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PL for SOA proposes, formally, a software engineering methodology, development techniques and
support tools for the provision of service product lines. We propose rigorous modeling techniques
for the specification and verification of formal notations and languages for service computing with
inclinations of variability. Through these cutting-edge technologies, increased levels of flexibility and
adaptivity can be achieved. This will involve developing semantics of variability over behavioural
models of services. Such tools will assist organizations to plan, optimize and control the quality of
software service provision, both at design and at run time by making it possible to develop flexible
and cost-effective software systems that support high levels of reuse. We tackle this challenge from
two levels. We use feature modeling from product line engineering and, from a services point of
view, the orchestration language Orc. We introduce the Smart Grid as the service product line to
apply the techniques to.

1 Introduction

Business environments command innovation, increasingly shorter time-to-market and efficiency. Product
line technology, is increasingly finding its way to the software sector, allowing companies to sustain
growth and achieve market success [13].

Service-Oriented Architecture (SOA) has emerged as a standard-based computing model for de-
signing, building and deploying flexible distributed software applications. SOA emphasizes extremely
loosely-coupled design approaches where disparate systems with different computing platforms can col-
laborate and evolve without major changes to their core architectures. Services are designed as self-
contained modules that can be advertized, discovered, composed and negotiated on demand.

Software Product Lines (SPL) are families of software systems that share common functionality, but
each member also has variable functionality. The main goal of SPL is the agile and speedy development
of member systems by taking advantage of reusable assets from all phases of the development life cycle.
This goal is similar to SOA’s goals [1].

Despite the wide academic and industrial activities related to SOA, no systematic end-to-end method-
ology exists to analyze and design service-oriented applications. On the other hand, SPL is an established
field with considerable methodological support. It is then clear that combining SOA and SPL is a pow-
erful way to build complex evolving systems.

The combination of SPL and SOA development practices is a new development paradigm that can
help provide the answers to the need for agility, versatility and economy. SOA and SPL approaches to
software development share a common goal. They both encourage an organization to reuse existing assets
and capabilities rather than repeatedly redeveloping them for new systems. These approaches enable
organizations to capitalize on reuse to achieve desired benefits such as productivity gains, decreased
development costs, improved time to market, higher reliability and competitive advantage. Their distinct
goals may be stated as follows [14, 26, 27]:
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SOA To enable the assembly, orchestration and maintenance of enterprise solutions to quickly react to
changing business requirements.

SPL To systematically capture and exploit commonality among a set of related systems while managing
variations for specific customers or market segments.

The goal of our research is to formally answer the question, ‘How can the use of product line practices
support service-oriented applications?’ SOA and SPL have their differences and similarities and we are
exploiting the similarities in order to naturally formalize SPL [20] and service-oriented applications [34].

This work is part of a longer-term research effort to develop a PL for SOA formalisms. The paper
introduces a first step towards this goal. We have found an existing formalism for modeling variability
in product lines that can be combined with a SOA calculus and thus create a PL for SOA formalism.

Modeling variability in product families has been the subject of extensive study in the literature on
SPL, especially that concerning feature modeling [12,15,23]. Variability modeling addresses how to de-
fine which features or components of a system are optional, alternative, mandatory, required or excluded;
formal methods are then developed to show that a product belongs to a family, or to derive instead a prod-
uct from a family, by means of a proper selection of the features or components. Variability management
is the key aspect that differentiates SPL engineering from ‘conventional’ software engineering.

Labelled Transition Systems (LTSs) have been used successfully to reason about system behaviour.
Modal Transition Systems (MTSs) are an extension of LTSs that distinguish between mandatory, possible
and unknown behaviour. MTSs have been studied for some time as a means for formally describing
partial knowledge of the intended behaviour of software systems [3].

MTSs have been proposed as a formal model for product families [19,28], allowing one to embed in a
single model the behaviour of a family of products that share the basic structure of states and transitions,
transitions which can moreover be seen as mandatory or possible for the products of the family. In [16],
the MTS concept was pushed to a more general form, allowing more precise modeling of the different
kinds of variability that can typically be found in the definition of a product family.

In [8], a temporal logic for modeling variability in product families was proposed by taking advantage
of the way in which deontic logic formalises concepts like violation, obligation, permission and prohi-
bition, using MTSs as the underlying semantic model. In [9, 11], a model checker is presented based on
a formal framework consisting of vaCTL (a variability and action-based branching-time temporal logic)
with its natural interpretation structure (MTSs). Product derivation is defined inside the framework and
logical formulae are used as variability constraints as well as behavioural properties to be verified for
families and products alike. A first attempt to apply this tool to the analysis of variability in behavioural
descriptions of families of services is presented in [10].

From a service orientation point of view, we believe that Cook and Misra’s Orc [33] will highlight
the SPL aspects necessary to meet our goals. An operational semantics of Orc based on LTSs appears
in [35]. Thus, it appears from a first glance that we can extend the LTS semantics of Orc to a semantics
over MTSs and merge the different scopes of SOA and SPL creating a PL for SOA formalism. The
formal definition of such a semantics is left for future work.

The paper is structured as follows. In Section 2, we review some related work and some product line
basics from a feature modeling perspective and present the orchestration language Orc and its usefulness.
Section 3 combines ideas from product line engineering and the service-oriented concurrency calculus
of Orc. Section 4 highlights the case study over which the tools are applied. We conclude in Section 5
with some remarks on future work.



36 PL for SOA

2 Related Work and Preliminaries

Various authors have contributed to the study of combining SOA and SPL practices and most are still in
the preliminary stages of defining what SPL for SOA means: [1] presents a method to design service-
oriented applications based on SPL principles by applying variability analysis techniques to Web Ser-
vices to design customized service-based applications.

In [4, 36] the authors study the common problems relating to SOA and SPL approaches and propose
ways of reconciling the two, while [5] demonstrates how model-driven engineering can help with in-
jecting a set of required commonalities and variability of a software product from a high-level business
process design to the lower levels of service use. To realize the method and activities involved, a supply
chain management application is used.

Günther et al. [21] propose a differentiated development process for SPLs implementing a SOA. They
use an extensive example of a web store to show how parts of this process can be solved technically with
already developed methods for feature modeling and management using Web Services.

An approach to service identification methods is proposed in [22] to bridge the feature models of
product lines and the business process models in service orientation and enables functions to be expressed
as services.

2.1 Product Line Modeling

As a first step we have used feature diagrams to model product lines. Feature diagrams are a family of
popular modeling languages used for engineering requirements in SPL represented as the nodes of a tree,
with the product family being the root and having the following features [23]:

• optional features, may be present in a product only if their parent is present;

• mandatory features, are present in a product if and only if their parent is present;

• alternative features, are a set of features among which one and only one is present in a product if
their parent is present.

When additional constraints are added to a feature diagram, this results in a feature model. Constraints
come in several flavours and we consider the following constraints:

• requires is a unidirectional relation between two features indicating that the presence of one feature
requires the presence of the other;

• excludes is a bidirectional relation between two features indicating that the presence of either
feature is incompatible with the presence of the other.

2.2 Service-Oriented Modeling

Orc has proved to be a high-level language that makes the notoriously difficult task of building distributed
systems easier. It coordinates interactions among basic subsystems, called sites, by use of a small number
of combinators. It allows integration of components and assumes that structured concurrent programs
should be developed much like structured sequential programs, by decomposing a problem and combin-
ing the solutions with the combinators.

Orc permits structuring programs in a hierarchical manner, while permitting interactions among sub-
systems in a controlled way [24]. The basis for its design is to allow integration of components and is
founded on the premise of combination. Thus, combinators are a very important part of the theory.
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An Orc program consists of a goal expression (either primitive or a combination of two expressions)
and a set of definitions. The goal expression is evaluated in order to run the program. The definitions
are used in the goal and in other definitions. A component is generally called a service; Orc adopts the
more neutral term site which is the most primitive Orc expression. It represents an external program and
is said to publish a value when a value is returned in response to a call.

Given the formalism we are working on, we will not dwell on the Orc programming language but
concentrate on the Orc calculus.

2.3 The Orc Calculus

We present the calculus informally in this paper. The Orc calculus is based on the execution of expres-
sions. Expressions are built up recursively using Orc’s concurrent combinators [25]. When executed, an
Orc expression calls services and may publish values. Different executions of the same expression may
have completely different behaviour; they may call different services, receive different responses from
the same service and publish different values. Orc expressions use sites to refer to external services.
A site may be implemented on the client’s machine or on a remote machine. A site may provide any
service; it could run sequential code, transform data, communicate with a Web Service or be a proxy for
interaction with a human user.

A site call is defined as A(x), where A is a site name and x is a list of actual inputs. The following
table lists the fundamental sites of Orc.

if(b): Returns a value if b is true, and otherwise does not respond.
Rtimer(t): Returns a value after exactly t, t > 0, time units.
Signal(): Returns a value immediately. Same as if(true).
0: Blocks forever. Same as if(false).

Though the Orc calculus itself contains no sites, for our purposes we consider another fundamental
site which is essential to writing useful computations. The site let is the identity site; when passed one
argument, it publishes that argument, and when passed multiple arguments it publishes them as a tuple.

Orc has four combinators to compose expressions: the parallel combinator |, the sequential combina-
tor > x >, the asymmetric parallel combinator < x <, and the otherwise combinator ;. When composing
expressions, the > x > combinator has the highest precedence, followed by |, then < x < and finally ; has
the lowest precedence [25].

1. The independent parallel combinator, (A | B), allows independent concurrent execution of A and
B. The sites called by A and B individually are called by (A | B) and the values published by A and
B are published by (A | B).

2. The sequential combinator, (A >x> B), initiates a new instance of B for every value published by
A whose value is bound to name x in that instance of B. The values published by (A >x> B) are all
instances of those published by B. If x is not used in B, this combinator is abbreviated by (A� B).

3. The asymmetric parallel combinator, (A <x< B), evaluates A and B independently, but the site calls
in A that depend on x are suspended until x is bound to a value; the first value from B is bound to
x, evaluation of B is then terminated and suspended calls in A are resumed; the values published
by A are those published by (A <x< B). If x is not used in B, this combinator is abbreviated by
(A� B).
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4. The otherwise combinator, (A; B), executes A and if it completes and has not published any values,
then executes B. If A did publish one or more values, then B is ignored. The publications of (A; B)
are thus those of A if A publishes, or those of B otherwise [24].

2.4 Modal Transition Systems

MTSs are now an accepted formal model for defining behavioural aspects of product families [3, 8–11,
16, 19, 28]. An MTS is an LTS with a distinction between may and must transitions, seen as optional or
mandatory features for a family’s products. For a given product family, an MTS can model

• its underlying behaviour, shared among all products, and

• its variation points, differentiating between products.

An MTS cannot model advanced variability constraints regarding alternative features nor those regard-
ing the requires and excludes inter-feature relations [8]. Such advanced variability constraints can be
formalized by means of an associated set of logical formulae expressed in the variability and action-
based branching-time temporal logic vaCTL (interpreted over MTSs) [9].

We now formally define MTSs and — to begin with — their underlying LTSs.

Definition 2.1. An LTS is a quadruple (Q,A,q, δ), with set Q of states, set A of actions, initial state q ∈Q,
and transition relation δ ⊆ Q×A×Q.

One may also write q
a
−→ q′ for (q,a,q′) ∈ δ. �

In an MTS, transitions are defined to be possible (may) or mandatory (must).

Definition 2.2. An MTS is a quintuple (Q,A,q, δ�, δ^) such that the quadruple (Q,A,q, δ� ∪ δ^) is an
LTS, called its underlying LTS. An MTS has two transition relations: δ^ ⊆Q×A×Q is the may transition
relation, expressing possible transitions, while δ� ⊆ Q×A×Q is the must transition relation, expressing
mandatory transitions. By definition, δ� ⊆ δ^.

One may also write q
a
−→� q′ for (q,a,q′) ∈ δ� and q

a
−→^ q′ for (q,a,q′) ∈ δ^. �

The inclusion δ� ⊆ δ^ formalises that mandatory transitions must also be possible. Reasoning on
the existence of transitions is thus like reasoning with a 3-valued logic with the truth values true, false,
and unknown: mandatory transitions (δ�) are true, possible but not mandatory transitions (δ^ \ δ�) are
unknown, and impossible transitions ((q,a,q′) < δ�∪δ^) are false.

To model feature model representations of product families as MTSs one thus needs a ‘translation’
from features to actions (not necessarily a one-to-one mapping) and the introduction of a behavioural
relation (temporal ordering) among them. A family’s products are then considered to differ w.r.t. the
actions they are able to perform in any given state of the MTS. This means that the MTS of a product
family has to accommodate all the possibilities desired for each derivable product, predicating on the
choices that make a product belong to that family.

Figure 3 below is an example of an MTS: dashed arcs are used for the may transitions that are not
must transitions (δ^ \δ�) and solid ones for must transitions (δ�).

Given an MTS description of a product family, an LTS describing a product is obtained by preserving
at least all must transitions and turning some of the may transitions (that are not must transitions) into
must transitions as well as removing all of the remaining may transitions.

Definition 2.3. Let F = (Q,A,q, δ�, δ^) be an MTS specifying a product family. A set of products speci-
fied as a set of LTSs {Pi = (Qi,A,q, δi) | i > 0 } is derived by considering each transition relation δi to be
δ�∪ R, with R ⊆ δ^, defined over a set of states Qi ⊆ Q, so that q ∈ Qi, and every q ∈ Qi is reachable from
q via transitions from δi.
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More precisely, we say that Pi is a product of F , denoted by Pi ` F , if and only if qi ` q, where qi ` q
holds, for some qi ∈ Qi and q ∈ Q, if and only if:

• whenever q
a
−→� q′, for some q′ ∈ Q, then ∃q′i ∈ Qi : qi

a
−→i q′i and q′i ` q′, and

• whenever qi
a
−→i q′i , for some q′i ∈ Qi, then ∃q′ ∈ Q : q

a
−→^ q′ and q′i ` q′. �

The products derived in this way obviously might not satisfy the aforementioned advanced variability
constraints that MTSs cannot model. However, as said before, vaCTL can be used to express those con-
straints and [10] contains an algorithm to derive from an MTS all products that are valid w.r.t. constraints
expressed in vaCTL.

3 Service-Oriented Product Line

In order to model a service product line, we merge the feature modeling and Orc approaches. We show
here that the Orc calculus can be viewed from product line/feature modeling perspective and, hence, the
resulting calculus can sufficiently specify service-oriented product lines. We believe that the Orc com-
binators can be given a semantics over MTSs that would result in an almost one-to-one correspondence
with the features and inter-feature relations of product families:

• The independent parallel combinator, (A | B), can be used to specify mandatory features. This is
because there is no direct communication or interaction between these two computations and they
are instantiated independently and in parallel.

• The sequential combinator, (A >x> B), can be used to specify required features. This follows from
the fact that B is never instantiated unless A publishes a value which is bound to x and utilized as
input in B. Thus, B requires published values from A.

• The asymmetric parallel combinator, (A <x< B), can specify optional features. Since both A and B
are instantiated in parallel and those computations of A that require a value from B are suspended,
this combinator may ignore the published value from B in order to incorporate optionality.

• The otherwise combinator, (A; B), can be used to specify excluding features especially when there
is a preferred outcome or priority. It follows because the computation of either A or B means that
the other cannot be instantiated or has already failed.

We do not see how to directly cater for the alternative features from the combinators. However, we
foresee the use of Orc’s powerful composition of the combinators to reason about them. We then intend
to look at an alternative feature as a choice between two computations from which we let only one
proceed. This is the essence of mutual exclusion. We consider a product in which we choose feature M
if A happens, while otherwise we choose N (i.e. if B happens). We represent A and B as sites and M and
N as expressions and use site flag to record which of A and B responds first.

if(flag)� M | if(¬flag)� N � flag ∈ (A� let(true)) | (B� let(false))

In the future, we plan to extend the LTS semantics of Orc to a semantics over MTSs to merge the different
scopes of SOA and SPL and create a PL for SOA formalism.
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4 Case Study

The energy utilities industry may be one of the last great technological frontiers, due to the fact that it
has experienced little innovation over its lifespan and it is quickly approaching the end of its design life.

However, the utility industry is about to embark on a revolutionary journey: the Smart Grid. Utilities
and information technology companies will be surrounding the electric grid with a digital grid that will
provide consumers and businesses with many value propositions [17].

One of the key components to this ‘smart’ electric grid is the upgrade to a two-way communica-
tions technology. This technology, partially fueled by governments supporting the modernization of the
electric grid, requires one of the largest IT ‘upgrades’ that we will see in decades, and provides new prod-
uct, service and market opportunities for utilities, generators, power traders and information technology
companies [2].

We have a long way to go to turn this antiquated grid into a Smart Grid. However, using SOAs which
lead to decreasing the time to market we may be able to have a fast response to the market needs. The
applications will entail a fast time-to-market response, correctness, reusability, maintainability, testability
and evolvability — besides low cost.

Furthermore, like the Internet it will require a standard layered and distributed architecture in order to
deliver electricity over a two-way protocol from supplier to consumer utilizing independent components
that must cooperate. SPLs and SOAs can provide several of these requirements due to the inherent
flexibility in composing more sophisticated complex systems.

Suppose that your utility company has developed an intelligent electrical power system that leverages
increased use of communications and information technology in the generation, delivery and consump-
tion of electrical energy. Your company provides a choice among a family of products with different
price tags and different functionalities. The basic architecture provides three products:

1. Integration of renewables, offering storage capacity, vehicle to grid and electric vehicles.

2. Demand response, offering efficient markets, load shifting and incorporating all end users.

3. Grid monitoring management, offering smart meters, self-healing capability and integrated com-
munications.

The coordination component uses predefined external services (one for each business sector) to retrieve
a list of alternatives, say for storage, load shifting or billing through the smart meters.

The basic product can be enhanced in two ways:

1. Adding the possibility to choose what company to source your electricity and in case you have
generation capacity, choosing whom you will sell your excess power to, from a set of utilities in
order to retrieve the best quotes through more than one service.

2. Adding the possibility for the user to make a reservation for the supply of extra electricity. This
is accomplished by means of an added component that requests an external forecasting service to
predict what sources of electricity generation are available and how much demand exists.

These enhancements can be combined to obtain four different products of the family. A greater level of
flexibility in the service may be added by incorporating dynamic roles.

As the grid becomes more intelligent and more complex, the tools to operate it become increasingly
important. Hence the need for interoperability (SOA), flexibility and variability (SPL). Our interest in
undertaking this case study lies in specifying electricity provision as a service and the Smart Grid as a
service product line.
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4.1 The Smart Grid as a Product Line

The generic Smart Grid will be modeled as a family of products with basic components for basic products
and specialized properties for some of the products, such as:

• storage;

• renewables, varying with weather, time, season and other intermittent effects;

• load shifting, the practice of managing electricity supply and demand so that peak energy use is
shifted to off-peak periods;

• vehicle to grid (V2G), establishing a viable transparent business model, guaranteeing the availabil-
ity and controllability of electric vehicles (EV) and V2G capacity as well as accurate forecasting
of renewable energy supply and demand.

Load shifting and V2G can reduce the energy storage capacity required to maintain power quality.
From the Smart Grid family in Figure 1 we can develop up to four different products, all the while

utilizing the basic architecture. Similarly, given an MTS model of the Smart Grid family, we can use
Definition 2.3 to derive products.

SMART GRID

GRID MONITORING

  MANAGEMENT

 DEMAND
 
RESPONSE

INTEGRATION OF

    RENEWABLES

SELF
HEALING

SMART
  METERS

INTEGRATED
COMMUNICATIONS

LOAD
SHIFTING

EFFICIENT
MARKETS

INCORPORATES
    CUSTOMER

ELECTRIC
VEHICLES

STORAGE

VEHICLE TO
GRID

Optional

Alternative

Requires

Mandatory

Figure 1: Feature model for the Smart Grid family

One of the most obvious ones is a product without the integration of renewables, shown in Figure 2,
which represents most of the existing electricity grids today and in which all the features are mandatory.

This product contains a Demand Response component, referring to dynamic demand mechanisms to
manage customer consumption of electricity in response to supply and the programs to achieve that goal.

From the utility company point of view, there is a virtual power plant where the supply of electricity
is managed. In place are technologies that allow the utility to talk to devices inside the customer premise.
They include such things as load control devices, smart thermostats and home energy consoles for sens-
ing, so as to provide information to consumers and operators so that they better understand consumption
patterns and make informed decisions for more effective use of energy [30].

These are essential to allow customers to reduce or shift their power use during peak demand periods.
Demand response solutions play a key role in several areas: pricing, emergency response, grid reliability,
infrastructure planning and design, operations and deferral.
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GRID MONITORING

  MANAGEMENT

 
 
RESPONSE

SELF
HEALING

SMART
  METERS

INTEGRATED
COMMUNICATIONS

LOAD
SHIFTING

EFFICIENT
MARKETS

INCORPORATES
    CUSTOMER

Mandatory

DEMAND

SMART GRID

Figure 2: Feature model for a product without integration of renewables

The part of the MTS model of the Smart Grid family which is relevant for this component is shown
in Figure 3.

Virtual Power Plant

High Supply
Low Supply

Aggregator

Market

Quantity
Price

Day
ahead Realtime Buy Sell

Equilibrium

Load Shift Agreement

Figure 3: MTS for the demand response function
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Thus, the three branches stemming out of the aggregator perform the following functions:

1. Offer flexible tariffs including critical peak pricing and real-time pricing.

2. Two-way communications allow for pricing information to be transmitted to customers based on
price changes each day and at timed intervals, determined by software at the enterprise level to
allow real time or day ahead management.

3. Exception pricing as well as price changes associated with system emergency conditions and quan-
tity available to enable the customer to either buy or sell depending on their capacity.

From this we can break down behaviour as shown in Figure 4, highlighting the behaviour of the system
when supply of electricity is high, represented as:

DRH := {High Supply,Agreement,Sell,Equilibrium}

This means that when the utility has excess supply of electricity, it will take advantage of existing agree-
ments with their customers to sell and allow the system to get back to a state of equilibrium.

Virtual Power Plant

Aggregator

Market

Equilibrium

High Supply

Sell
Day aheadPricing

Load Shift
Agreement

Figure 4: A behavioural description of demand response when supply is high

4.2 Encoding the Product Line in Orc

The product demand response is realized in terms of service orchestration using the combinators as
follows. From Figure 3, we model the two branches on the right. We need to spawn two independent
threads at a point in the computation in this case depending on whether we are load shifting or executing
an existing agreement and resume the computation after both threads at the equilibrium point. Therefore,
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we call sites (real time | day ahead) and (sell | buy) in parallel and compose using the asymmetric parallel
combinator. The call then publishes the values as a tuple after they both complete their executions.

DR := let (u,v) < Load shi f t < (real time | day ahead) < Agreement < (sell | buy)

The values published by this expression are the values contained in site let, which acts as a container for
the first result published and releases both when the second value is received.

In the same way we can model the fact that these two features are alternatives. This means that once
we instantiate the computation Load shift we are not in a position to execute Agreement and vice versa.
We therefore have

(if( f )� L s) | (if(¬ f ))� A� f ∈ ((real time | day ahead)� let(true)) | ((buy | sell)� let(false))

in which, due to restrictions in space, we have used the following abbreviations: f for flag (our container
for the computation published first), L s for Load shift and A for Agreement. As a start, we call L s and
A in parallel by utilizing the independent parallel combinator and await for values published by either
(real time | day ahead) or (sell | buy) to determine which of the computations is executed. The value
published first by the asymmetric parallel combinator is held. The site if returns the value held in A if A
is true, and otherwise does not respond and thus, completes the alternative service reasoning.

Why Orc? The dynamic nature of this illustration highlights the dynamic nature of the various com-
ponents and services of the Smart Grid, which is the main reason why we opted to work on the Orc
calculus. Dynamic service, market management and pricing are basic building blocks of a Smart Grid
system while Orc allows for the dynamic combination of services and the dynamic reconfiguration of
software systems. The idea of invoking a published service instead of developing an isolated function
leads a revolution of application development [29]. Thus, electricity business jobs can be arranged by
orchestrating the services which can provide computation resources or functional support.

4.3 Semantics

The semantics is operational, asynchronous, and based on LTSs [24]. We show what this means for our
case study. We have ?k, which denotes an instance of a site call that has not yet returned a value, where
k is a unique handle that identifies the call instance. The transition relation A

a
−→ A, states that expression

A may transition with event a to expression A. There are four kinds of events, which we call base events:

a,b ∈ BaseEvent ::= !v | τ | Mk(v) | k?v

A publication event, !v, publishes a value v from an expression. As is traditional, τ denotes an internal
event. The remaining two events, the site call event Mk(v) and the response event k?v, are discussed
below.

A site call M(v), in which v is a value, transitions to ?k with event Mk(v). The handle k connects a site
call to a site return — a fresh handle is created for each call to identify that call instance. The resulting
expression, ?k, represents a process that is blocked waiting for the response from the call. A site call
occurs only when its parameters are values; in M(x), in which x is a variable, the call is blocked until x
is defined.

The composition rules are straightforward, except in some cases in which subexpressions publish
values.
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Consider the independent parallel combinator (A | B). When A publishes a value (A
!v
−→ A ), it creates

a new instance of the right-hand side, [v/x].B, the expression in which all free occurrences of x in B are
replaced by v. The publication !v is hidden, and the entire expression performs a τ action. Note that A
and all instances of B are executed in parallel. Since the semantics is asynchronous, there is no guarantee
that the values published by the first instance will precede the values of later instances. Instead, the
values produced by all instances of B are interleaved arbitrarily.

Asymmetric parallel composition, (A <x< B), is similar to parallel composition, except when B
publishes a value v. In this case, B terminates and x is bound to v in A. One subtlety of these rules is
that A may contain both active and blocked subprocesses — any site call that uses x is blocked until B
publishes.

We now check one of our expressions:

DR := let (u,v) < Load shift < (real time | day ahead) < Agreement < (sell | buy)

An execution of DR is as follows: the first step (sell | buy) publishes sell or buy, which is bound to
Agreement:

[sell/Agreement].(sell | buy)

or
[buy/Agreement].(sell | buy)

The same strategy is employed for the next step and we have an event τ due to the site let as it receives
one value before the other.

5 Conclusion and Future work

Correct modeling of service product lines appears to be important — if not vital — in order for them to
provide the same level of accuracy and support as their earlier counterparts, service-oriented applications
and SPLs. We have seen that Orc, being a language for orchestration at a moderately abstract level,
provides important support for this. We have proposed that services can be modeled in a new way by
incorporating variability notions from SPLs. It is perhaps unexpected how direct the resulting reasoning
is to variability in product family descriptions using feature modeling. This is due to the extent to which
Orc captures the sequences of publications.

We have not fully formalized service product lines, but the techniques and tools identified and the
relationships established amongst them are a firm foundation for this. We plan to extend Orc in order
to support the abstract layer provided by the MTSs and to allow verification by means of the vaCTL
logic. Feature models will remain our low-level representation of our service product lines. To fully
formalize and verify service product lines, we require that Orc has the capability to integrate the tools.
We also intend to extend the LTS-based semantics of Orc to an MTS-based semantics in order to utilize
the vaCTL logic for verification.
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