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Model Driven Engineering (MDE) is an emerging approach of software engineering. MDE em-
phasizes the construction of models from which the implementation should be derived by applying
model transformations. The Ontology Definition Meta-model (ODM) has been proposed as a profile
for UML models of the Web Ontology Language (OWL). In this context, transformations of UML
models can be mapped into ODM/OWL transformations. On the other hand, model validation is a
crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source
and target models. However, semantic requirements have to be imposed on source and target mod-
els. A given transformation will be sound when source and target models fulfill the syntactic and
semantic requirements. In this paper, we present an approach for model validation in ODM based
transformations. Adopting a logic programming based transformational approach we will show how
it is possible to transform and validate models. Properties to be validated range from structural and
semantic requirements of models (pre and post conditions) to properties of the transformation (in-
variants). The approach has been applied to a well-known example of model transformation: the
Entity-Relationship (ER) to Relational Model (RM) transformation.

1 Introduction

Model Driven Engineering (MDE) is an emerging approach for software development. MDE emphasizes
the construction of models from which the implementation should be derived by applying model trans-
formations. Hence, the model transformation [29, 16] is a key tool of MDE. According to the Model
Driven Architecture (MDA) [23] initiative of the Object Management Group (OMG) [22], the model
transformation provides to developers a framework for transforming their models.

The MDA approach proposes (at least) three levels in order to describe a model transformation: the
first one is the so-called meta-meta-model, which is the basis of the model transformation, and provides
the language for describing meta-models. The second one consists in the meta-models of the models to
be transformed. Source and target models must conform to the corresponding meta-model. Such meta-
models are modeled according to the meta-meta-model. The third one consists in the source and target
models. Source and target models are instances of the corresponding meta-models. In addition, source
and target meta-models are instances of the meta-meta-model. In order to define a model transformation
one should be able to meta-model the source and target models with regard to the meta-meta-model, and
map source and target meta-models. Model transformation needs formal techniques for specifying the
transformation. In most cases transformations can be expressed in some kind of rules.

On the other hand, the Ontology Definition Metamodel (ODM) proposal [25] of the OMG aims to
define an ontology-based representation of UML models. ODM is a standard for representing UML
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models by OWL in which, among others, UML classes are mapped into ontology concepts, UML asso-
ciations are mapped into ontology roles, and multiplicity restrictions of UML are mapped into cardinality
restrictions in roles. ODM is itself an UML meta-model in which UML models can be accommodated.
Following the ODM proposal, an UML model can be represented by an ontology in which the TBox
(i.e. the terminological box) contains the UML meta-model while the ABox (i.e. the assertional box)
contains the instance of the UML meta-model which represents the model.

Model validation is a key element of MDE. Firstly, (a) source and target models must conform to the
corresponding meta-models. Source and target meta-models describe the syntactic structure of source
and target models. However, some semantic requirements have to be imposed on source and target
models. In UML semantic requirements are usually expressed in the Object Constraint Language (OCL)
[24]. Secondly, (b) pre-conditions and post-conditions and invariants are imposed on transformations.
While source and target models can be well-formed with regard to meta-models, some extra requirements
can be required. We can distinguish two specific cases: (b.1) source and target model requirements, and
(b.2) transformation requirements. The first case covers requirements of source and target models in
isolation. The second case covers requirements on target models with regard to the source models.

In the ODM context, one can argue that the use of OWL as modeling language provides a suitable
framework for validation of properties. OCL can be replaced by OWL when specifying requirements
imposed on models. OWL reasoning is a widely studied topic of research, and many tools have been
developed in this context (for instance, the Protégé tool [18] and the OWL reasoners Hermit, Jena,
Fact++, Racer, among others). OWL reasoning ranges from ontology consistence testing to ontology-
based inference (i.e. derivation from ontology axioms). The topic can be applied to ODM (an hence
to UML) however, validation in model transformation is a wider topic of research. Model validation
involves ontology consistence testing and ontology-based inference for cases (a) and (b.1), while case
(b.2) involves cross validation of ontologies.

On the other hand, the relationship between logic programming and ontologies is well-known. OWL
is based on the Description Logic (DL) [5], a family of fragments of first order logic, and some DL
fragments can be encoded into logic programming, for instance, the so-called Description Logic Pro-
gramming approach [12], and OWL RL [21, 3]. Typically, Description Logic is used for representing
the TBox and the ABox. The encoding of (fragments of) DL into logic programming is based on the
representation of the TBox by Prolog rules and the representation of the ABox by Prolog facts. It means
that ontology instances are represented by Prolog facts.

In this paper, we present an approach for model validation in ODM based transformations. Adopting
a logic programming based transformational approach we will show how it is possible to transform and
validate models. Properties to be validated range from structural and semantic requirements of models
(pre and post conditions) to properties of the transformation (invariants). The approach has been applied
to the well-known example of model transformation: the Entity-Relationship (ER) into Relational Model
(RM) transformation. We have validated our proposal in a prototype developed under SWI-Prolog. The
prototype together with the case study can be downloaded from http://indalog.ual.es/mdd.

The proposal is based on the use of logic programming with two ends. Firstly, specification of
transformations. Secondly, specification of properties for model validation. Our approach adopts the
OWL to logic programming mapping as basis. Firstly, transformations can be expressed in Prolog rules.
In model transformation, a transformation maps the source model into the target model, and thus, the
ABox of the source model into the ABox of the target model. Model transformation can be seen as
a mapping of Prolog facts following the OWL to logic programming encoding, and it can be defined
by Prolog rules. Secondly, model validation can be encoded with Prolog. Using Prolog atoms and
some elements of Prolog meta programming we are able to validate source and target models as well as

http://indalog.ual.es/mdd
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transformations.
The advantages of the approach are the following. Firstly, the declarative nature of the specification,

secondly, the use of a standardized language (Prolog), and the ability of executing transformations and
automatically validate source and target models. Besides, the use of Prolog as validation language en-
riches the mechanisms of ODM and OWL constructors for expressing model requirements. While ODM
is an OWL profile for UML models the expressivity power of ODM is limited, and model validation
needs to express more complex requirements.

The structure of the paper is as follow. Section 2 will introduce the model transformation framework
and will describe a case study of transformation. Section 3 will present the Prolog-based approach.
Section 4 will show model validation. Section 5 will discuss related work. Finally, Section 6 will
conclude and present future work.

2 Model Transformation

The elements to be considered in a ontology based transformation using Prolog as transformation lan-
guage can be summarized as follows:

– We have to consider the meta-model of the source model which defines the elements occurring in
the source model. Instances of the source meta-model are transformed by applying the transfor-
mation rules.

– We have to consider the meta-model of the target model which defines the elements occurring in
the target model.

– We have to define Prolog rules for transforming instances of the source meta-model into instances
of the target meta-model.

– We have to define Prolog rules for validating the transformation. The validation consists in source
model validation, target model validation and transformation validation.

The question now is, how to express transformations and validations in Prolog? Our proposal is as
follows.

– The ODM proposal provides a representation of UML models by an ontology. The TBox repre-
sents the meta-model and the ABox properly represents the model. We can represent the ABox
by Prolog facts. Fortunately, SWI-Prolog, used in our prototype, is equipped with a library for
RDF(S)/OWL which imports and exports RDF triples to Prolog facts.

– A transformation from a source model into a target model can be seen as a transformation from the
set of Prolog facts of the source model into the set of Prolog facts representing the target model.
Prolog rules can be used for transforming Prolog facts.

– Model validation consists in checking properties on source and target models in isolation as well
as checking cross properties on both models. Model validation with Prolog consists in checking
properties about the set of Prolog facts representing source and target models.

Our approach has been implemented and tested with some examples. We have used several UML
and OWL tools (see Figure 1).

– We have used the TopCased UML tool [28] for designing the source and target meta-models.

– In addition, we made use of a UML2OWL transformer (available from [15]) in order to have the
ODM-based representation of source and target meta-models.
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Figure 1: UML/OWL tools

– We have also employed the Protégé tool [18] for defining the instance of the source meta-model,
and for exporting the source model (i.e. meta-model+instance) to an OWL document.

– After, the SWI-Prolog interpreter is utilized to validate the source model, and to transform the
instance of the source model into the instance of the target model.

– Once the target model is computed, SWI-Prolog is used to validate the target model, and to validate
the transformation.

– Next, the Protégé tool is also employed to export the target model together with the target meta-
model to an OWL document.

– Finally, an OWL2UML transformer has been employed to obtain the target model from the ODM-
based representation.

2.1 Case Study

In this section we will describe the case study of the paper. It is a well-known example of model trans-
formation. Basically, the entity-relationship (ER) model is transformed into the relational model (RM).
The model of Figure 2 represents the modeling of a database by an ER style diagram, while the model
of Figure 3 is a RM style modeling of the same database.

The ER modeling of Figure 2 can be summarized as follows. Data are represented by classes
(i.e., Student and Course), including attributes; stores are defined for each data (i.e., DB Students and
DB Courses); relations are represented by associations; relation names are association names; besides,
association ends are defined (i.e., the students, the courses, is registered and register); relations can be
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model-A

 id_course : int
 title : String
 credits : float

Course
 id_student : int
 name : String
 age : int

Student

DB_CoursesDB_Students

 id_course : int id_student : int
0..*

0..* register

is_registered

0..*

1

the_students
0..*

1

the_courses

Figure 2: Entity-relationship modeling of the Case Study

Model-B

<<row>>
Course

 type : float

<<column>>
credits

 type : int

<<column>>
id_course

 type : int

<<column>>
id_student

 type : String

<<column>>
name

 type : int

<<column>>
age

<<table>>
register

<<row>>
registerCourse

 type : int

<<column>>
registerCourseid_course

 type : int

<<column>>
registerCourseid_student

<<row>>
Student

<<table>>
the_courses

<<table>>
the_students

 type : String

<<column>>
title

1

1col

1

0..*line

1

1col

1

1key

1

1 foreign

1

0..*line

1

0..*line

1

1 key

1

1 foreign

1

1col 1

1

col

Figure 3: Relational modeling of the Case Study

adorned with qualifiers and navigability; qualifiers specify the key attributes of each data (used as foreign
keys of the corresponding association).

Figure 3 shows the RM modeling of the same database. Tables are composed of rows, and rows are
composed of columns. It introduces the following UML stereotypes: << table >>, << row >> and
<< column >>. Furthermore, line is the role of the rows in the tables and key, foreign and col is the role
of the key, foreign, and non key and non foreign attributes in rows, respectively. Finally, each column
has an attribute type.

Figure 4 represents the meta-models of ER and RM models. In the first case, DB Students and
DB Courses are instances of the class store, while Student and Course are instances of the class data,
and the attributes of classes Student and Course are instances of the class attribute. In the second case,
tables and rows of the target model are instances of the corresponding meta-classes, and the same can be
said about classes key, col and foreign.

Now, the goal of the model transformation is to describe how to transform a class diagram of the type
A (like Figure 2) into a class diagram of the type B (like Figure 3).



22 Model Validation in Ontology Based Transformations

metamodel B

-name : String

-type : String

col

-name : String

-type : String

foreign

-name : String

-type : String

key

-name : String

row

-name : String

table

is_col

has_col

is_foreign

has_foreign

is_key

has_key

table

has

*

1

1

1

*

1

*

1

Figure 4: Meta-model of the Source/Target Models

objectmodel A

name = credits

type = float

key = false

 : attribute

name = title

type = String

key = false

 : attribute

name = id_course

type = int

key = true

 : attributename = DB_Courses

 : store

name = register

navigable = true

min = 0

max = *

 : role

name = id_course

type = int

 : qualifier

 : relation

name = id_student

type = int

 : qualifier

name = is_registered

navigable = false

min = 0

max = *

 : rolename = age

type = int

key = false

 : attribute

name = name

type = String

key = false

 : attribute

name = id_student

type = int

key = true

 : attribute name = DB_Students

 : store

name = Course

container = the_courses

 : data

name = Student

container = the_students

 : data

Figure 5: Object Model of Source Model

The transformation is as follows. The transformation generates two tables called the students and
the courses each including three columns that are grouped into rows. The table the students includes for
each student the attributes of Student of Figure 2. The same can be said for the table the courses. Given
that the association between Student and Course is navigable from Student to Course, a table of pairs
is generated to represent the assignments of students to courses, using the role name of the association
end, that is, register concatenated with Course, that is, registerCourse, for naming the cited table. The
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objectmodel B

name = credits

type = float

 : col

name = title

type = String

 : col

name = id_course

type = int

 : key

name = registerCourseid_course

type = int

 : foreign

name = registerCourseid_student

type = int

 : foreign

name = Course

 : row

name = registerCourse

 : row

name = the_courses

 : table

name = register

 : table

name = id_student

type = int

 : key

name = name

type = String

 : col

name = age

type = int

 : col

name = Student

 : row

name = the_students

 : table

Figure 6: Object Model of Target Model

Source Model
(1) All attributes of a data have distint names (SR) (WF) (2) Each data has a unique key attribute (SR) (TR)
(3) Each data has a key attribute (SR) (TR) (4) Each attribute is associated to exactly one data (SC) (WF)
(5) Each data is contained in exactly one store (SC) (WF) (6) All data have distinct names (SR) (TR)
(7) All data have distinct containers (SR) (TR) (8) Each qualifier is associated to exactly one role (SC) (TR)
(9) All qualifier names of a role are distinct (SR) (TR) (10) All qualifiers are key attributes (SR) (WF)
(11) Each relation has two roles (SC) (WF) (12) All relation names are distinct (SR) (WF)
(13) Each role is associated to exactly one relation (SC) (TR) (14) Each role is associated to exactly one data (SC) (TR)
(15) All role names of a data are distinct (SR) (TR) (16) Each store is associated to exactly one data (SC) (WF)
Target Model
(17) All col names of a row are distinct (SR) (WF) (18) All foreign names of a row are distinct (SR) (WF)
(19) All key names of a row are distinct (SR) (WF) (20) All foreigns of a row are keys of another row (SR) (WF)
(21) Each table is associated to exactly one row (SC) (WF) (22) Each row is associated to exactly one table (SC) (WF)
(23) Each key is associated to exactly one row (SC) (TR) (24) Each col is associated to exactly one row (SC) (TR)
(25) Each foreign is associated to exactly one row (SC) (TR) (26) All table names are distinct (SR) (WF)
(27) All row names are distinct (SR) (WF) (28) All rows have exactly one key (SC) (TR)
(29) All rows have either all keys and cols or all foreigns (SR) (TR)
Cross Requirements
(30) Key and col names and types are names and types of attributes (31) Table names are either container names or role names
(32) Row names are data names or concatenations of role and data names (33) Foreign names are concatenations of roles, data and keys

Table 1: Model validation: requirements

columns registerCourseid student and registerCourseid course taken from qualifiers, play the role of
foreign keys which are represented by the role foreign in the association of Figure 3.

The transformation can be considered as a transformation between object diagrams of source and
target meta-models (see Figures 5 and 6). A transformation should be able to define a set of rules from
which instances of the target meta-model are obtained from instances of the source meta-model.

2.2 Model Validation

While source and target meta-models impose structural constraints (SC) on source and target models,
we can specify several semantic requirements (SR) on source and target models. In addition, we can
describe cross requirements on models. In Table 1 we can see a set of requirements classified as (SC)
and (SR). Some requirements express conditions on well-formed models (WF), while some of them are
required by the transformation, that is, they are transformation requirements (TR).

– For instance, (2) requires that each data has a unique key attribute. This is a semantic requirement.
Key attributes are attributes having key set to true, and the existence of a unique key attribute
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cannot be expressed in the UML diagram. Moreover, this requirement is a pre-condition of the
transformation because key attributes are used as foreign keys in the target model.

– Case (5) is an structural constraint on well-formed models: each data is associated to exactly one
store. It is not needed in the transformation and can be expressed in the UML diagram with a
cardinality constraint.

– Cases (6), (7), (9), (12) and (15) are related to naming of elements of source models, and therefore
they are semantic requirements. They (except (12)) are required by the transformation: data and
container names are used for naming tables and rows in the target model, while role and qualifier
names (concatenated with data names) are also used for naming rows and foreign keys.

– (12) is required on a well-formed source model.

– In the target model tables, rows, cols, keys and foreigns are not shared (cases (21)-(25)).

– Case (20) is a semantic requirement that describes the relationship between foreign keys and keys
in a well-formed target model.

– Case (29) is required by the transformation which assigns either keys and cols or foreigns to rows.

– Finally, cases (30)-(33) describe the relationship between names of the target model and names of
the source model.

It is worth observing that the requirements about source and target models in isolation are not enough
for the soundness of the transformation. For instance, source and target models can both have keys, but
a cross requirement is needed: the keys of the target models are the keys of the source model.

3 Prolog for Model Transformation and Validation

In this section, we will show how Prolog can be used for defining transformation and validation rules in
our approach. With this aim, we have to consider the following elements.

3.1 Prolog based Transformation

The Prolog interpreter has to import and export OWL files. This is the case of SWI-Prolog which includes
a library to import and export RDF(S)/OWL triples. The SWI-Prolog library stores RDF triples in a da-
tabase, and they can be retrieved with the predicate rdf. The RDF library includes predicates:

– rdf reset db/0 which resets the database,

– rdf load(+File,+Options) for importing triples,

– rdf save(+File) for exporting triples,

– and finally, rdf assert(+Subject,+Property,+Object) for inserting a new triple in
the current database.

A Prolog predicate transform(+SourceModelFile,+TargetModelFile) has been defined
to transform a source model (stored in a OWL file) into a target model (stored also in a OWL file). The
Prolog code of such predicate is as follows:
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transform(_,_):-rdf_reset_db,fail.
transform(_,_):-retractall(new(_,_,_)),fail.
transform(FileIn,_):-rdf_load(FileIn,[]),fail.
transform(_,_):-newrdf(A,B,C),assert(new(A,B,C)),fail.
transform(_,_):-rdf_reset_db,fail.
transform(_,_):-new(A,B,C),rdf_global_term(B,D),rdf_assert(A,D,C),fail.
transform(_,FileOut):-rdf_save(FileOut),rdf_reset_db.

The transformation rules define new triples representing the target model. Hence, a new predicate
called newrdf is defined by the transformation rules. For instance, the following rules define the indi-
viduals of the class table of the model B from the model A of the case study:

newrdf(IdTable,rdf:type,’http://metamodelB.ecore#table’):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
generate_id([IdData,’table1’],IdTable).

newrdf(IdTable,rdf:type,’http://metamodelB.ecore#table’):-
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,E),
E=literal(type(_,true)),
generate_id([IdRole,’table2’],IdTable).

The first rule defines triples (IdTable,rdf:type,’http://metamodelB.ecore#table’) obtained from
triples (IdData,rdf:type,’http://metamodelA.ecore#data’), where IdTable is the identifier of the table,
which is generated by the call generate id from the data identifier IdData and ’table1’.

The second rule defines the individuals of class table obtained from navigable roles, which are gen-
erated from the role identifier IdRole and ’table2’.
In such a way that the following Prolog goal obtains the tables of the target model:

?- newrdf(IdTable,rdf:type,’http://metamodelB.ecore\#table’).
IdTable = ’http://metamodelA.ecore#02_Student_datatable1’ ;
IdTable = ’http://metamodelA.ecore#09_Course_datatable1’ ;
IdTable = ’http://metamodelA.ecore#13_register_roletable2’ ;

false.

which represent the individuals of classes Student, Course and register of Figure 6. Now, the indi-
viduals of the class row of Figure 6 can be defined as follows:

newrdf(IdRow,rdf:type,’http://metamodelB.ecore#row’):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
generate_id([IdData,’row1’],IdRow).

newrdf(IdRow,rdf:type,’http://metamodelB.ecore#row’):-
rdf(IdData,’http://metamodelA.ecore#data.role_of’,IdRole),
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,E),
E=literal(type(_,true)),
generate_id([IdRole,IdData,’row2’],IdRow).

The first rule defines the individuals of the class row obtained from instances of data (i.e., the iden-
tifiers of the courses and the students), and the second rule defines the individuals of the class row
obtained from navigable data roles (i.e., the identifier of registerCourse).

Now, key, col and foreign elements have to be defined. For instance, the individuals of the class
foreign are defined as follows:
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newrdf(IdForeign,rdf:type,’http://metamodelB.ecore#foreign’):-
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,E),
E=literal(type(_,true)),
rdf(IdRole,’http://metamodelA.ecore#role.is’,IdQualifier),
rdf(IdData,’http://metamodelA.ecore#data.role_of’,IdRole),
generate_id([IdRole,IdData,IdQualifier,’foreign1’],IdForeign).

newrdf(IdForeign,rdf:type,’http://metamodelB.ecore#foreign’):-
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,E),
E=literal(type(_,true)),
rdf(IdRole,’http://metamodelA.ecore#role.has_role’,IdRelation),
rdf(IdRelation,’http://metamodelA.ecore#relation.is_role’,IdRole2),
rdf(IdRole2,’http://metamodelA.ecore#role.is’,IdQualifier),
IdRole2\==IdRole,
rdf(IdData,’http://metamodelA.ecore#data.role_of’,IdRole),
generate_id([IdRole2,IdData,IdQualifier,’foreign2’],N).

In this case, instances of the class foreign are obtained from navigable roles, using the identifier of the
qualifier and the identifier of the role to generate the identifier. Now, the association roles of the Figure
5 have to be defined. For instance, the role has from the class table of Figure 4 is defined as follows:

newrdf(IdTable,’http://metamodelB.ecore#table.has’,IdRow):-
rdf(IdData,rdf:type,’http://metamodelA.ecore#data’),
generate_id([IdData,’table1’],IdTable),
generate_id([IdData,’row1’],IdRow).

newrdf(IdTable,’http://metamodelB.ecore#table.has’,IdRow):-
rdf(IdData,’http://metamodelA.ecore#data.role_of’,IdRole),
rdf(IdRolw,’http://metamodelA.ecore#role.navigable’,E),
E=literal(type(_,true)),
generate_id([IdRole,’table2’],IdTable),
generate_id([IdRole,IdData,’row2’],IdRow).

The first rule defines the rows of the tables obtained from instances of data, and the second rule
defines the rows of the tables obtained from navigable roles.

Finally, attributes of the classes of the target metamodel of Figure 4 have to be defined. For instance,
name of class table is defined as follows:

newrdf(IdTable,’http://metamodelB.ecore#table.name’,Name):-
rdf(IdData,’http://metamodelA.ecore#data.container’,Name),
generate_id([IdData,’table1’],IdTable).

newrdf(IdTable,’http://metamodelB.ecore#table.name’,Name):-
rdf(IdRole,’http://metamodelA.ecore#role.name’,Name),
rdf(IdRole,’http://metamodelA.ecore#role.navigable’,C),
C=literal(type(_,true)),
generate_id([IdRole,’table2’],IdTable).

where the table names are obtained from container names (i.e., the students and the courses).

3.2 Prolog based Validation

Model validation is achieved with Prolog. Table 2 includes some of the Prolog rules of the requirements
expressed in Table 1. The full set of rules can be downloaded from http://indalog.ual.es/mdd.

For validating the requirements on models, we can call the rules and in the case of success it indicates
that the requirement is violated. In other words, the condition of the rule expresses the negation of

http://indalog.ual.es/mdd
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(1) attribute_distinct_names:-
rdf(Data,mmA:’data.attr_of’,Att1),rdf(Data,mmA:’data.attr_of’,Att2),Att1\=Att2,
rdf(Att1,mmA:’attribute.name’,Name1),rdf(Att2,mmA:’attribute.name’,Name2),
Name1=Name2.

(2) exists_key:-
setof(Att,(rdf(_,mmA:’data.attr_of’,Att),
rdf(Att,mmA:’attribute.key’,literal(type(_,true)))),Keys),
Keys=[].

(3) unique_key :-
rdf(Data,mmA:’data.attr_of’,Att1),rdf(Data,mmA:’data.attr_of’,Att2),Att1\=Att2,
rdf(Att1,mmA:’attribute.key’,literal(type(_,true))),
rdf(Att2,mmA:’attribute.key’,literal(type(_,true))).

(5) unique_store_data:-
setof(Store,rdf(_,mmA:’data.contained_in’,Store),Stores),Stores=[_,_|_].

(10) qualifiers_are_keys :-
rdf(_,mmA:’qualifier.name’,Name),
\+(rdf(Attribute,mmA:’attribute.name’,Name),

rdf(Attribute,mmA:’attribute.key’,literal(type(_,true)))).
(11) two_roles_relation :-

setof(Role,rdf(_,mmA:’relation.is_role’,Role),Roles),Roles\=[_,_].
(17) unique_col_names_row :-

rdf(Row,mmB:’row.is_col’,Col1),rdf(Row,mmB:’row.is_col’,Col2),Col1\=Col2,
rdf(Col1,mmB:’col:name’,Name1),rdf(Col2,mmB:’col:name’,Name2),Name1=Name2.

(20) foreign_keys:-
rdf(Row,mmB:’row.is_foreign’,Foreign),
rdf(Row,mmB:’row.name’,NRow),NRow=literal(type(_,RN)),
rdf(Foreign,mmB:’foreign.name’,NFor),NFor=literal(type(_,FN)),
concat(RN,NKey,FN),
\+rdf(_,mmB:’key.name’,literal(type(_,NKey))).

(21) unique_table_row :-
rdf(Table,mmB:’table.has’,Row1),rdf(Table,mmB:’table.has’,Row2),Row1\=Row2.

(29) well_formed_rows:-
rdf(Row,mmB:’row.is_key’,_),rdf(Row,mmB:’row.is_foreign’,_).

well_formed_rows:-
rdf(Row,mmB:’row.is_col’,_),rdf(Row,mmB:’row.is_foreign’,_).

(31) containers_or_roles :-
rdf(_,mmB:’table.name’,Name),
\+rdf(_,mmA:’role.name’,Name),\+rdf(_,mmA:’data.container’,Name).

(32) data_or_roles_and_data :-
rdf(_,mmB:’row.name’,Name),Name=literal(type(_,N)),
\+rdf(_,mmA:’data.name’,Name),
\+(rdf(_,mmA:’role.name’,Name1),rdf(_,mmA:’data.name’,Name2),

Name1=literal(type(_,N1)),Name2=literal(type(_,N2)),concat(N1,N2,N)).

Table 2: Model validation: requirements

the requirement. Prolog meta programming predicates are used. For instance, case (2) uses the setof

predicate to collect the set of keys of a given data.

4 Related Work

Validation and verification of model transformations is an emerging topic of research. We have found
some similarities of our approach with the work proposed in [6]. The authors work in the context of
the ATLAS Transformation language (ATL) and OCL, but handle the same kind of properties of our
approach (unique names for relations and attributes together with existence of keys).

A more general framework for transformation validation and verification is proposed in [7] including
verification and validation of properties about transformation rules. Our approach focused on properties
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about meta-models, assuming that when some requirement is violated either source models or rules are
incorrect.

Prolog has been also used in the Model Manipulation Tool (MoMaT) [27] for representing and verify-
ing models. In [17] they propose consistency checking of class and sequence diagrams based on Prolog.
Consistency checking rules as well as UML models are represented by Prolog, and a Prolog reasoning
engine is used to automatically find inconsistencies.

On the other hand, logic programming based languages have already been explored in the context of
model engineering in some works.

A first approach is [10], which describes the attempts to adopt several technologies for model trans-
formation including logic programming. Particulary, they focused on Mercury and F-Logic logic lan-
guages. The approach [4] has introduced inductive logic programming in model transformation. The
motivation of the work is that designers need to understand how to map source models into target mod-
els. With this aim, they are able to derive transformation rules from an initial and critical set of elements
of the source and target models. The rules are generated in a (semi-) automatic way.

The Tefkat language [20, 19] is a declarative language whose syntax resembles a logic language with
some differences (for instance, it incorporates a forall construct for traversing models). In this frame-
work, in [13], they propose metamodel transformations in which evolutionary aspects are formalised
using the Tefkat language.

In [11], they present a declarative approach for modeling requirements (designs and patterns) which
are encoded as Prolog predicates. A search routine based on Prolog returns program fragments of the
model implementation. Traceability and code generation are based on logic programming. They use
JTransformer, which is a logic-based query and transformation engine for Java code, based on the Eclipse
IDE.

Logic programming based model querying is studied in [9], in which logic-based facts represent
meta-models. In [26] they study a transformation mechanism for the EMF Ecore platform using Prolog as
rule-based engine. Prolog terms are used to represent models and predicates are used for deconstructing
and reconstructing a term of a model.

Abductive logic programming is used in [14] for reversible model transformations, in which changes
of the source model are computed from a given change of the target model. Finally, in [8], they have
compared OCL and Prolog for querying UML models. They have found that Prolog is faster when
execution time of queries is linear.

5 Conclusions and Future Work

In this paper we have presented a framework for the specification and validation of model transformations
with Prolog rules, using the representation of UML models by ODM. Our approach has been applied to
a well-known example of model transformation in which an UML class diagram representing a ER
diagram is transformed into a UML diagram representing a relational database. We have validated our
proposal with a prototype developed under SWI-Prolog.

Our approach has to be extended in the future as follows:

– Firstly, we would like to improve our prototype. Particularly, validation is now achieved by Prolog
rules in which success and fail is returned. We would like to show more detailed analysis results,
showing the model elements that violate the requirements, justifications, diagnosis, reparations,
etc.
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– Secondly, we would like to test our approach with other UML diagrams and transformations, and
also with bigger examples;

– Thirdly, we are also interested in the use of our approach for model driven development of user
interfaces in the line of our previous works [1, 2];

– Finally, we believe that our work will lead to the development of a logic based tool for transfor-
mation and validation of models.
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