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We present an efficient algorithm for computing the partial bisimulation preorder and equivalence for
labeled transitions systems. The partial bisimulation preorder lies between simulation and bisimula-
tion, as only a part of the set of actions is bisimulated, whereas the rest of the actions are simulated.
Computing quotients for simulation equivalence is more expensive than for bisimulation equiva-
lence, as for simulation one has to account for the so-calledlittle brothers, which represent classes of
states that can simulate other classes. It is known that in the absence of little brother states, (partial
bi)simulation and bisimulation coincide, but still the complexity of existing minimization algorithms
for simulation and bisimulation does not scale. Therefore,we developed a minimization algorithm
and an accompanying tool that scales with respect to the bisimulated action subset.

1 Introduction

A recent process-theoretic approach to supervisory control theory [3] identified partial bisimulation pre-
order [18] as a suitable behavioral equivalence that captures the central notion of controllability [16, 6].
The property of controllability conditions automated synthesis of supervisory control software based on
the discrete-event models of the uncontrolled system and the control requirements. Supervisory con-
trollers ensure safe and nonblocking behavior of the supervised system with respect to a given set of
control requirements. Safe behavior means that the supervised system remains in the domain of the con-
trol requirements, whereas nonblocking behavior is achieved by removing deadlock or livelock [16, 6].

The supervisory controllers observe the discrete behaviorof the uncontrolled system by receiving
sensor signals, make a decision on which activities the system can safely perform, and send back con-
trol signals that actuate the system. Typically, it is assumed that the supervisory controller can react
sufficiently fast on machine input, which enables modeling of the supervisory control loop as a pair of
synchronizing processes. Then, controllability condition states that the supervisory controller must never
disable sensor events, also known as uncontrollable events, in order to achieve the control requirements.
Instead, it can only disable actuator signals, known as controllable events, so that the behavior of the
system remains safely within the bounds of the control requirements and it is nonblocking.

In process-theoretic terms, the model of the uncontrolled system can be viewed as a specification,
whereas the model of the supervised system is an implementation. Then, partial bisimulation preorder is
established in such a way that the specification simulates the controllable events of the implementation,
whereas all reachable states with outgoing uncontrollableevents must be bisimulated in order to ensure
that the supervisory controller does not disabled them. During the synthesis process, the control require-
ments often change as designers develop the product, whereas the model of the uncontrolled system, i.e.,
the hardware, remains fixed. Therefore, it is of interest to minimize the model of the uncontrolled system
with respect to induced partial bisimulation equivalence in order to optimize the synthesis procedure.

The partial bisimulation equivalence is parameterized with a bisimulation action set that identifies
the labels of the transitions that are to be bisimulated. If the bisimulation action set is empty, then
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partial bisimulation equivalence reduces to simulation equivalence [9, 3]. If the bisimulation set com-
prises all action labels, then partial bisimulation equivalence reduces to bisimulation equivalence [9, 3].
For any other bisimulation action set, the corresponding partial bisimulation equivalence lies between
these two equivalences. There exist efficient proposals forminimization algorithms for both simula-
tion [8, 5, 12, 10, 17, 13] and bisimulation equivalences [15, 7, 4]. Suppose that the system to be
minimized has a set of statesS, a transition relation→, a set of action labelsA, and resulting partition
classes contained in partitionP. Then, the most efficient minimization algorithm for simulation has time
complexity ofO(|P||→|) [12], whereas most efficient bisimulation algorithm for bisimulation has time
complexityO(|→| log(|S|)) [15, 7]. Moreover, the minimization algorithm for simulation that offers
the best compromise between time and space complexity has time complexity ofO(|P||S| log(|S|)) and
space complexity ofO(|S| log(|P|)+ |P|2) [17, 13].

The discrepancy between the minimization algorithms for bisimulation and simulation lies in the fact
that for simulation, one has to additionally account for theso-called little brother relation, which relates
partition classes that can simulate each other [8]. It has been shown that if the little brother relation is
empty, then simulation and bisimulation actually coincide[4, 2]. However, if we observe the complexi-
ties of the minimization algorithms, we can easily observe that the algorithms do not scale accordingly.
This is the result of computing the state space partition andthe little brother relation simultaneously in
order to increase overall time efficiency [17]. When dealingsolely with simulation, this proves a valid
strategy. However, for partial bisimulation, we propose todecouple the computation of the underlying
partition from the updating the little brother relation, thus obtaining a scalable implementation. For the
former, we employ techniques from bisimulation minimization [15, 7], while for the latter we rely on the
representation of the little brother relation of [13]. The resulting minimization algorithm has worst-case
time complexity ofO(|→| log(|S|)+ |A||P||⊑|), where⊑ is the little brother relation, while having a
space complexity ofO(|A||S| log(|P|)+ |A||P|2 log(|P|). We note a slight increase of space complexity
with respect to [17, 13] as we employ an additional set of counters that optimize the partition splitting in
the vein of [15, 7].

The rest of this paper is organized as follows. In section 2, we revisit the notion of partial bisimulation
and discuss an alternative representation in the form of a partition-relation pair. Afterwards, in section
3 we develop a refinement for partition-relation pairs that results in the coarsest partial bisimulation
quotient. We discuss the implementation of the algorithm insection 4 and finish with concluding re-
marks. We note that a prototype implementation of the algorithm can be downloaded from [14], whereas
technical details and proofs are given in [2].

2 Partial Bisimulation and Partition-Relation Pairs Representation

The underlying model that we consider is labeled transitions systems (with successful termination op-
tions) following the notation of [1, 3]. A labeled transition systemG is a tupleG, (S,A, ↓,→), whereS
is a set of states,A a set of event labels,↓ ⊆ S is a successful termination predicate that takes the role of
marked or final states in supervisory control setting [16, 6,3], and→⊆ S×A×S is the labeled transition
relation. Forp,q∈ S anda∈ A, we writep

a
→q andp↓.

Definition 1 A relation R⊆ S×S is a partial bisimulation with respect to the bisimulation action set B⊆
A, if for all (p,q) ∈ R it holds that:

1. if p↓, then q↓;

2. if p
a
→ p′ for some a∈ A, then there exists q′ ∈ S such that q

a
→q′ and(p′,q′) ∈ R;
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Figure 1: Partial bisimulation example

3. if q
b
→q′ for some b∈ B, then there exists p′ ∈ S such that p

b
→ p′ and(p′,q′) ∈ R.

If (p,q) ∈ R, then p is partially bisimilar to q, notation p≤B q. If q≤B p holds as well, we write p↔B q.

It is not difficult to show that≤B is a preorder relation, making↔B an equivalence relation for all
B ⊆ A [3]. If B = /0, then≤ /0 coincides with strong similarity preorder and↔ /0 coincides with strong
similarity equivalence [9, 1]. WhenB= A, ↔A turns into strong bisimilarity [9, 1].

Example 1 To provide better intuition, we consider the labeled transition systems depicted in Figure 1.
Following Definition 1, if B= {a,b,c}, then we are looking to establish bisimulation between the labeled
transition systems F and G, which is not possible. If B⊆ {b}, then we have F↔B G. For B= {c}, we
cannot establish that F≤B G as the right branch of G has no outgoing transition labeled by c, whereas
it is required that this transition is (bi)simulated back inthe partial bisimulation relation.

An important role in simulation-like relations is played bythe so-called little brother state pairs [8, 17].
Little brother state pairs identify states reachable in an equivalent manner, where one state has strictly
greater behavior with respect to the underlying relation. We say thatp′ is the little brother ofp′′ if p

a
→ p′

andp
a
→ p′′ with p′≤B p′′. For example, the states reachable by the transition labeled bya in the labeled

transition systemG in Figure 1 represent a little brother pair, provided thatc 6∈ B.
If there are no little brother pairs in a simulation relation, then the related processes are actually

bisimilar [4, 3]. The greatest challenge in minimization procedures for simulation-based relations lies in
efficient treatment of the little brother pairs [8, 17, 4, 13]. The following theorem of [3, 2] shows how to
address little brother pairs for partial bisimilarity.

Theorem 1 Let p1≤B p2≤B p3 for p1,p2,p3 ∈ S, and let a∈ A\B and b∈ B for B⊆ A.

1. If q1,q2 ∈ S are such that q1
a
→ p1, q1

a
→ p2, and q2

a
→ p2, then q1↔B q2.

2. If q1,q2 ∈ S are such that q1
b
→ p1, q1

b
→ p2, q1

b
→ p3, q2

b
→ p1, and q2

b
→ p3, then q1↔B q2.

Intuitively, Theorem 1 states that for controllable events, retaining the biggest brother is sufficient,
whereas for uncontrollable events, both the littlest and the biggest brother must be preserved.

To optimize the computation of the little brother pairs, in the sequel we represent partial bisimilarity
preorders by means of partition-relation pairs [8]. The partition identifies equivalent states by partial
bisimilarity, which are placed into the same classes, whereas the relation, given between the partition
classes, identifies the little brother pairs in the partition, thus forming the quotient. LetG= (S,A, ↓,→)
and letP ⊂ 2S. The setP is a partition overS if

⋃
P∈PP = S and for allP,Q ∈ P, if P∩Q 6= /0, then

P = Q. A partition-relation pair overG is a pair(P,⊑) whereP is a partition overS and the (little
brother) relation⊑⊆ P×P is a partial order, i.e., a reflexive, antisymmetric, and transitive relation. We
denote the set of partition-relation pairs byR.

The partition classes induce several (Galois) relations relying on↓ and→ [8]. For all P∈ P, we have
thatP↓ or P6 ↓, if for all p∈ P it holds thatp↓ or p6 ↓, respectively. For allP′ ∈ P by p

a
→P′ we denote
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that there existsp′ ∈ P′ such thatp
a
→ p′. Moreover, byP

a
→∃ P′ we denote that there existsp∈ P such

that p
a
→P′, and byP

a
→∀ P′ we denote that for everyp∈ P, it holds thatp

a
→P′. It is straightforward that

P
a
→∀ P′ impliesP

a
→∃ P′. Also, if P

a
→∀ P′, thenQ

a
→∀ P′ for everyQ⊆ P.

To relate partial bisimulation preorders and partition-relation pairs, we rely on stability conditions
which must hold for a given pair, so that it induces a partial bisimilarity preorder with respect to the
termination predicate and the transition relation. Vice versa, we show that every partial bisimulation
preorder induces a stable partition-relation pair. To thisend, we define by⊑P,

⋃
{Q∈ P | Q⊑P} and

P⊑ ,
⋃
{Q∈ P | P⊑Q} all little and big brother classes of the partition classP∈ P, respectively. Also,

given a relationR∈ S×T on some setsS andT, we defineR−1 ∈ T ×SasR−1 , {(t,s) | (s, t) ∈ R}.
Moreover, we note that if a given relationR is a preorder, thenR∩R−1 is an equivalence relation. If↔
is an equivalence overS, thenS/↔ denotes the induced partition, whereas[p]↔ is the partition class of
p∈ S. First, we define the stability conditions that ensure that apartition-relation pair induces a partial
bisimulation preorder.

Definition 2 Let G= (S,A, ↓,→) be a labeled graph. We say that(P,⊑) ∈ R over G is stable (with
respect to↓, →, and B⊆ A) if the following conditions are fulfilled:

a. For all P∈ P, it holds that P↓ or P 6 ↓.

b. For all P,Q∈ P, if P⊑Q and P↓, then Q↓.

c. For all P,Q,R∈ P and a∈ A, if P⊑Q and P
a
→∃ R, then Q

a
→∀ R⊑.

d. For all P,Q,R∈ P and b∈ B, if P⊑Q and Q
b
→∃ R, then P

b
→∀ ⊑R.

Having in mind Definition 1, conditionsa andb require that partially bisimilar equivalent states must
have the same termination options, whereas big brothers must be able to terminate if the little brother
is able to terminate. Conditionc corresponds to the stability condition for simulation [8, 17, 13] and it
states that if a little brother can perform a transition labeled by a ∈ A, then the big brother must also
enable such a transition, possibly ending in a big brother ofthe target class. Conditiond is actually
induced by Theorem 1 and it states that every little brother must be able to follow transitions labeled by
b∈ B that are enabled by a big brother, possibly ending in a littlebrother of the target class.

Next, we show that every partial bisimulation preorder induced a stable partition-relation pair [2].

Theorem 2 Let G= (S,A, ↓,→) and let R be a partial bisimulation preorder overS with respect to
B ⊆ A. Let ↔B , R∩R−1. If P = S/↔B and ⊑ ⊆ P×P are such that for all(p,q) ∈ R it holds
[p]↔B ⊑ [q]↔B, then(P,⊑) ∈ R is stable.

Vice versa, stable partition-relation pairs induce partial bisimulation preorders.

Theorem 3 Let G= (S,A, ↓,→) and (P,⊑) ∈ R. Define R= {(p,q) ∈ P×Q | P⊑Q}. If (P,⊑) is
stable, then R is a partial bisimulation preorder for B.

Theorems 2 and 3 enable us to refine partition-relation pairsinstead of dealing directly with the par-
tial bisimulation preorder. We specify a fix-point refinement operator that induces the coarsest stable
partition-relation pair that induces the greatest partialbisimulation preorder and equivalence.

3 Refinement Operator

To define the refinement operator, we need to specify when we consider one partition-relation pair to be
finer than another pair. Moreover, finer stable partition-relation pairs should correspond to finer induced
partial bisimulation preorders.
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Definition 3 Let(P,⊑) and(P′,⊑′) be partition-relation pairs. We say that(P,⊑) is finer than(P′,⊑′),
notation(P,⊑)⊳ (P′,⊑′), if and only if for all P,Q∈ P such that P⊑Q there exist P′,Q′ ∈ P′ such that
P⊆ P′, Q⊆ Q′, and P′⊑′ Q′.

The relation⊳ as given in Definition 3 is a partial order [2]. The following theorem states that coarser
partition-relation pairs with respect to⊳ produce coarser partial bisimulation preorders.

Theorem 4 Let G= (S,A, ↓,→) and(P1,⊑1), (P2,⊑2) ∈ R. Define Ri = {(pi ,qi) ∈ Pi ×Qi | Pi ⊑i Qi}
for i ∈ {1,2}. Then(P1,⊑1)⊳ (P2,⊑2) if and only if R1 ⊆ R2.

For the refinement operator to contain a unique fix point, we have to establish a confluence property, i.e.,
for every two stable partition pairs of the same graph, thereexists a⊳-coarser stable partition pair.

Theorem 5 Let G= (S,A, ↓,→) and let(P1,⊑1), (P2,⊑2) ∈ R be stable partition pairs. Then, there
exists(P3,⊑3) ∈ R that is also stable, and(P1,⊑1)⊳ (P3,⊑3) and(P2,⊑2)⊳ (P3,⊑3).

Theorem 5 implies that stable partition pairs form an upper lattice with respect to⊳. Now, it is not
difficult to observe that finding the⊳-maximal stable partition pair over a labeled graphG coincides
with the problem of finding the coarsest partial bisimulation preorder overG.

Theorem 6 Let G= (S,A, ↓,→). The⊳-maximal(P,⊑) ∈ R that is stable is induced by the partial
bisimilarity preorder≤B, i.e.,P= S/↔B and [p]↔B ⊑ [q]↔B if and only if p≤B q.

Theorem 6 supported by Theorem 5 induces an algorithm for computing the coarsest mutual partial
bisimulation over a labeled transition systemG = (S,A, ↓,→) by computing the⊳-maximal partition
pair(P,⊑) such that(P,⊑)⊳({S},{(S,S)}). We develop an iterative algorithm that refines this partition
pair, until it reaches the⊳-maximal stable partition pair.

The algorithm works in two phases. First, we refine the partition, followed by an update of the
partition pair. We refine the partitions by splitting them inthe vein of [15, 7, 4], i.e., we choose subsets
of states, referred to as splitters, that do not adhere to thestability conditions in combination with the
other states from the same class and, consequently, we placethem in a separate class. To this end we
distinguish between parent partitions and child partitions, the former comprising the potential splitters,
whereas the latter hold the result of the current application of the refinement algorithm.

Let (P,⊑) ∈ R be defined overS. PartitionP′ is a parent partition ofP, if for every P ∈ P, there
existP′ ∈ P′ with P⊆ P′. The relation⊑ induces a little brother relation⊑′ onP′, defined byP′⊑′ Q′

for P′,Q′ ∈ P′, if there existP,Q∈ P such thatP⊆ P′, Q⊆ Q′, andP⊑Q. Let S′ ⊆ P′ for someP′ ∈ P′

and putT ′ = P′ \S′. The setS′ is a splitter ofP′ with respect toP, if for every P⊆ P′ eitherP⊆ S′ or
P∩S′ = /0, whereS′ ⊑′ T ′ or S′ andT ′ are unrelated. The splitter partition isP′ \ {P′}∪ {S′,T ′}. By
Definition 3, we have that(P,⊑)⊳ (P′,⊑′). Note thatP′ contains a splitter if and only ifP′ 6= P.

Now, we can define a refinement fix-point operator SB. It takes as input(Pi ,⊑i) ∈ R and an induced
parent partition pair(P′

i ,⊑
′
i), with (Pi ,⊑i)⊳ (P′

i ,⊑
′
i), for somei ∈ N, which are stable with respect to

each other. Its result are(Pi+1,⊑i+1) ∈ R and parent partitionP′
i+1 such that(Pi+1,⊑i+1)⊳ (Pi ,⊑i) and

(P′
i+1,⊑

′
i+1)⊳ (P′

i ,⊑
′
i). Note thatP′

i andP′
i+1 differ only in one class, which is induced by the splitter

that we employed to refinePi toPi+1. This splitter comprises classes ofPi , which are strict subsets from
some class ofP′

i . The refinement stops, when a fix point is reached form∈ N with Pm = P′
m. In the

following, we omit partition pair indices, when clear from the context.
Suppose that(P,⊑) ∈ R hasP′ as parent with(P,⊑)⊳ (P′,⊑′), where⊑′ is induced by⊑. Con-

dition a of Definition 2 requires that all states in a class have or, alternatively, do not have termination
options. We resolve this issue by choosing a stable initial partition pair, fori = 0, that fulfills this condi-
tion, i.e., for all classesP∈ P0 it holds that eitherP↓ or P6 ↓. For conditionb, we specify⊑0 such that
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P⊑0 Q with P↓ holds, only ifQ↓ holds as well. Thus, following the initial refinement, we only need to
ensure that stability conditionsc andd are satisfied. For convenience, we rewrite the stability conditions
for (P,⊑) with respect to the parent partition pair(P′,⊑′). Each condition is replaced by two stability
conditions, one ensuring stability of the partition and theother dealing with the little brother relation.

Definition 4 Let (P,⊑) ∈ R and let(P′,⊑′) be its parent partition pair, where for all P′ ∈ P′ either P′ 6 ↓
or P′↓. Then,(P,⊑) is stable with respect toP′ and B⊆ A, if:

1. For all P∈ P, a∈ A, and R′ ∈ P′, if P
a
→∃ R′, then P

a
→∀ R′

⊑′ .

2. For all P∈ P, b∈ B, and R′ ∈ P′, if P
b
→∃ R′, then P

b
→∀ ⊑′R′.

3. For all P,Q∈ P, a∈ A, P′ ∈ P′, if P⊑Q and P
a
→∀ R′, then Q

a
→∀ R′

⊑′ .

4. For all P,Q∈ P, b∈ B, R′ ∈ P′, if P⊑Q and Q
b
→∀ R′, then P

b
→∀ ⊑′R′.

It is not difficult to observe that stability conditions 1-4 replace stability conditionscandd of Definition 2.
They are equivalent whenP= P′, which is the goal of our fix-point refinement operation. Fromnow on,
we refer to the stability conditions above instead of the ones in Definition 2. The form of the stability
conditions is useful as conditions 1 and 2 are used to refine the splitters and they are employed in the
first phase of the algorithm, whereas conditions 3 and 4 are used to adjust the little brother relation and
they are employed in the second phase. We note that if the conditions of Definition 4 are not fulfilled for
(P,⊑)⊳ (P′,⊑′), then the partition pair(P,⊑) is not stable.

Now, we have all the ingredients need to define the fix-point refinement operator SB (for a given
bisimulation action setB⊆ A). We define SB(P,⊑,P′,S′) = (Pr ,⊑r), where(Pr ,⊑r) is the coarsest par-
tition pair(Pr ,⊑r)⊳(P,⊑) that is stable with respect to the (new) parent partitionP′ \{P′}∪{S′,T ′} and
the stability conditions of Definition 4. The existence of the coarsest partition pair(Pr ,⊑r) is guaranteed
by Theorems 5 and 6. Next, we have to show that once a stable partition pair is reached, it is no longer
refined, and that⊳-order is preserved by the refinement operator.

Theorem 7 Let G= (S,A, ↓,→) and let(P,⊑) ∈ R overS be stable. For every parent partitionP′ such
thatP′ 6= P and every splitter S′ of P′ with respect toP, it holds thatSB(P,⊑,P′,S′) = (P,⊑).

When refining two partition pairs(P1,⊑1)⊳ (P2,⊑2) with respect to the same parent partition and split-
ter, the resulting partition pairs are also related by⊳.

Theorem 8 Let (P1,⊑1),(P2,⊑2) ∈ R be such that(P1,⊑1)⊳ (P2,⊑2). LetP′ be a parent partition of
P2 and let S′ be a splitter ofP′ with respect toP2. ThenSB(P1,⊑1,P

′,S′)⊳SB(P2,⊑2,P
′,S′).

Now, taking into account Theorems 5 – 8, we have that iterative application of the refinement operator
ultimately produces the coarsest stable partition pair.

Theorem 9 Let(Pc,⊑c) be the coarsest stable partition pair of G. There exist partitionsP′
i and splitters

S′i for i ∈ {1, . . . ,n} such thatSB(Pi ,⊑i,P
′
i ,S

′
i) are well-defined withPn = P′

n and(Pn,⊑n) = (Pc,⊑c).

We can summarize the high-level algorithm for computing thecoarsest partition pair in Algorithm 1.
The computation of the initial partition involves partitioning states to classes according to their outgoing
transitions and terminations options in the vein of [13, 4].The algorithm implements the refinement
steps by splitting a parentP′ ∈ P′ to S′ andP′ \S′ and, subsequently, splits every class inP with respect
to the splitterS′ in order to satisfy the stability conditions in the vein of [7, 15]. The little brother relation
is adapted in the vein of [13, 2], by revisiting the little brothers of every partition class and adapting them
with respect to the latest splitting. The quotientG/(⊑∩⊑−1) has classesP∈ P instead of states. The
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Algorithm 1: Computing the coarsest stable partition pair forG= (S,A, ↓,→) andB⊆ A

1 Compute the initial partition(P,⊑) with respect toP′ = {S} and⊑′ = {(S,S)};

2 while P 6= P′ do
3 Find a splitterS′ for P′ w.r.t. P;
4 P′ := P′ \ {P′}∪{S′,P′ \S′};
5 Update⊑′;
6 RefineP such that it is stable w.r.t.P′ and conditions 1 and 2 of Definition 4;
7 Refine⊑ such that it is stable w.r.t.⊑′ and conditions 3 and 4 of Definition 4;

8 Compute the quotientG/(⊑∩⊑−1);

Case Original system Minimization by bisimulation Minimization by simulation
Name States Trans States Trans ExecTime(ms)States Trans ExecTime(ms)
CABP 464 1632 291 90 19 175 87 31
LIFT 9918 4312 1299 484 235 1224 469 406
1BIT 496128 81920 42723 7047 76293 9990 2628 162930

Table 1: Experimental evaluation of the scalability of the algorithm for bisimulation and simulation

termination predicate is induced by the class termination predicate asP↓ or P 6 ↓ for everyP ∈ P. The
transition relationP

a
→Q is defined according to Theorem 1. Fora 6∈ B we have thatP

a
→Q, if P

a
→∀ Q

and there does not existR 6= Q with Q⊑R such thatP
a
→∀ R. Forb∈ B we have thatP

b
→Q, if P

b
→∀ Q

and there do not exist bothR1,R2 6= Q with R1⊑Q⊑R2 such thatP
b
→∀ R1 andP

b
→∀ R2.

4 Discussion on the Implementation and Concluding Remarks

For the computation of the initial partition, we employ the splitting procedure in the vein of [4], while
ensuring that the little brother relation is consistent with the outgoing transitions and termination op-
tions [13, 2]. We implement the first phase of the algorithm that searches for a splitter and computes the
stable partition with respect to stability conditions 1 and2 of Definition 4 in the vein of [15, 7]. Thus, we
employ the “process the smaller half principle” [15] as it isdone for bisimulation relations [4, 7]. This
phase of the algorithm has the same time complexity as for bisimulation, i.e.,O(|→ | log|S|) [15, 7, 4].

For efficient updating of the little brother relation, we give alternative representations of the sets⊑′P′

andP′
⊑′ for everyP′ ∈ P′, which are required to enforce conditions 3 and 4 of Definition 4. The little

brother relation⊑ is kept per partition class in the form of linked lists, whereas for⊑′, we use a counter
cnt⊑(P′,Q′) that keeps the number of pairs(P,Q) for P,Q ∈ P such thatP ⊆ P′, Q ⊆ Q′, P 6= Q, and
P⊑Q [13]. We keep only one Galois relation→∃∀ =→∀ ∪→∃ and a counter cnt∀(P,a,P′) for P ∈ P,
P′ ∈ P′ anda∈A, where cnt∀(P,a,P′) keeps the number ofQ′ ∈P′ with P′⊑′ Q′ andP

a
→∀Q′ [17, 13]. In

this way we can check the conditions of Definition 4 efficiently and deduce whetherP
a
→∃ P′ or P

a
→∀ P′

whenever needed. The updating of the little brother relation has time complexity ofO(|A||P|| ⊑ |) as
the little brothers are updated per label in at most|P| iterations of the algorithm. For space complexity
we requireO(|⊑ |) for the little brother relation,O(|A||P|2 log(|P|)) is needed for the counters related to
the little brother relation [17, 13], whereas in addition werequireO(|A||S| log(|P|)) for counters need to
refine the partition [8, 7], which amounts toO(|S| log(|P|)+ |A||P|2 log(|P|)).

Finally, we implemented the algorithm [14], and we tested itby setting the bisimulation action set
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to be empty and comprise all action labels and, afterwards, we compared the results with known the
simulation and bisimulation minimization tools of the mCRL2 tool suite [11], respectively.

To demonstrate the scalability of the algorithm, in Table 1,we present experimental results for mini-
mization with respect to bisimulation and simulation equivalences of three case studies readily available
in the mCRL2 tool suite [11]: (1) the concurrent alternatingbit protocol (CABP), (2) an industrial system
for lifting trucks (LIFT), and (3) the onebit sliding windowprotocol (1BIT). It is directly observed that
the minimization by bisimulation is much more time-effective. The prototype implementation, however,
relies on linked lists, which overhead reflects into the execution time for minimization by bisimulation.
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