
C. Andrés and L. Llana (Eds.): 2nd Workshop on Formal
Methods in the Development of Software 2012 (WS-FMDS 2012).
EPTCS 86, 2012, pp. 33–40, doi:10.4204/EPTCS.86.5

c© A. Bollin, A. Tabareh
This work is licensed under the
Creative Commons Attribution License.

Predictive Software Measures based on Z Specifications –
A Case Study

Andreas Bollin
Software Engineering and Soft Computing

University of Klagenfurt
Klagenfurt, Austria

Andreas.Bollin@aau.at

Abdollah Tabareh
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

tabareh@gmail.com

Estimating the effort and quality of a system is a critical step at the beginning of every software
project. It is necessary to have reliable ways of calculating these measures, and, it is even better
when the calculation can be done as early as possible in the development life-cycle.

Having this in mind, metrics for formal specifications are examined with a view to correlations
to complexity and quality-based code measures. A case study, based on a Z specification and its
implementation inADA, analyzes the practicability of these metrics as predictors.

1 Introduction

Recent studies in the areas of software metrics and project management have stimulated a lot of ideas
of how development effort can be estimated and which metricsare of relevance [9, 15, 19]. Basically,
they all suggest that the collection of data and the estimation process should be performed as early and
as objectively as possible – so why not taking a closer look atproperties of formal specifications?

To the best of our knowledge, the only publicly available case study that took a closer look at cor-
relations between specifications and implementations was conducted by Samson, Nevill and Dugard in
1987 [17]. The authors used Modula-2 modules and a HOPE specification to show that there is a corre-
lation between the number of equations in HOPE and the numberof lines of source code and cyclomatic
complexity in the Modula-2 modules. However, the authors admit that the study is relatively small-scale
as their data is based on only 9 experimental subjects.

The objective of this paper is now to shed some more light ontothe question whether specifications’
properties can help predicting attributes of derived implementations or not. For this, the following strat-
egy is pursued: firstly, based on a set of well-known measures, it tries to find out whether some of the
measures are correlated or not. Secondly, it suggests a prediction model for some of the measures. A
case study, based on the specification and implementation ofthe Tokeneersystem [5] forms the basis
for these considerations. It takes the Z specification of thesystem and its implementation inADAas the
point of departure and identifies those parts of the code thatunambiguously implement specific parts of
the specification. After that, it calculates size, structure and quality related measures for both of the doc-
uments. Finally, it looks for correlations between the measures, and, based on the findings, it calculates
a prediction model for severalADA-based size- and complexity-related measures.

This paper is structured as follows: Section 2 briefly introduces the code and specification measures
that are used in the study. Section 3 presents the setting of the study, the experimental subject and the
statistical tests used. Next, Section 4 presents and discusses the results of the correlation tests, and
Section 5 presents the prediction model. Section 6 discusses possible threats to validity, and, finally,
Section 7 summarizes the findings and discusses possible steps to be done next.

http://dx.doi.org/10.4204/EPTCS.86.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

34 Predictive Software Measures based on Z Specifications – A Case Study

2 Measures

This section introduces the measures used for assessing theZ specification and its implementation in
ADA. Please note that, due to limitations of space, only a brief overview of the measures is provided1.

2.1 Code-based Measures

The implementation language of theTokeneerspecification [5] isADA. In his master thesis, Tabareh
[20] took a look at currently available environments that are able to generate practical measures from
ADAcode. He suggests to apply theUnderstandtool and uses the following measures (whereM denotes
either anADA function or a procedure)2 for a preliminary study comparing ADA and Z-based measures:

• CountLineCL(M). It counts the number of physical lines.
• CountLineCodeCLC(M). It counts the number of lines that contain source code.
• CountLineExecutableCLCE(M). It counts the number of lines containing executableADAcode.
• CountLineCodeDeclCLCD(M). It count the number of lines containing declarativeADAcode.
• Knots CountKNOTS(M): It is a measure for the structuredness of a module and countsoverlapping

jumps in the program flow graph.
• Cyclomatic ComplexityCYC(M). It measures the maximum number of linearly independent paths

through a program and is extracted by counting the minimum set of paths which can be used to
construct all other paths through the graph.

In order to focus even more on structural properties of the code, this study additionally makes use of
Shepperd and Ince’s Information flow count [18]. The generalidea is that the complexity of a module is
related to the number of flows or channels of information between the module and its environment. For
this, theUnderstandtool can be used to generate the call-graph, and the flow of data and control then
forms the basis for the calculation of the Sheppard Information FlowSI of a moduleM:

• Fan-in (FIN(M)): It comprises the number of data-flows terminating at a componentM.
• Fan-out (FOUT(M)): It comprises the number of data-flows originating at a componentM.
• Information Flow(SI(M)): It comprises the number of information flows related to a component

M and is calculated via(FIN(M)∗FOUT(M))2.

2.2 Specification Measures

Most of the complexity measures for formal specifications focus on size. The reasons are that size-based
measures (like lines of specification text) are easy to calculate and yield a single number that is easy to
interpret. This is not so much the case for structure- and quality-related measures. Their calculation is
usually based on the notion of control and data dependencies, concepts that are not necessarily dom-
inant principles of a specification language. However, several authors [4, 12, 13] demonstrated that a
reconstruction of these dependencies is possible.

Recently, Bollin showed that coupling and cohesion based measures can reasonably be mapped to
formal Z specifications [3]. The basis for the calculation ofall the measures is a graph that contains
vertices (calledprimes) for all predicates and declarations of the specification,and arcs representing
(reconstructed) control and data dependencies [2]. With such a graph as a basis, the following measures
(defined for schemasψ that are part of a specificationsΨ) are used in the remainder of this work:

1An in-depth discussion of other specification-based measures can be found in the Ph.D. thesis of Bollin [1].
2The tool and a description of the measures can be found at the Understand homepage at www.scitools.com. Page last

visited: May 2012.

A. Bollin, A. Tabareh 35

• Conceptual ComplexityCC(ψ): The conceptual complexity equals the total number of prime
vertices in the graph (representing a schemaψ).

• Logical Complexityv′(ψ) = (l,u): The lower bound valuel of the measure is 1 plus the number
of primes that are terminal vertices of control dependency arcs. It can be compared to counting
the number of decision statements in programs. The upper bound valueu equals 1 plus the total
number of control dependencies. It reflects the total amountof dependencies to be considered.

• Definition-Use Count:DU(ψ): This measure equals the total number of data dependencies.
• Use CountUSE(ψ): The use count equals the number of identifiers used in the schemaψ .
• Definition CountDEF(ψ): The definition count equals the number of identifiers referring to an

after state in the schemaψ of the specification.
• And-CountAND(ψ): This measure equals the number of AND-combined predicatesin ψ .
• Or-CountOR(ψ): This measure equals the number of OR-combined predicates in ψ .

Semantics-based measures can be calculated by generating slices. The idea goes back to the work
of Weiser [21] who introduced five slice-based measures for cohesion: Tightness, Coverage, Overlap,
Parallelism and Clustering. Ott and Thuss [14] partly formalized these measures. Coupling, on the other
hand, was originally defined as the number of local information flow entering (fan-in) and leaving (fan-
out) a procedure [8]. Harman et. al [7] demonstrate that it can also be calculated via slicing. Mapping
and evaluating their approaches to Z leads to the following set of quality-based specification metrics [3]:

• Coverage Cov(ψ): It measures the compactness of a schema by comparing the length of all possi-
ble slices to the length of the specification schemaψ .

• Overlap O(ψ): It measures the conciseness of a schemaψ by counting those statements that are
common to all of the possible slices and relates the number tothe size of all slices.

• Schema Couplingχ(Ψ,ψi): It is the weighted measure of the information flow between a given
schemaψi and all other schemas inΨ.

3 The Study

The study is split into two parts and it aims at answering the following two questions: (a) what type of
correlations exists between specification-based and code-based measures, and (b) is it possible to predict
code-based measures from specification-based measures?

The Tokeneer system [5] is one of the rare, industrial-size and publicly available, formal Z specifi-
cations that comes along with a fully derived implementation. It has been developed by Praxis and the
NSAand provides a specification for an identification station consisting of a fingerprint reader, a display
and a card reader. The code, written inADA, consists of 11,807 lines of executableADA code (34,769
lines including comments). The exceptional feature of theADAfiles is that they contain so-called “trace
unit” comments which are direct links to the corresponding sections in the formal design document, thus
linking specification text (schemas) and implementation code pairs (procedures and functions) unam-
biguously together. The Z specification consists of 11,356 lines of text, including 4,808 lines of spec-
ification text. The specification itself contains 3,295 declarations and predicates, it contains 132,088
control dependencies and 6,145 data-dependencies.

The subjects for this study are set of pairs of code modules (procedures and functions) and their
related Z specification (schemas)3. However, the mapping is not always one-to-one, and it is also not

3The set of experimental subjects can be found in an Appendix (containing relevant background materials) at theViZ [2]
homepage via the link http://viz.uni-klu.ac.at/images/research/materials/fmds12-addon.pdf. Page last visited:May 2012.

36 Predictive Software Measures based on Z Specifications – A Case Study

total. There are a couple of trace-units that do not have a corresponding part in the implementation, and
there are also links to trace-units that are non-existent. Thus, as a first step in the preparation phase of this
study, a small script was written for matching the references and units automatically, sorting out spelling
errors and dangling links. Then, the result of the mapping has been verified and cross-checked by hand.
This process yielded 70 units with a traceable transformation of Z code toADAcode.

The first part of the study deals with the question of relatedness between specification-code pair mea-
sures. As we do not know whether the measures are normally distributed, three different statistical tests
are used to assess the data: the Pearson’s Correlation Coefficient, the Spearman’s Rank Correlation Co-
efficient, and Kendall’s Tau Correlation Coefficient. The Pearson’s correlation coefficient (RP) measures
the degree of association between the variables, assuming normal distribution of the values [16, p. 212].
Though this test might not necessarily fail when the data is not normally distributed, the Pearson’s test
only looks for a linear correlation. It might indicate no correlation even if the data is correlated in a non-
linear manner. As the data might not be normally distributed, the Spearman’s rank correlation coefficient
(RS) has been chosen [16, p. 219]. It is a non-parametric test of correlation and assesses how well a
monotonic function describes the association between the variables. This is done by ranking the sample
data separately for each variable. Finally, the Kendall’s robust correlation coefficient (RK) is used as an
alternative to the Spearman’s test [6, p. 200]. It is also non-parametric and investigates the relationship
among pairs of data. However, it ranks the data relatively and is able to identify partial correlations.

When a value of| R | ∈ [0.8, 1.0] then it is interpreted to indicate astrong association. When| R | ∈
[0.5, 0.8) it is interpreted to indicate amoderate association. When| R | ∈ [0.0, 0.5) it is interpreted to
indicate aweak association(values rounded to the third decimal place).

4 Correlation Tests

After data preparation, the study looked for linear or at least partial correlations between the sets of
measures. At first, classical size-based measures are considered, and Table 1 (upper part) summarizes
the results. The p-values for testing the hypothesis of no correlation against the alternative that there is a
nonzero correlation are less than 0.05 for all tests. The table also shows that there is a moderateto strong
relation betweenCC(ψ) and the measures ofCL(M), KNOTS(M) andFOUT(M). The correlation val-
ues of the tests are quite similar, but there are a couple of exceptions. Compared to the Pearson test, the
Spearman’s rank test shows a higher correlation between most of the size-based measures and the Count
Line DeclarativeCLCD(M) measure, indicating that there might be a non-linear correlation between
them. However, the Kendall’s test shows weak correlation for most of the measures again. A similar
situation can be observed for the measure ofFIN(M). Here, the Spearman test shows a slightly higher
correlation than the other two tests, but it still falls intothe weak association class. Interesting are the
differences between the tests for theSI(M) measure. The correlation to the size-based measures is not
strong, butSI(M) is calculated by also using the square ofFOUT(M), and this non-linear tendency can
be seen in the slightly higher values of the Spearman tests. And yet another issue can be observed: cy-
clomatic complexity is (although only moderately) influenced by the number of logical OR connections
in the specification. As cyclomatic complexity is related tothe number of paths through the program,
this observation seems also to be consistent to the use of or-combined predicates in a Z specification.

In a second step, structure-based measures have been lookedat. Table 1 (lower part) summarizes
the results. Again, the p-values are less than 0.05 for all tests. The correlations are not as strong as
with the pure size-based measures – with one exception: the structure-based measures seem to strongly

A. Bollin, A. Tabareh 37

Pearson CorrelationRP, n= 70, p≤ 0.033)
Measure CL(M) CLC(M) CLCD(M) CLCE(M) CYC(M) KNOTS(M) FIN(M) FOUT(M) SI(M)

CC(ψ) 0.806 0.681 0.343 0.797 0.749 0.842 0.258 0.866 0.255
AND(ψ) 0.538 0.507 0.369 0.519 0.586 0.477 0.366 0.482 0.384
OR(ψ) 0.450 0.616 0.435 0.640 0.697 0.490 0.456 0.628 0.481

Spearman’s Rank Correlation RS, n= 70, p≤ 0.016)
CC(ψ) 0.784 0.742 0.653 0.797 0.770 0.783 0.418 0.849 0.615
AND(ψ) 0.398 0.428 0.406 0.457 0.454 0.425 0.286 0.452 0.343
OR(ψ) 0.697 0.731 0.699 0.760 0.748 0.704 0.497 0.774 0.619

Kendall Robust Correlation RK , n= 70, p≤ 0.025)
CC(ψ) 0.586 0.544 0.462 0.595 0.577 0.623 0.300 0.686 0.448
AND(ψ) 0.289 0.308 0.286 0.343 0.334 0.341 0.200 0.356 0.241
OR(ψ) 0.553 0.596 0.575 0.629 0.629 0.563 0.404 0.654 0.507

Pearson CorrelationRP, n= 70, p≤ 0.028)
Measure CL(M) CLC(M) CLCD(M) CLCE(M) CYC(M) KNOTS(M) FIN(M) FOUT(M) SI(M)

v′l(ψ) 0.789 0.676 0.382 0.764 0.743 0.793 0.262 0.813 0.264
v′u(ψ) 0.787 0.661 0.358 0.758 0.739 0.794 0.259 0.808 0.262
DU(ψ) 0.799 0.642 0.285 0.777 0.736 0.817 0.279 0.833 0.282

Spearman’s Rank Correlation RS, n= 70, p≤ 0.002)
v′l(ψ) 0.782 0.727 0.638 0.785 0.753 0.775 0.416 0.838 0.603
v′u(ψ) 0.764 0.695 0.602 0.762 0.725 0.785 0.363 0.824 0.556
DU(ψ) 0.767 0.682 0.593 0.777 0.728 0.784 0.377 0.832 0.600

Kendall Robust Correlation RK , n= 70, p≤ 0.003)
v′l(ψ) 0.603 0.543 0.460 0.602 0.583 0.628 0.305 0.691 0.441
v′u(ψ) 0.565 0.502 0.431 0.552 0.533 0.619 0.262 0.655 0.402
DU(ψ) 0.567 0.518 0.431 0.584 0.558 0.613 0.280 0.659 0.430

Table 1: Pearson’s, Spearman’s and Kendall’s correlation for size- and structure based Z measures.

influence theFOUT(M) count. The other structure-based measures moderately to strongly influence the
complexity measuresCYC(M) andKNOTS(M). This seems to be inherent, as these measures are count-
ing dependencies within and between the schemas. The correlation to the otherADA-related measures in
also moderate to strong. Only the measures ofCLCD(M), FIN(M) andSI(M) do have weak correlations.

In the case of semantics-based measures the picture has to belooked at in a more differentiated way
(see Table 2). At first, most of the results of the tests concerning Coverageare statistically not significant
(higherp values are shown in bold numerals). The tests indicate no correlation between theADA-based
measures andCoverage, but the chance is high that this is wrong. In this situation scatter plots have been
used to gain a better understanding of the results, but the plots confirmed the results of no correlation at
all. The other tests indicate weak to moderate relations forOverlapandCoupling, but another point is
interesting.OverlapandCouplinghave different leading signs. This might partially be explained by the
fact that overlap is an indicator for crispness. It is high when the schema is not strongly related to other
parts of the specification. And coupling is higher when thereare more relations to other specification
schemas. An increase in the value of one measure leads to a decrease of the other measure.

To summarize, there is only weak to moderate relation between the Z-based measures andCLCD(M),
FIN(M), andSI(M). But, though not exclusively, there is some moderate to strong correlation between
the Z-based and the other implementation-based measures. When just focusing, for example, onCL(M),
CYC(M), KNOTS(M), andFOUT(M) and taking moderate to strong correlations into account, then the
following can be observed: Firstly, they are all influenced by structure-based measures. Secondly, espe-
cially CL(M), KNOT(M) andFOUT(M) do have strong correlations to the Z measures. The next section
now uses the Z measures to provide regression formulas for the most suitableADA-based measures.

38 Predictive Software Measures based on Z Specifications – A Case Study

Semantics-based Correlation,n= 70
Pearson Spearman Kendall

Cov(ψ) O(ψ) χ(ψ) Cov(ψ) O(ψ) χ(ψ) Cov(ψ) O(ψ) χ(ψ)

CL(M) R 0.104 -.623 0.646 0.054 -.616 0.686 0.042 -.495 0.480
p 0.391 0.000 0.000 0.660 0.000 0.000 0.624 0.000 0.000

CLC(M) R 0.184 -.466 0.414 0.186 -.480 0.541 0.146 -.364 0.379
p 0.127 0.000 0.000 0.124 0.000 0.000 0.085 0.000 0.000

CLCD(M) R 0.229 -.215 0.116 0.243 -.369 0.433 0.190 -.280 0.310
p 0.057 0.075 0.340 0.042 0.002 0.000 0.026 0.003 0.000

CLCE(M) R 0.126 -.559 0.546 0.110 -.587 0.636 0.079 -.461 0.440
p 0.300 0.000 0.000 0.363 0.000 0.000 0.355 0.000 0.000

CYC(M) R 0.148 -.534 0.509 0.137 -.531 0.590 0.103 -.416 0.412
p 0.221 0.000 0.000 0.258 0.000 0.000 0.234 0.000 0.000

KNOTS(M) R 0.062 -.587 0.637 -.018 -.629 0.721 -.034 -.530 0.542
p 0.613 0.000 0.000 0.884 0.000 0.000 0.708 0.000 0.000

FIN(M) R 0.150 -.224 0.212 0.245 -.170 0.267 0.184 -.132 0.193
p 0.216 0.062 0.078 0.041 0.160 0.026 0.034 0.164 0.026

FOUT(M) R 0.096 -.572 0.582 0.046 -.599 0.722 -.008 -.479 0.541
p 0.430 0.000 0.000 0.704 0.000 0.000 0.930 0.000 0.000

SI(M) R 0.123 -.235 0.227 0.220 -.406 0.480 0.159 -.315 0.339
p 0.309 0.050 0.059 0.067 0.000 0.000 0.063 0.001 0.000

Table 2: Pearson, Spearman and Kendall for semantics-basedmeasures.

5 Prediction Models

According to a rule of thumb in regression [10, p.3], the appropriate number of independent variables
for a prediction is not more than one fifth of the sample size. Thus, the eleven Z measures presented in
Section 2 can be considered to be sufficient and they are all selected to form the maximum model for
70 observations in this study. Among several systematic methods for restricting the maximum model, a
backward elimination procedure [10, p.8] with a threshold of 0.4 for the P-values is selected. This means
that a maximum regression model with all eleven independentvariables is built. Then all the variables
with a P-value of more than 0.4 are eliminated. Then, again, another regression model with the reduced
number of variables is built, iterating until there is no variable with a P-value higher than 0.4.

Table 3 summarizes the final result of this procedure for the five remaining code metrics (as mea-
sures with a P-Value higher than 0.4 have been eliminated). The table, for example, shows that for the
calculation of the cyclomatic complexityCYC(M) of anADA module,CC(ψ), Cov(ψ) andOR(ψ) are
best for being used in the regression formula. The level of confidence can be explained by the values of
Significance-F. If the level of acceptable confidence should be 95% and higher, then all the code metrics
with F-values of less than 0.05 can be considered predictable using the metrics in Z. All the values for
F in Table 3 show that there is a high reliability on the resultsof the regressions. The value ofAdjusted
R-Squarecan be interpreted as an indicator for the precision level ofthe prediction. In our case the values
are between 0.620 and 0.840, indicating that the regression models are relatively precise forFOUT(M),
KNOTS(M) andCL(M) and even more precise forCLE(M) andCYC(M). With these values at hand it
makes sense to predict code metrics, and the resulting formulas are as follows:

CL(M) = 3.099CC(ψ)−1.237USE(ψ)+2.557AND(ψ)−41.735OR(ψ)−9.873
CLCE(M) = 0.516CC(ψ)−0.003v′u(ψ)−0.477DEF(ψ)+5.458OR(ψ)+5.819

CYC(M) = 0.015CC(ψ)+4.349Cov(ψ)−2.107O(ψ)+1.082OR(ψ)+1.666
KNOTS(M) = 0.121CC(ψ)−0.001v′u(ψ)−0.017USE(ψ)−0.092DEF(ψ)+0.027AND(ψ)−0.882

FOUT(M) = 0.198CC(ψ)−0.107v′l(ψ)−0.001v′u(ψ)−0.211DEF(ψ)+1.220OR(ψ)+0.344

A. Bollin, A. Tabareh 39

Results of the backward elimination procedure (valuesP≤ 0.4)

Paramter CL(M) CLE(M) CYC(M) KNOTS(M) FOUT(M)
Adjusted R-Square 0.720 0.680 0.620 0.760 0.840

Significance F 5E-18 2E-16 5E-14 7E-20 1.5E-25

CC(ψ) 0.001 4E-4 0.003 1E-6 3E-11
v′l (ψ) —— —– —– —– 0.270
v′u(ψ) —— 0.005 —– 0.004 0.000

DU(ψ) —— —– —– —– —–
O(ψ) —— —– —– —– —–

P−Value Cov(ψ) —— —– 0.280 —– —–
χ(ψ) —— —– —– —– —–

AND(ψ) 7E-5 —– —– 0.030 —–
OR(ψ) 5E-4 0.001 4E-4 —– 6E-5

DEF(ψ) —— 0.070 —– 0.020 1E-5
USE(ψ) 0.034 —– —– 0.320 —–

Table 3: Adjusted R-Square, Significance F and P-Values after applying the backward elimination pro-
cedure for maximum model identification. P-Values higher than 0.4 are represented by dashes.

6 Threats to Validity

With the results of the study the question of validity arises. Considering internal validity, single group
and multiple group threats, as well as social threats cannotarise. The only threat that might have an
impact on the outcome of the study is the software used to generate and calculate the measures. The
software components involved are theCZTparser [11], the slicing environmentViZ [2], Matlab R2007b,
Microsoft Excel2010 andSPSS14:0. Excelis a standard spreadsheet application.Matlab andSPSSare
numerical computer environments used for the statistical analysis. Both tools have been used alternately
to verify the results of the analysis. It is very unlikely that the data from both environments is erroneous.
The CZT parser is being developed as aSourceForgeproject since 2003 and it is available in a stable
release. The slicing environmentViZ has been developed in the year 2003 and it is also part of a couple
of extensions which led to systematic validations during development.

Concerning the selection validity, the publicly availableschemas andADAprocedures and functions
have been chosen with care, following the links provided by the developers. It is important to note that
the specification used in this study had to be modified a bit in order to be accepted by theCZT parser.
This meant to introduce some hard spaces and, eventually, also to replace the “̂=” symbol by the “==”
sign. In order to rule out the possibility of coincidental changes of line breaks or identifier names, both
files were again compared afterwards, using a professional file-compare software.

7 Conclusion

In this study, consisting of 70 experimental subjects, the feasibility of confidently predicting software
measures based on formal specifications has been demonstrated. The correlations found between the
different size-, structure-, and semantics-based measures and the implementation metrics promise of
being able to predict size and complexity attributes as wellas enables to estimate likely costs and efforts.

The study describes only the first link in the chain of associations between the documents created
during software development, but it confirms the observations of Samson et.al. [17] who conducted a
similar study (with 9 experimental subjects) several yearsago. Specification-based measures are not
difficult to calculate, thus they can and alsoshouldbe collected at the beginning of a project. The results
of the study indicate that it pays off.

40 Predictive Software Measures based on Z Specifications – A Case Study

References

[1] Andreas Bollin (2004):Specification Comprehension – Reducing the Complexity of Specifications. Ph.D.
thesis, University of Klagenfurt.

[2] Andreas Bollin (2007):Concept Location in Formal Specifications. Journal of Software Maintenance and
Evolution: Research and PracticeManuscript submitted Jan. 2007, doi:10.1002/smr.363.

[3] Andreas Bollin (2010):Slice-based Formal Specifiation Measures – Mapping Coupling and Cohesion Mea-
sures to Formal Z. In Cèsar Muñoz, editor:Proceedings of the Second NASA Formal Methods Symposium,
NASA/CP-2010-216215, NASA, Langley Research Center, pp. 24–34.

[4] Juei Chang & Debra J. Richardson (1994):Static and Dynamic Specification Slicing. Technical Report,
Department of Information and Computer Science, University of California.

[5] Rod Chapman (2009):The Tokeneer ID Station – Overview and Readers Guide. S.P1229.81.8. Issue: 1.4.
Praxis High Integrity Systems.

[6] Norman E. Fenton & Shari Lawrence Pfleeger (1989):Software Metrics, 2nd edition. Thompson Press.

[7] Mark Harman, Margaret Okulawon, Bala Sivagurunathan & Sebastian Danicic (1997):Slice-based measure-
ment of coupling. In: Proceedings of the ICSE workshop on Process Modelling and Empirical Studies of
Software Evolution. Boston, Massachusetts, IEEE Computer Society, Los Alamitos, CA, USA, pp. 28–32.

[8] Sally M. Henry & Dennis G. Kafura (1981):Software structure metrics based on information flow. IEEE
Transactions on Software Engineering7(5), pp. 510–518, doi:10.1109/TSE.1981.231113.

[9] Magne Jørgensen (2004):A review of studies on expert estimation of software development effort. Journal of
Systems and Software70(1–2), pp. 37–60, doi:10.1016/S0164-1212(02)00156-5.

[10] Pia Veldt Larsen (2008):ST111: Regression and analysis of variance – Module 8: Selecting regression mod-
els. Manual from statmaster.sdu.dk/courses/st111/module08, Syddansk University, Department of Statistics.

[11] Petra Malik (2011):A retrospective on CZT. Software – Practice and Experience41(2), pp. 179–188,
doi:10.1002/spe.1015.

[12] Roland T. Mittermeir & Andreas Bollin (2003): Demand-driven Specification Partitioning.
In: Proceedings of the 5th Joint Modular Languages Conference,JMLC’03, pp. 241–253,
doi:10.1007/978-3-540-45213-330.

[13] Tomohiro Oda & Keijiri Araki (1993): Specification slicing in a formal methods software development.
In: Seventeenth Annual International Computer Software and Applications Conference, IEEE Computer
Socienty Press, pp. 313–319, doi:10.1109/CMPSAC.1993.404234.

[14] Linda M. Ott & Jeffrey J. Thus (1989):The Relationship between Slices and Module Cohesion. In: 11th
International Conference on Software Engineering, IEEE Computer Society, Los Alamitos, CA, USA, pp.
198–204, doi:10.1145/74587.74614.

[15] Lawrence H. Putnam & Ware Myers (2003):Five Core Metrics: The Intelligence Behind Successful Software
Management. Dorset House.

[16] D. G. Rees (2003):Essential Statistics, 4th edition. Chapman & Hall.

[17] W.B. Samson, Denis G. Nevill & P.I. Dugard (1987):Predictive software metrics based on a formal specifi-
cation. In: Information and Software Technology, 5 29, pp. 242–248.

[18] Martin J. Shepperd & Darrel C. Ince (1990):The use of metrics in the early detection of design errors. In:
Proceedings of the European Software Engineering Conference 90, pp. 67–85.

[19] Harry M. Sneed, Richard Seidl & Manfred Baumgartner (2010): Software in Zahlen. Carl Hanser Verlag.

[20] Abdollah Tabareh (2011):Predictive Software Measures Based on Formal Z Specifications. Master’s thesis,
University of Gothenburg - Department of Computer Science and Engineering.

[21] Mark Weiser (1982):Program slicing. In: Proceedings of the5th International Conference on Software
Engineering, IEEE Press, Piscataway, NJ, USA, pp. 439–449.

http://dx.doi.org/10.1002/smr.363
http://dx.doi.org/10.1109/TSE.1981.231113
http://dx.doi.org/10.1016/S0164-1212(02)00156-5
http://dx.doi.org/10.1002/spe.1015
http://dx.doi.org/10.1007/978-3-540-45213-3_30
http://dx.doi.org/10.1109/CMPSAC.1993.404234
http://dx.doi.org/10.1145/74587.74614

	1 Introduction
	2 Measures
	2.1 Code-based Measures
	2.2 Specification Measures

	3 The Study
	4 Correlation Tests
	5 Prediction Models
	6 Threats to Validity
	7 Conclusion

