that (γ ,ρ) |= ϕ , all executions γ ⇒ γ1 ⇒ γ2 ⇒ ··· from γ in (T ,⇒T
S ) are finite.

Example 3.1. The following pattern does not terminate in S:

〈Jwhile(C,skip)K Nil | ε〉, where C ∈ VarBE.

Its nontermination is witnessed by the following execution:

〈Jwhile(VTrueW,skip)K Nil | ε〉 ⇒T
S

〈Jite(VTrueW,seq(skip,while(VTrueW,skip)),skip)K T | ε〉 ⇒T
S · · ·

〈Jwhile(VTrueW,skip)K Nil | ε〉 ⇒T
S · · ·

The next definition is at the core of our proof. It is the total-correctness counterpart to Definition 2.6.

Definition 3.2 (Total Correctness). We say that an all-path reachability rule ϕ ⇒∀ ϕ ′ is totally satisfied

by S, denoted by S |=t ϕ ⇒∀ ϕ ′, iff for all complete or diverging ⇒T
S -executions τ starting with γ ∈TCfg

and for all ρ : Var → T such that (γ ,ρ) |= ϕ , there exists some γ ′ ∈ τ such that (γ ′,ρ) |= ϕ ′.

We now discuss how the definition above generalizes the usual definition for total correctness found

in the literature.

A Hoare tuple {φ}P{φ ′} is valid in the sense of total correctness if the precondition φ entails

1. the termination of the program P, and also

2. that the postcondition φ ′ holds after the program P terminates.

Our definition of S |=t ϕ ⇒∀ ϕ ′ states that any execution starting from ϕ , terminating or not, reaches

at some point ϕ ′. If we choose ϕ ′ to be a configuration that is known to terminate (e.g., for the case of

IMP, 〈skip Nil | . . .〉), then it follows that ϕ must terminate along all paths. Otherwise, any nontermi-

nating path starting with ϕ would meet ϕ ′, which terminates, leading to a contradiction.

In particular, the total correctness of the Hoare tuple {φ}P{φ ′} is encoded by S |=t P∧φ ⇒∀ 〈skip 

Nil | env〉∧φ ′. In addition to encoding total correctness Hoare tuples, our definition of total correctness

is strictly more general, since it guarantees that ϕ ′ is reached in a finite number of steps from ϕ , even if

ϕ does not terminate.

We now present our transformation θ , which helps reduce total correctness guarantees of the form

S |=t ϕ ⇒∀ ϕ ′ to partial correctness sequents of the form θ(S) ⊢ θ(ϕ ,s) ⇒∀ ∃M.θ(ϕ ′,M), where θ

transforms its arguments as explained in Theorem 3.1 below.

Definition 3.3 (Reduction From Total Correctness to Partial Correctness). We define several homony-

mous maps θ that encode our transformation for reducing total correctness to partial correctness. By

SΣ we denote the class of all algebraic signatures, by S the class of all sorts and by U the class of all

algebras with distinguished sets of configurations.

1. Transforming signatures (θ : (SΣ ×S )→ (SΣ ×S ))

Let Σ = (S,F) be an algebraic signature and Cfg ∈ S. We define θ(Σ,Cfg) = (Σ′,Cfg′), where

Σ′ = (S∪Nat ∪Cfg′,F ∪
{

F(),Nat,F(Cfg,Nat),Cfg′ ,F(Nat,Nat),Nat

}

) and where F(),Nat = {0,1,2, . . . ,} ,

F(Cfg,Nat),Cfg′ = {( ,)} ,F(Nat,Nat),Nat = {+,−,×,/} .



S. Buruiană & S, . Ciobâcă 9

Intuitively, θ adds a sort for the set of naturals and changes the configuration sort such that new

configurations consist of old configurations, plus a natural number. The natural intuitively repre-

sents a program variant that is added to the configuration, i.e. the maximum number of steps the

program can take before ending its execution. In addition to the standard operations +,−,×,/,

we may also consider other operations like | · | : Int → Nat (absolute value) that operate on Nat and

other existing sorts. Alternatively, we could consider any well-founded set instead of the set of

naturals; however, naturals make the presentation easier to follow.

2. Transforming algebras (θ : U → U )

Let A = (A, IA) be a Σ-algebra, where Cfg is the distinguished sort of configurations and assume

θ(Σ,Cfg) = (Σ′,Cfg′). Then θ(A ) = (A′, I′A) is a Σ′-algebra with a distinguished sort Cfg′ defined

as follows:

(a) A ⊆ A′;

(b) N= A′
Nat ∈ A′;

(c) I′A is an extension of IA such that T (n) = nN, T (aδb) = T (aδNb) for δ ∈ {+,−,×,/};

(d) T (Cfg′) = T (Cfg)×N.

Intuitively, each Σ-algebra with a distinguished sort Cfg of configurations is transformed into a

Σ-algebra with a distinguished sort Cfg′. The sort Cfg′ is interpreted as pairs of old configurations

and naturals.

3. Transforming patterns (matching logic formulae) (θ : (PT ×TermΣ,Nat(Var))→ Pθ (T ))

Consider a Σ-algebra T . Let ϕ be a pattern over T and n ∈ TermΣ,Nat(Var) (n is a term of sort

Nat). We define θ as follows:

(a) if ϕ is structureless, then θ(ϕ ,n) = ϕ ;

(b) if ϕ is a basic pattern, then θ(ϕ ,n) = (ϕ ,n) (note that this is the interesting case, as in the

other cases the transformation θ simply applies homomorphically);

(c) if ϕ = (ϕ1 δ ϕ2) and ϕ is not structureless, then θ(ϕ ,n) = θ(ϕ1,n)δ θ(ϕ2,n), for δ ∈ {∨,∧};

(d) if ϕ = δX(ϕ ′) and ϕ is not structureless, then θ(ϕ ,n) = δXθ(ϕ ′,n), for δ ∈ {∃,∀};

(e) if ϕ = ¬ϕ ′ and ϕ is not structureless, then θ(ϕ ,n) = ¬θ(ϕ ′,n).

Intuitively, θ transforms each old basic pattern into a new basic pattern by adding the natural n and

“propagates” this change for all basic patterns contained in the given pattern.

4. Transforming one-path reachability rules (θ : (PT ×PT )→ (Pθ (T )×Pθ (T )))

Let ϕ ⇒∃ ϕ ′ be a reachability rule. Then θ(ϕ ⇒∃ ϕ ′) = θ(ϕ ,n) ⇒∃ θ(ϕ ′,n− 1), where n is a

fresh variable of sort Nat. The transformation forces each rule to decrease the program variant (by

1).

5. Transforming language semantics (θ : 2(PT ×PT ) → 2(Pθ (T )×Pθ (T )))

We define the transformation by θ(S) =
{

θ(ϕ ⇒∃ ϕ ′) | (ϕ ⇒∃ ϕ ′) ∈ S
}

. Each one-path reacha-

bility rule is transformed independently.

We now reduce the problem of total correctness to partial correctness. This is achieved by the fol-

lowing property of the transformation θ defined previously:

Theorem 3.1. If there exists some term s ∈ TermΣ,Nat(Var) of sort Nat such that

θ(S) |= θ(ϕ ,s)⇒∀ ∃M.θ(ϕ ′,M),

where M ∈ VarNat, then S |=t ϕ ⇒∀ ϕ ′.
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Proof. Suppose there exist some valuation ρ : Var → θ(T ), some configuration γ ∈ TCfg with the prop-

erty (γ ,ρ) |= ϕ and a complete or diverging ⇒T
S -execution τ = γ ⇒T

S γ1 ⇒
T
S · · · such that there is no γ ′

in τ for which (γ ′,ρ) |= ϕ ′. Let n = ρ(s). As θ(S) |= θ(ϕ ,s)⇒∀ ∃M.θ(ϕ ′,M), we have, by definition,

that for all complete ⇒
θ (T )
θ (S) -paths τθ = (γθ ,n)⇒

θ (T )
θ (S) (γθ

1 ,n−1)⇒
θ (T )
θ (S) · · · ⇒

θ (T )
θ (S) (γθ

k ,n−k) such that

((γθ ,n),ρ) |= θ(ϕ ,s), there exists some (γθ
p ,n− p) in τθ such that ((γθ

p ,n− p),ρ) |= ∃M.θ(ϕ ′,M).

We distinguish two cases. First, suppose τ is complete and has at most n steps. Consider the path

τθ =(γ ,n)⇒
θ (T )
θ (S) (γ1,n−1)⇒

θ (T )
θ (S) · · ·⇒

θ (T )
θ (S) (γk,n−k). It is easy to see that since τ has at most n steps,

τθ is indeed a valid ⇒
θ (T )
θ (S) -path. Moreover, since τ is complete, it is easy to see that τθ is also complete.

It follows that there exists some (γp,n − p) in τθ such that ((γp,n − p),ρ) |= ∃M.θ(ϕ ′,M). By the

definition of satisfaction, this statement implies that (γp,ρ) |= ϕ ′ and we have obtained a contradiction.

For the second case, we have that τ has more than n steps. Consider the prefix of τ of n steps:

τ ′ = γ ⇒T
S γ1 ⇒

T
S · · · ⇒T

S γn. Consider the ⇒
θ (T )
θ (S) -path τ ′′ = (γ ,n)⇒

θ (T )
θ (S) (γ1,n−1)⇒

θ (T )
θ (S) · · · ⇒

θ (T )
θ (S)

(γn,0). Note that τ ′′ is indeed a valid path in θ(S) and additionally ((γ ,n),ρ) |= θ(ϕ ,s). Moreover, τ ′′

is complete since (γn,0) cannot advance in ⇒
θ (T )
θ (S) .

This means that ((γp,n− p),ρ) |= ∃M.θ(ϕ ′,M) for some value p. It is easy to see from the definition

of satisfaction that this last statement implies (γp,ρ) |= ϕ ′. Since θ(γp,0) is in τ ′′, then γp is in τ ′, which

obviously implies that γp is in τ as well. Therefore, there exists γp in τ for which (γp,ρ) |= ϕ ′.

We have arrived at a contradiction in both cases, from which we draw the conclusion that for all

complete or diverging ⇒T
S -paths τ starting with γ ∈ TCfg such that (γ ,ρ) |= ϕ , there exists some γ ′ in τ

such that (γ ′,ρ) |= ϕ ′. By definition, this means that S |= (ϕ ⇒∀
t ϕ ′), which is what we had to prove.

Corollary 3.1. If there exists s ∈ TermΣ,Nat(Var) of sort Nat such that θ(S) |= θ(ϕ ,s)⇒∀ ∃M.θ(ϕ ′,M),
where M ∈ VarNat, then:

1. S |= ϕ ⇒∀ ϕ ′;

2. If ϕ ′ terminates in S, then ϕ also terminates in S.

The converse of the corollary above, stating that if a partial correctness guarantee holds and ϕ ter-

minates then the total correctness guarantee holds as well, in the cases of finitely-branching transition

systems (this is an immediate consequence of König’s lemma). Given the program SUM in our running

example and the semantics S of IMP, the following sequent can be derived:

θ(S) ⊢ (〈SUM | env1〉,200|z|+200)∧ lookup(m,env1) = z∧ z ≥ 0 ⇒∀

∃M,env2.((〈skip | env2〉,M)∧ lookup(s,env2) = z(z+1)/2),

which proves the total correctness of SUM. A fully worked out example of a proof of total correctness is

given in Appendix B.

4 Related Work

We critically rely on previous work on language-parametric partial program correctness, as developed

in [14]. Starting with the operational semantics of the language of the program for which we prove total

correctness, we transform it into an (artificial) language whose configurations consist of the configura-

tions of the initial language, plus a variant. This construction is automated. Given a program and a

program variant, its total correctness in the original language reduces to showing partial correctness in
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the new language. Language transformations have been used before, for example to develop language-

parametric symbolic execution engines [18] or language-parametric partial equivalence checkers [9].

In general, the research community treats the subject of termination orthogonally to the subject of

partial correctness. There are several automated approaches to proving (and certifying) termination

(e.g., [17, 2, 11, 1]), but these are typically only concerned with termination, and not correctness. There-

fore, to establish total correctness we generally first establish partial correctness by using various Hoare-

like logics (e.g., [7, 15]), and then termination using a specialized termination prover (e.g., [17, 1]).

Logics that prove total correctness directly (e.g., [25, 19]) are used more rarely. This is despite

the fact that relatively recent work in automated termination proving (e.g., [5, 3, 13, 6, 12]) shows that

it is beneficial to use information obtained by proving a program (e.g., invariants) in the termination

argument: in [5], a cooperation graph is used to enable the cooperation between a safety prover and the

rank synthesis tool, in [3], a variance analysis is introduced that is parametric in an invariance analysis

and Ramsey-based termination arguments are improved with lexicographic ordering in [13].

5 Conclusion and Future Work

We have developed a language semantics transformation that can be used to prove total correctness

of programs. The method can be used for any programming language whose operational semantics is

given by a set of reachability rules. This is not a restriction, as any programming language [24] can

be faithfully encoded as such. Moreover, our definition of total correctness (Definition 3.2) generalizes

the usual definition of total correctness, as it can also be used to reason about nonterminating programs

that are guaranteed to reach a desired configuration (which could be nonterminating) in a finite number

of steps. We have implemented our approach in the RMT tool [10, 8]. Instructions on obtaining RMT

are available at at http://profs.info.uaic.ro/~stefan.ciobaca/wpte2018, along with several

examples for total correctness (including our running example). Our examples show that our approach

works in practice, but in future work we must also benchmark realistic languages with reachability logic

semantics such as C (see [16]) or Java (see [4]). A limitation of our approach is that the number of steps

has to be computable upfront. This means that we cannot handle programs that nondeterministically

choose a value and loop for that number of steps. Another limitation is that the upper bound is not found

automatically (even in simple cases), it has to be provided by the user.

There remain many exciting open questions for future work. The main question is proving our reduc-

tion to be complete. We will also study how our notion of total correctness corresponds to the well-known

notions of may-convergence and must-convergence in the literature on process algebra (e.g.,in [23]).

Another open question is whether our generalization of the notion of total correctness has any practical

advantages over the usual definition. In our present approach, the program variant must be a natural

number, but an important question is to analyze whether other well-founded orders could be needed as

well. Another open question is compositionality: instead of providing a program-wide variant, would it

be possible to have a more modular approach? Finally, can we combine our method with existing state

of the art automated termination provers like [6, 12] to obtain the benefits of both?
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STEP

|= ϕ →
∨

ϕl⇒∃ϕr∈S

∃FreeVars(ϕl)ϕl

|= ∃c(ϕ [c/�]∧ϕl[c/�])∧ϕr → ϕ ′ for all ϕl ⇒
∃ ϕr ∈ S

S ,A ⊢C ϕ ⇒∀ ϕ ′

AXIOM

ϕ ⇒∀ ϕ ′ ∈ A

S ,A ⊢C ϕ ⇒∀ ϕ ′

TRANSITIVITY

S ,A ⊢C ϕ1 ⇒
∀ ϕ2 S ,A ∪C ⊢ ϕ2 ⇒

∀ ϕ3

S ,A ⊢C ϕ1 ⇒
∀ ϕ3

CASE ANALYSIS

S ,A ⊢C ϕ1 ⇒
∀ ϕ S ,A ⊢C ϕ2 ⇒

∀ ϕ

S ,A ⊢C ϕ1 ∨ϕ2 ⇒
∀ ϕ

CIRCULARITY

S ,A ⊢
C∪{ϕ⇒∀ϕ ′} ϕ ⇒∀ ϕ ′

S ,A ⊢C ϕ ⇒∀ ϕ ′

ABSTRACTION

S ,A ⊢C ϕ ⇒∀ ϕ ′ X ∩FreeVars(ϕ ′) = /0

S ,A ⊢C ∃Xϕ ⇒∀ ϕ ′

REFLEXIVITY

.

S ,A ⊢C ϕ ⇒∀ ϕ

CONSEQUENCE

|= ϕ1 → ϕ ′
1 S ,A ⊢C ϕ ′

1 ⇒
∀ ϕ ′

2 |= ϕ ′
2 → ϕ2

S ,A ⊢C ϕ1 ⇒
∀ ϕ2

Figure 4: The language-parametric proof system for partial correctness in [14]

A Proof System for Partial Correctness

We recall in Figure 4 the proof system for the problem of partial correctness from [14].

Matching logic formulae can be translated into FOL formulae such that matching logic satisfaction

reduces to FOL satisfaction in the model of configurations T . This allows conventional theorem provers

to be used for matching logic reasoning. One of the proof rules of reachability logic depends on this

translation.

Definition A.1. Let� be a fresh variable of sort Cfg. For a pattern ϕ , let ϕ� be the FOL formula formed

from ϕ by replacing basic patterns π ∈ TermΣ,Cfg(Var) with equalities � = π . If ρ : Var → T and

γ ∈ TCfg then let the valuation ργ : Var∪{�} be such that ργ(x) = ρ(x) for all x ∈ Var and ργ(�) = γ .

We have that

(γ ,ρ) |= ϕ ⇐⇒ ργ |= ϕ�.

We use ϕ [c/�] to denote the FOL formula resulting from eliminating � from ϕ and replacing it with

a Cfg variable c.

The proof system was shown in [14] to be sound (and also relatively complete) for the problem of

partial correctness. Note that, this provides no guarantees for configurations that do not terminate.
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B A Complete Example

In this section, we present in full details a very simple example of how the reduction presented above

work. We consider a very simple “language” with configurations of the form [s, i] (where s and i are

naturals) that add to s the first i positive naturals.

Let Σ = ({Cfg,Nat,Bool} ,F), where:

• F(),Nat = {0,1,2 . . .}

• F(),Bool = {True,False}

• F(Nat,Nat),Nat = {+,−,/,∗}

• F(Nat,Nat),Bool = {<,>,≤,≥,=}

• F(Nat,Nat),Cfg = {[, ]}

We consider a Σ-algebra T with the expected interpretation for common symbols and a system of

reachability rules S consisting of a single rule:

[s, i]∧ (i > 0)⇒ [s+ i, i−1], where s, i ∈ VarNat.

The algebra θ(T ) contains a sort Cfg′ and, by definition, θ(S) consists of the following rule:

([s, i],n)∧ (i > 0)⇒ ([s+ i, i−1],n−1), where s, i,n ∈ VarNat.

For ease of readability let SUM(x,y) = y∗(y+1)/2−(x−1)∗x/2 by notation. Let ϕL = ([SUM(n′+
1,n),n′],n′)∧n′ ≥ 0 and ϕR = ∃m([SUM(1,n),0],m), where n′,n,m ∈ VarNat. Let us now prove that

θ(S) ⊢ ([0,n],n) ⇒∀ ϕR,

which establishes not only that [0,n] computes the sum from 1 to n (by the soundness of reachability

logic), but also that it terminates within n steps (by Theorem 3.1):

14. θ(S),
{

∃n′ϕL ⇒∀ ϕR

}

⊢ ∃n′ϕL ⇒∀ ϕR by Axiom

13. θ(S),
{

∃n′ϕL ⇒∀ ϕR

}

⊢ ([SUM(n′,n),n′−1],n′−1)∧ (n′−1)≥ 0 ⇒∀ ϕR

by Consequence from 14

12. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ([SUM(n′+1,n),n′],n′)∧n′ > 0 ⇒∀

([SUM(n′,n),n′−1],n′−1)∧ (n′−1)≥ 0 by Step

11. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ([SUM(n′+1,n),n′],n′)∧n′ > 0 ⇒∀ ϕR

by Transitivity from 12 and 13

10. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ([SUM(1,n),0],0) ⇒∀ ([SUM(1,n),0],0)

by Reflexivity

9. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ([SUM(1,n),0],0) ⇒∀ ϕR by Consequence from 10

8. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ∃n′(([SUM(n′+1,n),n′],n′)∧n′ > 0)⇒∀ ϕR

by Abstraction from 11

7. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ∃(n′([SUM(n′+1,n),n′],n′)∧n′ = 0)⇒∀ ϕR

by Consequence from 9

6. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ∃n′(([SUM(n′+1,n),n′],n′)∧n′ > 0)∨

∃n′(([SUM(n′+1,n),n′],n′)∧n′ = 0)⇒∀ ϕR by Case analysis from 7, 8

5. θ(S) ⊢{∃n′ϕL⇒∀ϕR} ∃n′ϕL ⇒∀ ϕR by Consequence from 6
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4. θ(S) ⊢ ([0,n],n) ⇒∀ ([0,n],n) by Reflexivity

3. θ(S) ⊢ ∃n′ϕL ⇒∀ ϕR by Circularity from 5

2. θ(S) ⊢ ([0,n],n) ⇒∀ ∃n′ϕL by Consequence from 4

1. θ(S) ⊢ ([0,n],n) ⇒∀ ϕR by Transitivity from 2 and 3

Our approach also works on the programming language IMP described above. We have shown,

for example, that the following program is (unsurprisingly) totally correct (when m starts up with a

nonnegative number):

s := 0

while not (m = 0) do s := s + m; m := m - 1

The main idea in proving the program above totally correct is the same as in the fully developed

example above, but the formal proof is a lot longer.
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