
L. Kovacs, R.Pugliese, and F. Tiezzi (Eds.): Workshop on
Automated Specification and Verification of Web Systems
(WWV 2011)
EPTCS 61, 2011, pp. 49–65, doi:10.4204/EPTCS.61.4

© B. Garcı́a & Juan C. Dueñas
This work is licensed under the
Creative Commons Attribution License.

Automated Functional Testing based on the Navigation of
Web Applications

Boni Garcı́a Juan C. Dueñas
Departamento de Ingenierı́a de Sistemas Telemáticos

ETSI Telecomunicación - Universidad Politécnica de Madrid
Avda. Complutense 30, 28040

Madrid, Spain
bgarcia@dit.upm.es jcduenas@dit.upm.es

Web applications are becoming more and more complex. Testing such applications is an intricate
hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practi-
tioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach
to perform automated software testing for web applications based on its navigation. On the one hand,
web navigation is the process of traversing a web application using a browser. On the other hand,
functional requirements are actions that an application must do. Therefore, the evaluation of the cor-
rect navigation of web applications results in the assessment of the specified functional requirements.
The proposed method to perform the automation is done in four levels: test case generation, test data
derivation, test case execution, and test case reporting. This method is driven by three kinds of in-
puts: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an
open-source testing framework named Automatic Testing Platform. The validation of this work has
been carried out by means of a case study, in which the target is a real invoice management system
developed using a model-driven approach.

1 Introduction

The World Wide Web (or simple the Web) has become one of the most influential instruments not only
in computing but in the history of mankind [22]. The development of web applications has been in
general ad hoc, resulting in poor-quality applications. As the reliance on larger and more complex web
applications increases so does the need for using methodologies and guidelines to develop applications
that are delivered on time, within budget, and with a high level of quality.

Software testing is the main technique to ensure quality and finding bugs. It is in general a difficult
and time-consuming task. Web testing may be even more difficult, due to the peculiarities of such
applications. A significant conclusion has been reached in the survey of web testing depicted in [18]:
“further research efforts should be spent to define and assess the effectiveness of testing models, methods,
techniques and tools that combine traditional testing approaches with new and specific ones”. Following
this statement, this piece of research presents an approach to test web applications by automating its
navigation. This approach allows saving time on testing effort, since it is automated in different levels.
Firstly, unit test cases are generated for each path in the navigation of the web site. Secondly, depending
on the data handled by the System Under Test (SUT), test data is generated and stored in a spread-sheet.
These data is used later by the created unit test cases. Thirdly, test case execution is performed using
Selenium, which allows running the web interaction using a real browser. Finally, a complete test report
is generated of each unit test case, which corresponds to each path in the SUT navigation.

The remainder of this paper is structured as follows. Section 2 introduces the context in which this
research has been performed (i.e. automated software testing, web testing and modeling, and graph the-

http://dx.doi.org/10.4204/EPTCS.61.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

50 Automated Functional Testing based on the Navigation of Web Applications

ory). Section 3 shows a comparative study of the existing choices to find the paths in the web navigation.
This section also presents a laboratory experiment carried out in order to select the algorithm to be uses
in the proposed approach. Section 4 presents the proposed methodology to perform automated web test-
ing. Section 5 describes how the proposed method has been implemented in an open-source tool named
Automatic Testing Platform (ATP). Section 6 details the validation of the presented approach by means
of an industrial case study, in which ATP has been employed to test an invoice management web system.
Finally section 7 presents the reached conclusions.

2 Background

2.1 Automated Software Testing

Software testing is the main activity performed for evaluating product quality, and for improving it,
by identifying defects in software-intensive systems [1]. Manual testing is usually a hard and time-
consuming and expensive activity. Some studies shows that testing is considered as one of the most costly
development processes, sometimes exceeding fifty per cent of total development costs [6]. Consequently,
testing is often poorly performed or skipped by practitioners. This situation suggests industry-wide
deficiency in testing, and automated testing is proposed as one possible solution to overcome this problem
[20]. A definition of Automated Software Testing (AST) can be found in [12] as the “Application and
implementation of software technology throughout the entire Software Testing Lifecycle (STL) with the
goal to improve efficiencies and effectiveness”.

AST is most effective when implemented within a framework. Testing frameworks may be defined
as a set of abstract concepts, processes, procedures and environment in which automated tests will be
designed, created and implemented. According to the Automated Testing Institute (ATI)1, there are three
different generations of AST frameworks. The 1st generation is comprised of the linear approach to au-
tomated testing. This approach is typically driven by the use of the Record & Playback (R&P) method. It
is carried out firstly recording the linear scripts corresponding with actions performed in the application
(record). After that, the automation stage can be done repeating the record while exercising the SUT
(playback). The 2nd generation comprises two kinds of frameworks: the data-driven and functional
decomposition. Frameworks built on data-driven scripting use test data typically stored in a database of
file external. Functional decomposition refers to the process of producing modular components in such
a way that automated test scripts can be constructed to achieve a testing objective by combining these
existing components. The 3rd generation includes the keyword-driven and model-based frameworks.
The keyword-driven frameworks process automated tests that are developed with a vocabulary of key-
words. These keywords are associated with functions that are interpreted with application-specific data.
The automated scripts execute the interpreted statements in the SUT. The model-based frameworks go
beyond creating automated tests in a semi-intelligent manner. Model-Based Testing (MBT) is the soft-
ware testing technique where test cases are derived in whole or in part from a model that describes some
aspects of the SUT [24].

2.2 Web Testing and Modeling

Web applications follow a client-server application protocol. The web client (using a web browser,
such as Explorer, Opera, Safari, Firefox or Chrome) sends an HTTP request through a TCP-IP network

1http://www.automatedtestinginstitute.com/

http://www.automatedtestinginstitute.com/

B. Garcı́a & Juan C. Dueñas 51

(typically the Internet) to a web server. The server receives this request and determines the page, which
usually contains some script language to connect which a database server. A middleware component
connects the web server with the database to inform about query and get the requested data. This data is
used to generate an HTML page, which is sent back to the client in form of a HTTP response.

Web testing consists of executing the application using combinations of input and state to reveal
failures. These failures are caused by faults in the running environment or in the web application itself.
The running environment mainly affects the non-functional requirements of a web application, while the
web application is responsible for the functional requirements. Web applications are difficult to test, due
to their peculiarities [18]: i) A wide number of users distributed all over the world accessing concurrently.
ii) Heterogeneous execution environments (different hardware, network connections, operating systems,
web servers and browsers). iii) Heterogeneous nature because of different technologies, programming
languages, and components. iv) Dynamic nature, since web pages can be generated at run time according
to user inputs and server status.

Regarding web modeling, in some cases new models have been proposed while in other cases ex-
isting modeling techniques have been adapted from other software domains [2]. The de-facto notation
standard for modeling is UML (Unified Modeling Language). The standard diagrams in UML 2.0 are
the following [19]: uses cases, activity, classes, sequence, interaction, communication, object, state ma-
chine, composite, deployment, package, and timing. Hence, UML 2.0 does not provide in a standard
way any diagrams to model some specific aspects of the web applications. For that reason, specific UML
extensions have been created, for example the

• UML-based Web Engineering (UWE)2 is a software engineering approach aiming to cover the
whole life-cycle of web application development [16]. It is based on the Unified Process (UP)
[17], and defines a UML notation by means of an UML profile.

• W2000 is an approach that also extends UML notation to model multimedia elements. These
multimedia elements are inherited from HDM (Hypermedia Design Model) [5].

• Web Modeling Language (WebML)3 is a high-level specification language for designing com-
plex web applications. It offers a visual both in Entity-Relationship and UML, although UML is
preferred by the authors [9].

• Navigational Development Techniques (NDT)4 is a methodological approach oriented to the web
engineering. It is mainly focused on the requirements and the analysis phases using the model-
driven paradigm [13].

2.3 Graph Theory

In mathematics and computer science, graph theory is the study of graphs. A graph is the abstract
representation of a set of vertices (vertex or nodes) connected by arcs (edges or links). A graph is a pair
G = (V,E) of sets such that the elements of V are vertex and the elements of E are the edges. The usual
way to picture a graph is by drawing a dot for each vertex and joining two of these dots by a line if the
corresponding two vertices form an edge [11].

On one hand, a graph in with the edges have no orientation is known as undirected graph. On the
other hand, if the edges have orientation, the graph is known as directed graph (digraph) [4]. A digraph

2http://uwe.pst.ifi.lmu.de/
3http://www.webml.org/
4http://iwt2.org/

http://uwe.pst.ifi.lmu.de/
http://www.webml.org/
http://iwt2.org/

52 Automated Functional Testing based on the Navigation of Web Applications

is acyclic if it has no cycle. A digraph is strongly connected (or, just, strong) if every vertex is reachable
from every other vertex, i.e. there is a path from each vertex in the graph to every other vertex. A
multigraph is a graph in which is permitted having multiple edges (two or more edges that are incident to
the same two vertices) and/or loops (edge that connects a vertex to itself). If the multigraph is directed,
then is known as multidigraph. In a weighted graph a number is assigned to each edge. This number
(weight) could represent costs, lengths and so on.

A path is a graph such that from each of its vertex there is an edge to the next vertex in the sequence.
If the start node is the same than the end node, then the path is known as cycle. A walk is a path in which
nodes or links may be repeated. A circuit is closed walk.

3 Finding the Paths in a Multidigraph

We will use graph theory to represent and work with the navigation of web applications. Therefore, a
web site can be modeled by means of a finite multidigraph, that is, a finite directed graph (finite set of
web pages and nodes) in which multiple edges and/or loops are allowed. Given a multidigraph, we need
a method or algorithm to find its independent paths. The coverage criteria in this path decomposition is
that each edge is traversed at least once. This condition also implies that each vertex is visited at least
once too. This section studies the algorithms and methods found in the literature to solve this problem.
Some discussion is provided in order to select the best option.

Graph traversal is the facility to move through a structure visiting every vertex once. There are two
possible traversal methods for a graph: Breadth-First Search (BFS) and Depth-First Search (DFS) [8].
BFS visits all the vertex, beginning with a specified start. No vertex is visited more than once. BFS makes
use of a queue (First-In First-Out, FIFO) data structure. DFS works in a similar way, except that the
neighbors of each visited vertex are added to a stack (Last-In, First-Out, LIFO) data structure. Traveling
Salesman Problem (TSP) tries to find the most efficient (i.e., least total distance) cycle through each of
each vertex of a graph [14]. TSP is a variation of the Hamiltonian tour problem (to find a cycle that visits
each vertex exactly once in a graph), and it belongs to the class of NP-hard problems. The Shortest Path
Problem (SPP) is the problem of finding a path between two nodes within a graph such that the sum
of the weights of its constituent edges is minimized [8]. The main algorithms employed in the different
categories of SPP are: Dijkstra, Bellman-Ford, A* (pronounced “A star”), and Floyd-Warshall.

The Chinese Postman Problem (CPP), also known as the postman tour or route inspection problem,
is the problem of finding a shortest circuit that visits every edge of a graph at least once, i.e. the Chinese
Postman Tour (CPT). Finding an optimal solution of these problems is NP-complete [7]. Thimbleby
proposes a solution for CPP in form of deterministic algorithm in [23], providing an executable Java to
solve this problem. The constraint imposed by this algorithm is that the input digraph has to be strongly
connected with no negative weight cycles. It considers a graph as a collection of arcs < label, i, j,c >,
where label is an identifier for an arc from vertex i to j, and c the cost associated with it.

The node reduction algorithm [6] finds out the path between two nodes, typically the entry and
exit nodes by reducing the rest of graph connecting these nodes. It employs graph algebra to achieve
this goal. The multiplicative operator in graph algebra means concatenation: if edge a is followed by
edge b, their product is a · b (path product). The additive operator is selection: if either edge a or edge
b can be taken, their sum is a+ b. A path expression contains path products and zero or more additive
operators, and are usually represented by upper case letters (e.g. A = a ·b) [3]. Finally, in graph algebra
it is usually employed the graph matrix representation, which is a square array with one row and one
column for every node in the graph. Each row-column combination corresponds to a relation between

B. Garcı́a & Juan C. Dueñas 53

Figure 1: Digraph Example (Original and Strongly Connected)

the node corresponding to the row and the node corresponding to the column [6]. The node reduction
algorithm has basically two steps: i) remove self-loops (any node n that has an edge to itself); ii) eliminate
intermediate nodes and replacing it with a set of equivalent links. An example of this algorithm is detailed
below, and it has been employed for web navigation in [21].

None of the methods before fits exactly in the problem at hand: to select the different path within a
graph. BFS and DFS algorithms traverse each vertex within a graph, but they do not ensure that each
edge is visited at least once. This applied to web navigation is not acceptable, due to the fact that we need
to visit each web link. The same issue happens with TSP: Hamiltonian tours have nothing to with edges
but vertices coverage. The different algorithms of SPP are not useful in this domain due to the fact that
it looks for the shortest path between nodes. CPP fits exactly with the objective of 100% edge coverage,
but it has a strong constraint that cannot be ensured for any multidigraph modeling web navigations:
they should be strong connected. Node reduction could be an alternative, but we cannot suppose that
web navigation has always an exit page.

Nevertheless, CPP and node reduction can be modified to solve the problem. Consider the digraph la-
beled as “i) Original” in Figure 1. A simple and effective way to convert this graph in strongly connected
is by adding virtual links from the leaf nodes (those with no out links), connecting them with the start
node (“home” in the navigation). These virtual links are labeled with “R”, which means “reset”. These
links will be substituted by additive operator when reducing the graph to its paths. The new equivalent
digraph is shown in Figure 1, labeled as “ii) Strongly connected”.

In this new situation, CPP suits the problem of checking web sites: a vertex is a page, an arc is a
link, the label of the arc could be hot text or a URL, and the weight represents a cost (e.g. estimated in
seconds of the user checking the link). The goal is to determine a list of labels that, in order, constitute
an optimal CPT, i.e. the shortest tour with few repeated street visits to cover every edge in the graph.
The cost of a CPT is defined as the total arc weight, summed along the circuit. The optimal test sequence
for this web site is therefore an open CPT. Assigning a weight of 1 for each link and applying the CPP
algorithm given in [23] to the proposed example, the resulting path expression is the following:

E1 ·E3 ·E4 ·E5 ·R ·E1 ·E7 ·R ·E1 ·E2 ·E6 ·R ·E0 ·R = E1 ·E3 ·E4 ·E5+E1 ·E7+E1 ·E2 ·E6+E0

That is, four different paths with a total cost of 10 links. Moreover, node reduction can be applied to
the strongly connected graph in order to reduce the equivalence graph matrix. The complete explanation
of how this process is done can be found in [6], and the resolution for this example it is illustrated in
Figure 2. Therefore, the resulting path expression of this application of the node reduction algorithm to
the proposed example is:

54 Automated Functional Testing based on the Navigation of Web Applications

Figure 2: Node Reduction Solution for the Proposed Example

Figure 3: Node Reduction vs. CPP Costs

(E1 ·E7 ·R+E1 ·E2 ·E6 ·R) · (E0+E1 ·E2 ·E3) ·E5 ·E6 ·R = E1 ·E7+E0 ·E5 ·E6+E1 ·E3 ·E4 ·E5 ·E5+E1 ·E2 ·E6

That is, four different paths with a total cost of 13 links. It is a quite similar solution than the one
provided by CPP (10 vs. 13 links). This fact suggests that CPP gives better results than node reduction.
In order to ensure this statement, we have made a laboratory experiment. The experiment will consist
on the comparison between node reduction and CPP, using random multidigraphs (i.e., with loops and
multiple edges). These graphs have been created using an incremental number of links (from 1 to 50).
For each digraph node reduction and CPP will be executed, comparing its cost (number of links employed
in the resulting set of paths), and also the computation time (milliseconds in achieve the solution). This
experiment has been carried out in a PC Intel Core2 Quad (2.66 GHz) with 4 GB of RAM memory. It
has been repeated 100 times, and the mean of the values (cost and time) is shown in Figure 3 and 4.

CPP has a better behavior than node reduction because it is more linear. It always has a better cost
solution than node reduction (Figure 3). In addition, the resolution time is higher and higher in node
reduction while CPP ends always in a few of milliseconds (Figure 4). All in all, CPP is the selected
algorithm to find out the set of path in a digraph in our method.

B. Garcı́a & Juan C. Dueñas 55

Figure 4: Node Reduction vs. CPP Time

4 Proposal Statement

Di Lucca and Fasolino draw an important conclusion about functional testing for web applications [18]:
“As to the functional testing, existing tools main contribution is limited to manage test case suites man-
ually created, and to match the test case results with respect to a manually created oracle. Therefore,
greater support to automatic test case generation would be needed to enhance the practice of testing Web
applications”. Following this statement, we propose an approach to perform AST for web applications
based on its navigation.

To achieve automated functional testing, requirements should be described in a form that can be
understood by software programs. Hence, the first way we propose to model web navigation in order to
automate the testing process is by means of UML 2.0 diagrams, concretely the following:

• Use case diagram. These diagrams offer a perspective of the functional requirements of the appli-
cation interaction with the actors.

• Activity diagrams. These diagrams describe the flow within a use case. Therefore, each activity
diagram will describe the navigation structure of the SUT.

• Presentation diagrams. These diagrams models the data which is handle by the web application.
Due to the fact that UML 2.0. do no implement this feature, it is required a UML profile which
enhances the syntax of standard UML 2.0 to achieve modeling of web pages.

As depicted in Section 2.2, presentation diagrams are not standard in UML 2.0. Therefore, we need
to use one of the specific UML extensions for web applications depicted in that section. Recent research
shows that software project success is directly tied to requirement quality [15]. Requirement Engineering
(RE) involves all lifecycle activities devoted to identification and analysis of user requirements, docu-
mentation of the requirements as specification, and validation of the documented requirements against
user needs. Thus, we are going to compare the presented UML-based technologies using which types
of requirements are handled by each approach [10]. Table 1 presents this comparison. Each column
shows whether or not the technology manages the following type of requirements: i) data requirements
(also known as conceptual requirements, establishes how information is stored and administrated); ii)
user interface (interaction requirements); iii) navigation (users’ navigation needs); iv) personalization

56 Automated Functional Testing based on the Navigation of Web Applications

Table 1: UML-Based Web Modelling Technologies

Data UI Navigation Personalization Transactional Non-functional
UWE X X X
W2000 X X X X X
WebML X X
NDT X X X X X X

(customization, describing how requirements are dynamically adaptable); v) transactional; vi) non-
functional. Having seen these results, NDT seems to be the choice to model web applications since
it covers each kind of the requirements studied. Therefore, the UML models to guide the MBT approach
of this paper will be based on NDT.

States in activity diagrams are connected by links. These links are characterized by a label called
guard. This guard describes how web state changes and it will be used to describe the involved HTML
elements in the transitions between states. A transition can be composed by several atomic actions. In
order to be able to describe this behavior, the guard of the activity diagrams will follow the notation
depicted below:

[target1 ,event1 ,<key1> ; target2 ,event2 ,<key2> ; . . . targetn ,eventn ,<keyn>]

The meaning of these fields is the following:

• Target: Identifier of the HTML target element. In order to translate the target element, the follow-
ing procedure will be used:

Function LocateHTMLElement (Target)
Found = nothing
For each frame in the frameset (if frames exist)

For each HTML element in the frame
Found = Look for Target in the id /name /value attribute
If Not Found

Found = Look for Target as text
If Not Found

Found = Execute Target as XPath expression
End If

End If
End For

End For
Return Found

End Function

• Event: Literal that describes the action performed. These literals are based on the DOM event
specified by the W3C5, i.e. click, dblclik, keypress, keydown, keyup, mousedown, mousemove,
mouseout, mouseover, and mouseup.

• Key: Optional field containing the button that triggers the key events.

The second way of modeling the web navigation will be using the R&P approach, which is a useful
way to represent the structure of a web application by recordings interactions with the application trough

5http://www.w3.org/TR/DOM-Level-2-Events/events.html

http://www.w3.org/TR/DOM-Level-2-Events/events.html

B. Garcı́a & Juan C. Dueñas 57

Figure 5: XSD Graphic Representation

the browser. This method is more agile than UML, since the application can be developed avoiding the
formal design phase.

Halfway between the UML models and R&P, we have created a syntax-neutral way of modelling
the navigation using a specific created XML notation. XML (Extensible Markup Language) provides
an easy way to store and share information. To provide the formal declaration of this XML format,
XML Schema language (also known as XML Schema Definition, XSD) will be employed to perform the
formalization of the navigation constraints.

This XSD schema defines a website as a collection of states (pages) and transitions (links). The
initial page is called home, and it is unique. In addition, there is a finite number or web pages connected
by links, as depicted in Figure 5, which represents the XSD type for a web site.

There is a mandatory XML attribute in the definition of a web site named base. This attribute is the
starting URL for the navigation. The automation of the browsing will be carried out from this URL. Each
page is recognised by a unique identifier. Each state can contain a set of data fields, and each data field
contains the following information:

• Id: Data field identifier.

• Locator: Optional identifier used to make a reference to a specific path (to element within a tran-
sition).

58 Automated Functional Testing based on the Navigation of Web Applications

• Type: Data type. It corresponds to the following HTML input elements: text, textarea, password,
checkbox, radio, file, select-one, and select-multiple.

• Required: Boolean value than indicates whether or not the data field is mandatory.

• Value: Collection of values of the data field.

• Stereotype: One of the following types: email, date, name, surname, address, string, integer.

Moreover, each state can contain a set of oracles, which perform assertions in this web page. These
oracles are described using the following attributes:

• Id: Oracle identifier.

• Locator: Optional reference. It has the same meaning as in a data field.

• Type: Oracle category. It can be one of the following literals: text (assertation for a text to be
present in the locator element), notText (the opposite of text), textPresent (assertation for a text to
be present in web page), textNotPresent (the opposite of textPresent), value (assertation for a value
to be present in the locator element), and notValue (the opposite of value).

Finally, web transitions are composed by an attribute called from (which is the identifier of the web
page source) and a collection of actions and web targets (attribute to). The action attributes is composed
by the fields target, key, and event. The meaning of these fields is the same as in the guard of UML
activity diagrams.

A simple example of navigation based on this XSD-schema is illustrated in the following snippet:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<website xmlns="http://www.dit.upm.es/atp" xmlns:xsi="http://www.w3.org←↩

/2001/XMLSchema-instance" xsi:schemaLocation="http://www.dit.upm.es/←↩
atp http://atestingp.sourceforge.net/atp.xsd" base="http://←↩
localhost:8080/WebAdmin/">
<home id="login">

<data locator="username">
<value>Administrador</value>

</data>
<data locator="password">

<value>admin</value>
</data>

</home>
<transition from="login">

<action target="frmDatos_0" event="click"/>
<to state="init"/>
<to state="login"/>

</transition>
<state id="init">

<assert locator="texto-entrada" type="text">
<value>Welcome</value>

</assert>
</state>

</website>

All in all, the approach we propose to automate the functional testing for web applications can be
seen as an aggregation of the following automated methods:

B. Garcı́a & Juan C. Dueñas 59

Figure 6: Schematic Diagram of the Test Case Automation

• R&P. Linear scripts using a record and playback method is used. This approach is considered the
1st generation of AST frameworks.

• Data-driven approach (2nd generation). This testing approach means that using a single test case
driving the test with input and expected values from an external data source instead of using the
same hard-coded values each time the test runs.

• MBT (3rd generation). UML models from design phases (use cases, activity, and presentation
diagram) will be reuse to guide the automation approach.

In order to achieve the data-driven approach, the automation will mean the separation of the test case
and test data/expected outcome generation. In order to store the test data and expected outcome a tabular
data file will be used. This file will store test data (input) and expected outcomes (output). Therefore,
this method has one strong prerequisite: there should be a model of the navigation behaviour of the web
under test. As depicted before, this navigational model is one of these three notations: UML (using
NDT), or XML, or R&P. This requisite is labelled as pre-automation in the red box illustrated in Figure
6.

Once test cases for the navigation paths are generated, additional input and output data can be man-
ually added to drive more test cases with the same test logic. These data (input and output) can be stored
as new files in the tabular file as depicted before. This process is shown schematically in the yellow box
labelled as post-automation in Figure 6.

60 Automated Functional Testing based on the Navigation of Web Applications

Regarding test case generation, the automation is done in three different stages: i) Test logic genera-
tion; ii) Test data generation; iii) Test oracle generation. Test logic generation is illustrated in the green
box in Figure 6. This step takes as input the model from the pre-automation stage, i.e. a model in UML,
or XML or R&P. This logic generation pass through the following steps:

• White-Box Parser. This entity is in charge of translating the different models used for testers
(UML, XML, or R&P) to the internal way of modelling web applications, that is, multidigraphs.

• CPP. This module contains the deterministic CPP Java algorithm created by Thimbleby [7], used
to find the paths within the multidigraph.

• Paths. As a result of applying the CPP algorithm, a set of independent paths should be found.
These paths correspond to a sequence of web pages that should be exercised against the SUT to
ensure the navigation requirements.

Test data generation is illustrated in the purple box on Figure 6. This stage is also fed with the
navigation model from the pre-automation stage. The process is as follows:

• Black-Box Parser. This module extracts test data and expected outcome from the input model.
XML models can include test data and R&P models can include test data and expected outcome.
Regarding test data (input), this black-box parser should extract the value and the data type.

• Data type will feed a test data dictionary. This dictionary contains a collection of data that can be
used as input for test cases. For the selection of specific value, besides the type of data, a module
that generates a random pointer will be used (randomizer).

• Therefore, the data required for the test cases consist on the aggregation of three different sources:
i) Data from the XML and R&P models; ii) Randomly generated data from on a test data dictio-
nary; iii) Manual data included as new rows in the tabulated file (post-automation).

Test oracle generation is illustrated in the green box on Figure 6. This module has the following
parts:

• Outcome analyser. This module collects data from the response of the SUT and extracts the fol-
lowing information: i) Navigation state; ii) Actual data returned by the application. In order to
find out the real state navigation, the aggregation of data field will be used.

• White-Box Oracle. This module will establish verdicts by comparing the expected to the actual
state. The expected state is set by the navigation path previously extracted in the test logic module.
The real state is extracted from the SUT’s response by the outcome analyser using the procedure
described before (aggregation of data fields).

• Black-Box Oracle. This module will establish verdicts by comparing expected with actual data.
The expected data comes from the black-box parser of the test data module. In addition, additional
expected data can be added in the post-automation stage by adding new information in the tabular
data file.

• Verdicts from white and black-box oracles will become the test report.

B. Garcı́a & Juan C. Dueñas 61

Table 2: ATP Components

Function Library URL
Unit framework JUnit http://www.junit.org/
Web browsing Selenium http://seleniumhq.org/
Test case generation Freemarker http://freemarker.sourceforge.net/
Random data generation dgMaster http://dgmaster.sourceforge.net/
Test case execution Ant http://ant.apache.org/
Test case reporting iText http://itextpdf.com/
Graph manipulation JUNG http://jung.sourceforge.net/
XML parsing JDOM http://www.jdom.org/
Spread-sheet access JExcelAPI http://jexcelapi.sourceforge.net/

Figure 7: ATP Process

5 Automatic Testing Platform

The tool which implements the testing proposed in this paper has been named Automatic Testing Plat-
form (ATP)6 and has been released as open-source under the terms of Apache license 2.0. ATP has been
built using existing open-source components, summarized in Table 2.

Therefore, ATP accepts three kinds of inputs: i) XML navigation; ii) NDT files (UML); iii) Selenium
scripts in HTML format. Regarding NDT approach, it uses Enterprise Architect (EA) to build its models
[13]. ATP accepts this EA models in XMI (XML Metadata Interchange) format. Regarding output, ATP
creates a Java Eclipse project from the scratch with the following components inside (see Figure 7):

• JUnit test cases. One per path.

• Tabular test data (input and ouput). In an Excel spread-sheet per path.

• Script runner (Apache Ant). This script starts the Selenium server before running the unit test
cases.

ATP is a command-line tool. It has five main commands. Typing only “atp” in the shell, it shows the
following help:

6http://atestingp.sourceforge.net/

http://www.junit.org/
http://seleniumhq.org/
http://freemarker.sourceforge.net/
http://dgmaster.sourceforge.net/
http://ant.apache.org/
http://itextpdf.com/
http://jung.sourceforge.net/
http://www.jdom.org/
http://jexcelapi.sourceforge.net/
http://atestingp.sourceforge.net/

62 Automated Functional Testing based on the Navigation of Web Applications

> atp
[INFO] ATP (Automatic Testing Platform) v2 . 0
[INFO] [http: / / atestingp .sourceforge .net]
[INFO] Copyright (c) 2011 UPM . Apache 2 . 0 license .
[INFO]
[INFO] Use one of these options:
[INFO] atp create
[INFO] atp run
[INFO] atp clean
[INFO] atp list
[INFO] atp set <key> <v a l u e>
[INFO] atp report

The explanation of these commands is:

• Create: this command creates the test case and data for each path. The Eclipse project which
contains these artifacts is also created with this command.

• Run: this command executes the previously created test cases, by using the Ant script executor
already created. Previous to the execution, a Selenium server is launched. As a result, test reports
in different formats are created (XML, HTML, and PDF).

• Clean: This command drops the Eclipse project previously created.

• List: This command shows the configuration parameters of ATP. The most important parameters
are: sut, which is the URL of the web under test; root, folder where the Eclipse project with all the
output artifact to be created; navigation-type, type of input (xml, xmi or html); navigation-folder,
root to the input file(s).

• Set: This command change the value of any configuration parameter. For example: atp set
navigation-type xmi.

• Report: This command opens the HTML reports previously generated.

6 Case Study: Management of Electronic Invoices

ATP’s method and implementation has been validated using a complete web application developed for the
Spanish company Telvent called “Factura” created in the context of IT Factur@ innovation project. This
application is an electronic invoice web management system which has been developed using a Model
Driven Engineering (MDE) approach [21]. The Research Questions (RQ) which have driven this case
study are the following: i) RQ1: Does the Factura application accomplish its functional requirements? ii)
RQ2: Is ATP capable of finding defects in a finished web application? iii) RQ3: What are the advantages
and disadvantages of different types of input (UML, XML, and R&P) to ATP?

The input model for ATP will be the XMI models created using EA following the NDT approach.
5 use cases have been identified, and each use case has been refined using an activity diagram. ATP
uses the information of each activity diagram as input to create an equivalent navigation graph. Figure 8
shows the use case diagram and an example of activity diagram:

After that and using the CPP algorithm, it breaks the graph into its path, which is written as unit
test cases (JUnit). Test data is also created using the information attached to the model when possible,
and using random data from test data dictionaries otherwise. Finally, the test cases were executed. As a
result, 6 navigation errors have been found. In addition, 8 JavaScript notifications were reported by ATP.
These notifications include JavaScript alerts, prompts, and confirmations. An snapshot of the generated
report is illustrated in Figure 9.

B. Garcı́a & Juan C. Dueñas 63

Figure 8: Use Cases and Activity Diagrams

Table 3: ATP Pros and Cons

Input Pros Cons
XMI (UML
models in
NDT)

Analysis/design models are reused for
assessment. Every possible path is de-
picted in the models.

It is not possible to attach test data nor
oracle in the models. Post-automation
step is mandatory.

XML (based
on XSD
Schema)

Every possible path can be depicted us-
ing XML files. Data and oracles can be
attached to XML files

The XML files must be coded and
maintained by hand.

HTML (Se-
lenium R&P
scripts)

The creation of the scripts is done using
Selenium IDE against the real applica-
tion. Data and oracles can be attached
to HTML scripts

Each recording is linear, therefore there
isalways a single path by HTML script.
Error paths should be defined in differ-
ent scripts.

Regarding RQ1, we can conclude that Factura is quite good implemented since the navigation error
number is low. Regarding RQ2, it has been proved that ATP can be a useful tool to discover functional
failures in web applications. RQ3 is about the way that ATP works. The pros and cons of these inputs
are summarized in Table 3.

7 Conclusion

This paper has presented a method for the automated testing of web applications based on their naviga-
tion. The basic idea behind this approach is to exercise the SUT using a real browser, performing the
navigation from page to page by means of web links. During this navigation, a functional validation
is carried out since the correctness of the links and the underlying logic is executed. Each web page
corresponds to a state in the navigation picture, which is ensured to be correct during the navigation.

The first kind of input for this method can be UML models of the SUT. Concretely, three kinds of

64 Automated Functional Testing based on the Navigation of Web Applications

Figure 9: Case Study Report

UML diagrams are needed: use case, activity, and presentation diagram. Since presentation diagrams
are not standard in UML 2.0, we have done a study of the state-of-the-art in web modeling, and we have
decide to use NDT as our choice to model web application using UML. The second alternative in our
method is using a R&P script recorded using Selenium IDE, since Selenium RC will be the tool in charge
of the automation of the web navigation. Third and last, an XML-based file for the navigation can be
employed. This XML file is a simple way of structuring the navigation following a XSD schema.

This approach has been implemented in an open-source framework named Automatic Testing Plat-
form (ATP). This tool automates the testing in four levels: i) test case logic generation; ii) test data
derivation; iii) test oracle generation; iii) test case execution driven by Ant scripts; iv) test case reporting.
To validate the proposed method, a web application for invoice management system has been employed.
ATP has proven to be capable to find functional defects in a real web application.

Future work will extend the presented approach through the automation of testing and analysis of
non-functional requirements such as performance, security, compatibility, usability and accessibility.

Acknowledgment

This paper has been performed in the context of the European project ITEA-MOSIS (project number
06035), under grant by Spanish Ministerio de Industria, Turismo y Comercio in the PROFIT program.

References

[1] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore & Leonard L. Tripp (2004): Guide to the
Software Engineering Body of Knowledge - SWEBOK, 2004 version edition. IEEE Press, Piscataway, NJ,
USA. Available at http://www.swebok.org/ironman/pdf/SWEBOK_Guide_2004.pdf.

[2] Manar H. Alalfi, James R. Cordy & Thomas R. Dean (2008): Modeling methods for web application verifi-
cation and testing: State of the art. doi:10.1002/stvr.v19:4.

[3] Paul Ammann & Jeff Offutt (2008): Introduction to Software Testing, 1 edition. Cambridge University Press,
New York, NY, USA.

http://www.swebok.org/ironman/pdf/SWEBOK_Guide_2004.pdf
http://dx.doi.org/10.1002/stvr.v19:4

B. Garcı́a & Juan C. Dueñas 65

[4] Jrgen Bang-Jensen & Gregory Z. Gutin (2008): Digraphs: Theory, Algorithms and Applications, 2nd edition.
Springer Publishing Company, Incorporated.

[5] L. Baresi, F. Garzotto & P. Paolini (2001): Extending UML for Modeling Web Applications. In: Proceedings
of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34)-Volume 3 - Volume 3,
HICSS ’01, IEEE Computer Society, Washington, DC, USA, pp. 3055–. Available at http://portal.
acm.org/citation.cfm?id=820558.820674. doi:10.1109/HICSS.2001.926350.

[6] Boris Beizer (1990): Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York, NY,
USA.

[7] Paul E. Black (1999): Chinese postman problem. Algorithms and Theory of Computation Handbook Avail-
able at http://www.nist.gov/dads/HTML/chinesePostman.html.

[8] John Adrian Bondy (1976): Graph Theory With Applications. Elsevier Science Ltd.
[9] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai & Maristella Matera (2002):

Designing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[10] Marı́a José Escalona Cuaresma & Nora Koch (2004): Requirements Engineering for Web Applications - A

Comparative Study. J. Web Eng. 2(3), pp. 193–212.
[11] R. Diestel (2005): Graph Theory. Springer.
[12] Elfriede Dustin, Thom Garrett & Bernie Gauf (2009): Implementing Automated Software Testing: How to

Save Time and Lower Costs While Raising Quality, 1st edition. Addison-Wesley Professional.
[13] Maria J. Escalona & Gustavo Aragón (2008): NDT. A Model-Driven Approach for Web Requirements. IEEE

Trans. Softw. Eng. 34, pp. 377–390, doi:10.1109/TSE.2008.27. Available at http://portal.acm.org/
citation.cfm?id=1383055.1383293.

[14] Herbert Fleischner (1991): Eulerian Graphs and Related Topics : Eulerian Graphs and Related Topics.
North-Holland.

[15] Mayumi Itakura Kamata & Tetsuo Tamai (2007): How Does Requirements Quality Relate to Project
Success or Failure? Requirements Engineering, IEEE International Conference on 0, pp. 69–78,
doi:10.1109/RE.2007.31.

[16] N. Koch & A. Kraus (2002): The expressive Power of UML-based Web Engineering. Available at http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7588.

[17] Per Kroll & Philippe Kruchten (2003): The Rational Unified Process Made Easy: A Practitioner’s Guide to
the RUP. Addison-Wesley Professional.

[18] Giuseppe A. Di Lucca & Anna Rita Fasolino (2006): Testing Web-based applications: The state of the art and
future trends. Information & Software Technology 48(12), pp. 1172–1186. doi:10.1016/j.infsof.2006.06.006.

[19] Russ Miles & Kim Hamilton (2006): Learning UML 2.0. O’Reilly Media, Inc.
[20] Bruce Posey (2002): Just Enough Software Test Automation. Prentice Hall PTR, Upper Saddle River, NJ,

USA.
[21] Filippo Ricca & Paolo Tonella (2001): Analysis and testing of Web applications. In: Proceedings of the 23rd

International Conference on Software Engineering, ICSE ’01, IEEE Computer Society, Washington, DC,
USA, pp. 25–34. Available at http://portal.acm.org/citation.cfm?id=381473.381476.
doi:10.1109/ICSE.2001.919078.

[22] Gustavo Rossi, Oscar Pastor, Daniel Schwabe & Luis Olsina, editors (2008): Web Engineering: Modelling
and Implementing Web Applications. Springer, London, doi:10.1007/978-1-84628-923-1.

[23] Harold Thimbleby (2003): The directed chinese postman problem. In journal of Software Practice and
Experience 33, p. 2003. doi:10.1002/spe.540.

[24] Mark Utting & Bruno Legeard (2006): Practical Model-Based Testing: A Tools Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

http://portal.acm.org/citation.cfm?id=820558.820674
http://portal.acm.org/citation.cfm?id=820558.820674
http://dx.doi.org/10.1109/HICSS.2001.926350
http://www.nist.gov/dads/HTML/chinesePostman.html
http://dx.doi.org/10.1109/TSE.2008.27
http://portal.acm.org/citation.cfm?id=1383055.1383293
http://portal.acm.org/citation.cfm?id=1383055.1383293
http://dx.doi.org/10.1109/RE.2007.31
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7588
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7588
http://dx.doi.org/10.1016/j.infsof.2006.06.006
http://portal.acm.org/citation.cfm?id=381473.381476
http://dx.doi.org/10.1109/ICSE.2001.919078
http://dx.doi.org/10.1007/978-1-84628-923-1
http://dx.doi.org/10.1002/spe.540

	1 Introduction
	2 Background
	2.1 Automated Software Testing
	2.2 Web Testing and Modeling
	2.3 Graph Theory

	3 Finding the Paths in a Multidigraph
	4 Proposal Statement
	5 Automatic Testing Platform
	6 Case Study: Management of Electronic Invoices
	7 Conclusion

