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The Web of Linked Data is the cumulation of over a decade of work by the Web standards commu-
nity in their effort to make data more Web-like. We provide an introduction tothe Web of Linked
Data from the perspective of a Web developer that would like to build an application using Linked
Data. We identify a weakness in the development stack as being a lack of domain specific scripting
languages for designing background processes that consumeLinked Data. To address this weakness,
we design a scripting language with a simple but appropriatetype system. In our proposed architec-
ture some data is consumed from sources outside of the control of the system and some data is held
locally. Stronger type assumptions can be made about the local data than external data, hence our
type system mixes static and dynamic typing. Throughout, werelate our work to the W3C recom-
mendations that drive Linked Data, so our syntax is accessible to Web developers.

1 Introduction

Linked data is raw data published on the Web that makes use of URIs to establish links between datasets.
The use of URIs to identify resources allows data about resources to be looked up (dereferenced) using
a simple protocol, and for the data returned to contain more URIs that can also be looked up. Linked
Data consumers can crawl the Web of Linked Data to pull in datathat can enrich a Web application. For
example the 2012 Olympics Website used Linked Data to help journalists discover and organise statistics
about relatively unknown medal winners during the games. Due to links bringing down barriers between
datasets, the Web of Linked Data is amongst the worlds largest datasets in the hands of Web developers.

We describe a simple, but appropriate architecture for a Linked Data consumer. We then address
the problem of designing a type system for this architecture. Linked Data published on the Web from
multiple sources is inherently messy, so data arriving overHTTP must be dynamically type checked.
Dynamically type checked data is then loaded into a local triple store. The local triple store persists a
view of the Web of Linked Data relevant to the Linked Data consumer. Once the consumed Linked Data
has been dynamically typed checked, queries and scripts over the local data can be type checked using a
mix of dynamic and static type checking. Finally, because wecan never have a global view of the Web
of Linked Data, we take care to design our type system so that type checking is local. To achieve this we
select a useful subset of the W3C standards SPARQL, RDF Schema and OWL to design our type system.

In Section 2, we describe the Linked Data architecture, withan emphasis on consuming Linked Data.
In Section 3 we argue for a notion of type that aligns with the relevant W3C recommendations and is as
simple as possible whilst picking up basic programming errors. In Section 4, we define the syntax of our
scripting language for consuming Linked Data and the rules of our type system.
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http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


20 Local Type Checking for Linked Data Consumers

2 From a Web of Documents to a Web of Data

In 1989, Tim Berners-Lee proposed a hypertext system that became the World Wide Web. In his pro-
posal [2], he observes that hypertext systems from the 1980’s failed to gain traction because they at-
tempted to justify themselves on their own data. He described a simple but effective architecture for
exposing existing data from file systems and databases as HTML documents that link to other docu-
ments using URIs. This architecture is still used today to present documents that link to documents.

Despite the success of the World Wide Web, Berners-Lee was not completely satisfied. He also
wanted to make raw data itself Web-like, not just the documents that present data. His first vision was
called the Semantic Web [4], which was an AI textbook vision of a world where intelligent agents would
understand data on the Web to do every day tasks on our behalf.As admitted by Berners-Lee and his
co-author Hendler, there was much hype but limited success scaling ideas. Hendler self-critically asked:
“Where are all the intelligent agents?” [19]. By 2006 [30], Berners-Lee had come to the conclusion that
there had been too much emphasis on deep ontologies and not enough data.

Thus Berners-Lee returned to the grass roots of the Web: the Web developers. He described a simple
protocol for publishing raw data on the Web [3]. The protocolmakes use of standards, namely URIs
as global identifiers, HTTP as a transport layer and RDF as a data format, according to the following
principles:

• use URI to identify resources (i.e. anything that might be referred to in data),

• use HTTP URIs to identify resources so we can look them up (using the HTTP GET verb),

• when a URI is looked up, return data about the resource using the standards (RDF),

• include URIs in the data, so they can also be looked up.

Data published according to the above protocol is calledLinked Data. An HTTP URI that returns data
when it is looked up is adereferenceableURI. All URIs that appear in this paper are dereferenceable,so
are part of this rapidly growing Web of Linked Data [18].

The Linked Data protocol is one example of aRESTfulprotocol [14]. A RESTful protocol runs
directly on the HTTP protocol using the HTTP verbs (including GET, PUT and DELETE) which are
suited to services of publishing data. Many data protocols such as the Twitter API1, Facebook Open
Graph protocol2 and the Google Data API3 are RESTful, and with some creativity they can be broadly
interpreted as Linked Data. Hence, like the Web of hypertext, the Web of Linked Data does not need to
justify itself solely on its own data.

2.1 An Architecture for Consuming Linked Data

Data owners may want to publish their data as Linked Data. Publishing Linked Data is no more difficult
than building a traditional Web page. The developer should provide an RDF view of a dataset rather than
an HTML view [6]. Data from diverse sources such as Wikipedia[7] and governments [31] can be lifted
to the Web of Linked Data.

Data consumers may not own data, but have a data centric service to deliver. Data consumers can
consume data from many Linked Data sources then exploit links between datasets. Consuming Linked
Data is the main focus in our work. In Figure 1, we describe a simple architecture for an application that
consumes Linked Data. The architecture is an extension of the traditional Web architecture.

1Twitter API: https://dev.twitter.com/docs/api/1.1
2Facebook Open Graph protocol:https://developers.facebook.com/docs/opengraph/
3Google Data API:https://developers.google.com/gdata/

https://dev.twitter.com/docs/api/1.1
https://developers.facebook.com/docs/opengraph/
https://developers.google.com/gdata/
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Figure 1: A simple but effective architecture for an application that consumes Linked Data.

At the heart of our application is atriple store, which replaces the more traditional relational database.
A triple store is optimized for storing RDF data in subject-property-object form corresponding to a
labelled edge in a graph. There are several commercial gradetriple stores including Sesame, Virtuoso
and 4store [9, 13, 16], which can operate on scales of billions of triples, i.e. enough for almost any Web
application.

The front end of our application follows the traditional Webarchitecture pattern, where Web pages
are generated from a database using scripts. The only difference is that our application uses SPARQL
Query instead of SQL to read from the triple store. The syntaxof SPARQL is similar to SQL, hence
it is easy for an experienced Web developer to develop the front end. Most popular Web development
frameworks, such as Ruby on Rails, have been extended to support SPARQL. The main reason that SQL
is replaced with SPARQL is that a triple store typically stores data from heterogeneous data sources. Het-
erogeneous data sources are difficult to combine and query using tables with relational schema; whereas
combining and querying graph models is more straightforward. Thus links between datasets can be more
easily exploited in queries.

The key novel feature of an application that consumes LinkedData is the back end. At the back
end, background processes can crawl the Web of Linked Data todiscover new and relevant Linked Data
sources. Back end processes also keep local Linked Data up-to-date. For example, data from a news
feed may change hourly and changes are made to Wikipedia several times every second. To consume
data relevant to the application, the background processesshould be programmable. This work focuses
in particular on high level programming languages that can be used when programming the back end of
an application. The background processes must be able to dereference Linked Data and update data in
the triple store, as well as make decisions based on query results.

2.2 A Low Level Approach to Consuming Linked Data

The back end of the application that consumes Linked Data should keep track of every URI accessed
through the HTTP protocol. The HTTP header of an HTTP response contains information that can be
used for discovering and maintaining Linked Data about a given URI. We describe the dereferencing of
URIs at a low level, to be concrete about what a high level language should abstract.

Consider an illustrative example of dereferencing a URI. Ifwe perform an HTTP GET on the URI
dbpedia:Kazakhstanwith an HTTP header indicating that we accept the mime typetext/n3, then we
get a303 See Other response.4 A 303 See Other responsemeans that you can get data of the serialisation
type you requested at another location. If we now perform an HTTP GET request at the URI indicated
by the303 See Other response(http://dbpedia.org/data/Kazakhstan.n3), we get an HTTP 200
OK response including the following headers:

GET /data/Kazakhstan.n3 HTTP/1.1

Host: dbpedia.org

Accept: text/n3

HTTP/1.1 200 OK

Date: Tue, 26 Mar 2013 15:39:49 GMT

Content-Type: text/n3

4Reproducible using:curl -v -I -H "Accept:text/n3" http://dbpedia.org/resource/Kazakhstan

http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/data/Kazakhstan.n3
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From the response header (above right) we can tell that this URI successfully returned some RDF
using then3 serialisation format. However, although the data was obtained from the second URI, the
resource represented bydbpedia:Kazakhstanis described in the data.

The303 See Other responseis one of several ways Linked Data may be published using a RESTful
protocol [18]. Furthermore, some systems such as the Virtuoso triple store [13] use wrappers to extract
RDF data from other data sources, such as the Google Data API or the Twitter API. The programmer of
a script that consumes Linked Data should not worry about details such as wrappers or the serialisation
formats. Unfortunately, existing libraries for popular programming languages [1, 27] are at a low level
of abstraction. We propose that a higher level language can hide the above details in a compiler that tries
automatically to dereference URIs.

2.3 A High Level Approach to Consuming Linked Data

Here we consider languages that consume Linked Data at a higher level of abstraction. The only essential
information is the URI to dereference and the data returned.Other features of a high level language
include control flow and queries to decide what other URIs to dereference.

Consider the following script (based loosely on SPARQL [17]). The keywordselect binds a term
bound to variable$x. Thefrom named keyword indicates that we dereference the URI indicated. The
where keyword indicates that we would like to match a given triple pattern. Notice that the secondfrom
named keyword dereferences a URI bound to$x that is not known until the query patter is matched.

from named dbpedia:Kazakhstan
select $x

where

graph dbpedia:Kazakhstan{dbpedia:Kazakhstan dbp:capital$x}
from named $x

The above script first ensures that data representingdbpedia:Kazakhstanis stored in the named graph,
also nameddbpedia:Kazakhstan, in the local triple store. If the URI has not been accessed before,
then the URI is dereferenced. If the URI is dereferenced successfully, then the RDF data is stored in a
named graph in the local triple store. Thus the data can be queried directly from the named graph in the
local triple store. This gives our applications a local viewof the Web of Linked Data. Note that, if the
URI is not dereferenced successfully, then this information can be recorded to avoid future attempts to
dereference the URI.

Having dereferenced the first URI, the query indicated in thewhere clause is evaluated. The query
consists of a named graph to read, indicated by thegraph keyword, and a triple pattern. In the pattern,
the subject is the resourcedbpedia:Kazakhstan, the property isdbp:capital, and the object is not bound.
This query should find exactly one binding for$x to proceed. The query proceeds by discovering a
URI (in this casedbpedia:Astana), and substituting this URI for$x everywhere in the script. After the
substitution, the secondfrom named keyword dereferences the discovered URI and loads the data into
the triple store, as described above.

The above script abstracts away several HTTP GET requests and possibly some redirects and map-
pings between formats. It also encapsulates details where the following SPARQL Query is sent to the
local SPARQL endpoint.

select $x from named dbpedia:Kazakhstanwhere
{ graph dbpedia:Kazakhstan{dbpedia:Kazakhstan dbp:capital$x} } limit 1

http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/capital
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/capital
http://dbpedia.org/resource/Astana
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/capital
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At a lower level of abstraction, the above query would returna results document indicating that$x
has one possible binding. Another programming language would extract the binding from the results
document, then use the binding in some code that dereferences the URI. Just doing this simple task in
Java for example takes several pages of code. The Java program also involves treating parts of the code,
such as the above query as a raw string of characters, which means that even basic errors parsing the
syntax cannot be checked at compile time.

We argue that using the high level script presented at the beginning of this section is simpler than us-
ing a general purpose language with libraries concerned with details of HTTP GET requests, constructing
queries from strings and extracting variable bindings fromquery results. Furthermore, it is worth noting
that the syntax of the script does not significantly depart from the syntax of the SPARQL recommenda-
tions. In this way, we explore the idea of a domain specific scripting language for background processes
of an application that consumes Linked Data.

3 Simple Types in W3C Recommendations

The W3C recommendations do not explicitly introduce a type system for Linked Data. However, there
are some ideas in the RDF Schema [8] and OWL [20] recommendations that can be used as a basis of a
type system. Here we identify one of the simplest notion of a type, and justify the choice with respect to
recommendations. The chosen notion of a type fits with types in Facebook’s Open Graph.

Simple Datatypes. The only common component of the W3C recommendations in thissection is the
notion of a simple datatype. Simple datatypes are specified as part of the XML Schema recommenda-
tion [5]. A type system for Linked Data should be aware of the simple datatypes that most commonly
appear, in particularxsd:string, xsd:integer, xsd:decimal and xsd:dateTime. All these types draw
from disjoint lexical spaces, exceptxsd:integeris a subtype ofxsd:decimal. Note that we assume that
xsd:decimal, xsd:floatandxsd:doubleare different lexical representations of an abstract numeric type.

In the XML Schema recommendation, there is a simple datatypexsd:anyURI. This type is rarely
actively used in ontologies – the ontology for DBpedia only uses this type once as the range of the prop-
erty dbp:review. However, it unambiguously refers to any URI and nothing else, unlike rdfs:Resource
and owl:Thing which, depending on the interpretation, may refer to more than just URIs or a subset of
URIs. In this way, our type system is based on unambiguous simple datatypes, that frequently appear in
datasets, such as DBpedia [7].

Resource Description Framework. A URI is successfully dereferenced when we get a document from
which we can extract RDF data [24]. The basic unit of RDF is thetriple. An RDF triple consists of a
subject, a property and an object. The subject, property andobject may be URIs, and the object may also
be a simple datatype. Most triple stores supportquadruples, where a fourth URI represents either the
named graph[10] or thecontextfrom where the triple was obtained.

Note that the RDF recommendation allows nodes with a local identifier, called a blank node, in
place of a URI. Blank nodes are frequently debated in the community [26], due to several problems they
introduce. Firstly, deciding the equality of graphs with blank nodes is an NP-complete problem; and,
more seriously, when data with blank nodes is consumed more than once, each time the blank node is
treated as a new blank node. This can cause many unnecessary copies of the same data to be created. We
assume that our system assigns a new URI to each blank node in data consumed, hence do not introduce
blank nodes into the local data model.

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/ontology/review
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2002/07/owl#Thing
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It is also important to note that the RDF specification has a vocabulary of URIs that have a distin-
guished role. Notably, the propertyrdf:type is used to indicate a URI that classifies the resource. For ex-
ample, the tripledbpedia:Kazakhstan rdf:type dbp:Countryclassifies the resourcedbpedia:Kazakhstan
as adbp:Country. Although the word “type” is part of the URI for the property,we consider this triple
to be part of the data format rather than part of our type system. In RDF, the word “type” is used in the
AI sense of a semantic network [32], rather than in a type theoretic sense. Since these “types” can be
changed like any other data, we make the design decision not to include them in our type system, because
a type system is used for static analysis.

RDF Schema. The RDF Schema recommendation [8] provides a core vocabulary for classifying re-
sources using RDF. From this vocabulary we borrow only the top level classrdfs:Resourceand the
property rdfs:range. All URIs are considered to identify resources, hence we equate rdfs:Resource
and xsd:anyURI. We define property types for URIs that are used in the property position of a triple.
A property type restricts the type of term that can be used in the object position of a triple. For exam-
ple, according to the DBpedia ontology, the propertydbp:populationDensityhas a rangexsd:decimal.
Thus our type system should accept thatdbpedia:Kazakhstan dbp:populationDensity5.94 is well typed.
However, the type system should reject a triple with object"5.94"which is a string. We use the notation
range(xsd:decimal) for URIs representing properties permitting numbers as objects.

The RDF Schemardfs:domain of a property is redundant for our type system because only URIs
can appear as the subject of a triple, and all URIs are of typexsd:anyURI. Note that properties are
resources because they may appear in data. For example, the triple dbp:populationDensity rdfs:label
"population density (/sqkm)"@en provides a description of the property in English.

Web Ontology Language. The Web Ontology Language (OWL) [20] is mostly concerned with clas-
sifying resources, which is not part of our type system. The OWL classes that are related to our type
system areowl:ObjectProperty, owl:DataTypePropertyand owl:Thing. An owl:ObjectProperty
is a property permitting URIs as objects, i.e. the typerange(xsd:anyURI) in our type system. An
owl:DataTypePropertyis a property with one of the simple datatypes as its value.

In OWL [20], owl:Thing represents resources that are neither properties nor classes. We decide to
equateowl:Thing with xsd:anyURIin our type system. This way we unifyxsd:anyURI, rdfs:Resource
and owl:Thing as the top level of all resources. We do not consider any further features of OWL to be
part of our type system.

SPARQL Protocol and RDF Query Language. The SPARQL suite of recommendations makes ref-
erence only to simple types. SPARQL Query [17] specifies the types of basic operations that are used to
filter queries. For example, a regular expression can only apply to a string, and the sum to two integers
is an integer. SPARQL Query treats all URIs as being of type URI. We also adopt this approach.

Open Graph Protocol. Facebook’s Open Graph protocol uses an approach to Linked Data called mi-
croformats, where bits of RDF data are embedded into HTML documents. Microformats help machines
to understand the content of the Web pages, which can be used to drive powerful searches. The Open
Graph documentation states the following: “properties have ‘types’ which determine the format of their
values.”5 In the terminology of the Open Graph documentation, the value of a property is the object of

5https://developers.facebook.com/docs/opengraph/property-types/ accessed on 27 March 2013.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/resource/Kazakhstan
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Country
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/Country
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/ontology/populationDensity
http://www.w3.org/2001/XMLSchema#decimal
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/populationDensity
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/ontology/populationDensity
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2002/07/owl#ObjectProperty
http://www.w3.org/2002/07/owl#DataTypeProperty
http://www.w3.org/2002/07/owl#Thing
http://www.w3.org/2002/07/owl#ObjectProperty
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2002/07/owl#DataTypeProperty
http://www.w3.org/2002/07/owl#Thing
http://www.w3.org/2002/07/owl#Thing
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2002/07/owl#Thing
https://developers.facebook.com/docs/opengraph/property-types/
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an RDF triple. The documentation explicitly includes the simple data typesxsd:string, xsd:integer, etc,
as types permitted to appear in the object position. This corresponds to the notion of type throughout this
section.

3.1 Local Type Checking for Dereferenced Linked Data

We design our system such that, when a URI is dereferenced, only well typed queries are loaded into the
triple store. This means that we can guarantee that all triples in the triple store are well typed.

Suppose that after dereferencing the URIdbpedia:Kazakhstanwe obtain the following two triples:

dbpedia:Kazakhstan dbp:demonym"Kazakhstani"@en .
dbpedia:Kazakhstan dbp:demonym dbpedia:Kazakhstani.

Suppose also that the propertydbp:demonymhas the typerange(xsd:string). The first triple is well
typed, hence it is loaded into the store in the named graphdbpedia:Kazakhstan. However, the second
triple is not well typed, hence would be ignored. No knowledge of other triples loaded into the store is
required, i.e. our type system is local.

Since only well typed triples are loaded into the local triple store, scripts that use data in the local
triple store can rely on type properties. Thus, for example,if a script consumes the object of any triple
with dbp:demonymas the property, then the script can assume that the term returned will be a string.
This allows some static analysis to be performed by a type system for scripts. This observation is the
basis of the type system in the next section.

4 A Typed Scripting Language for Linked Data Consumers

In this section, we define our language and type system. A grammar specifies the abstract syntax, and
deductive rules specify the type system. We briefly outline the operational semantics, which is defined
as a reduction system.

4.1 Syntax

We introduce a syntax for a typed high level scripting language that is used to consume Linked Data.

The Syntax of Types. A type is either a simple datatype, or it is a property that allows a simple datatype
as its range, as follows:

datatypeF xsd:anyURI| xsd:string| xsd:decimal| xsd:dateTime| xsd:integer

typeF datatype| range(datatype) variableF $x | $y | . . . ΓF ǫ | $x : type,Γ

If a URI with a property type is used in the property position of a triple, then the object of that
triple can only take the value indicated by the property type. Property types are assigned to URIs using
the finite partial functionO ( · ) from URIs to property types. This partial function can be derived from
ontologies or inferred from data.

Type environments are defined by lists of assignments of variables to types. As in popular scripting
languages, such as Perl and PHP, variables begin with a dollar sign.

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#integer
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/demonym
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/demonym
http://dbpedia.org/resource/Kazakhstani
http://dbpedia.org/ontology/demonym
http://www.w3.org/2001/XMLSchema#string
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/demonym
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#integer
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The Syntax of Terms and Expressions. Terms are used to construct RDF triples. Terms can be URIs,
variables or literals of a simple datatype, each of which is drawn from a disjoint pool of lexemes.

uriF dbpedia:URI| . . . integerF 99 | . . . decimalF 99.9 | 0.999e2. . .

stringF "WWV2013" | "workshop"@en-gb. . . dateTimeF 2013-06-6T13:00:00+01:00 | . . .

language-rangeF * | en | en-gb | . . . termF variable | uri | string | integer| decimal| dateTime

regexF WWV.* | . . . exprF term | now | str(expr) | abs(expr) | expr+expr | expr−expr | . . .

Notice that strings may have a language tag, as defined by RFC4646 [28]. A language tag can be matched
by a simple pattern, called a language range, where* matches any language tag (e.g.,en matches any
dialect of English). Regular expressions over strings conform to the XPath recommendation [25].

Expressions are formed by applying unary and binary functions over terms. The SPARQL Query
recommendation [17] defines several standard functions includingstr, which maps any term to a string,
andabs, which takes the absolute value of a number. The expressionnow represents the current date and
time. The vocabulary of functions may be extended as required.

The Syntax of Scripts. Scripts are formed from boolean expressions, data and queries. They define a
sequence of operations that use queries to determine what URIs to dereference.

booleanF boolean|| boolean| boolean&& boolean| ¬boolean
| regex (expr, regex) | langMatches(expr, language-range) | expr= expr | expr< expr | . . .

triplesF term term term| triples triples dataF graph term{triples} | data data

queryF data | boolean| query query| queryunionquery

scriptF where query script Satisfy a query pattern before continuing.
| from named term script Dereference a URI and load it into the local triple store.
| select variable: type script Select a binding for a variable to enable progress.
| do script Iteratively execute the script using separate data.
| skip Successfully terminate.

Data is represented as quadruples of terms, which always indicate the named graph. In SPARQL,
the graph andfrom named keywords work in tandem. Thefrom named keyword makes data from
a named graph available, whilst keeping track of the context. The keywordgraph allows the query to
directly refer to the context. This contrasts to thefrom keyword in SPARQL which fetches data without
keeping the context. We extend the meaning of thefrom named keyword so that the URI is dereferenced
and makes the data available from that point onwards in the context of the URI that is referenced.

Boolean expressions are called filters in the terminology ofSPARQL. We drop the keywordfilter,
because the syntax is unambiguous without it. Filters can beused to match a string with a regular
expression or language tag, or compare two expressions of the same type.

Queries are constructed from filters and basic graph patterns indicated by the keywordwhere. The
basic graph pattern should be matched using data in the localtriple store. The basic graph pattern may
contain variables. Variables in a script must be bound usingthe select keyword. In this scripting

http://dbpedia.org/resource/URI
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language, theselect keyword acts like an existential quantifier. The variables bound byselect are
annotated with a type. However these type annotations may beomitted by the programmer, since they
can be algorithmically inferred using the type system.

4.2 The Type System

For existing implementations of SPARQL, a query that violates types silently fails, returning an empty
result. However, a type error is generally caused by an oversight by the programmer. It would be helpful
if a type error is provided at compiler time, indicating thata query has been designed such that the types
guarantee that no result will ever be returned. For this purpose, we introduce the type system presented
in this section.

Subtypes. We define a subtype relation, that defines when one type can be treated as another type.
The system indicates thatxsd:integer is a subtype ofxsd:decimal. It also defines property types to
be contravariant, i.e. they reverse the direction of subtyping. In particular, if a property permits decimal
numbers in the object position, then it also permits integers in the object position.

⊢ xsd:integer≤ xsd:decimal ⊢ type≤ type

⊢ datatype1 ≤ datatype2

⊢ range
(

datatype2
)

≤ range
(

datatype1
) ⊢ range(datatype) ≤ xsd:anyURI

The subtype relations between types that can be assigned to URIs are summarised in Figure 2.

The type system for terms and expressions. Types for terms assign types to lexical tokens and assign
types to properties using the partial functionO ( · ) from URIs to types. Types for expressions ensure that

xsd:anyURI

range(xsd:string)

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

range(xsd:integer)

OO

range(xsd:dateTime)

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

range(xsd:anyURI)

ll❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩

range(xsd:decimal)

OO

Figure 2: Subtype relations between types that can be assigned to URIs.

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#decimal
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operations are only applied to resources of the correct type.

⊢ type0 ≤ type1

Γ,$x : type0 ⊢ $x : type1

⊢ O (uri) ≤ type

Γ ⊢ uri : type

⊢ xsd:integer≤ datatype

Γ ⊢ integer: datatype

Γ ⊢ decimal: xsd:decimal Γ ⊢ string: xsd:string Γ ⊢ dateTime: xsd:dateTime

Γ ⊢ now : xsd:dateTime

Γ ⊢ expr1 : datatype Γ ⊢ expr2 : datatype ⊢ datatype≤ xsd:decimal

Γ ⊢ expr1+expr2 : datatype

Γ ⊢ expr: datatype

Γ ⊢ str(expr) : xsd:string

Γ ⊢ expr: datatype ⊢ datatype≤ xsd:decimal

Γ ⊢ abs(expr) : datatype

The above types can easily be extended to cover all functionsin the SPARQL recommendation, such as
seconds which maps anxsd:dateTimeto a xsd:decimal. Our examples include the custom function
haversine which maps four expressions of typexsd:decimal to one xsd:decimal.

The type system for filters follows a similar pattern to expressions. For example, the type system
ensures that only terms of the same type can be compared.

Γ ⊢ expr: xsd:string

Γ ⊢ regex(expr, regex)

Γ ⊢ expr: xsd:string

Γ ⊢ langMatches(expr, language-range)

Γ ⊢ expr1 : datatype Γ ⊢ expr2 : datatype

Γ ⊢ expr1 = expr2

Γ ⊢ expr1 : datatype Γ ⊢ expr2 : datatype

Γ ⊢ expr1 < expr2

Γ ⊢ boolean0 Γ ⊢ boolean1

Γ ⊢ boolean0 && boolean1

Γ ⊢ boolean0 Γ ⊢ boolean1

Γ ⊢ boolean0 || boolean1

Γ ⊢ boolean

Γ ⊢ !boolean

The type system for data. The types for terms are used to restrict the subject of triples to URIs, and
the object to the type prescribed by the property. For quadruples, the named graph is always a URI, as
prescribed by the type system.

Γ ⊢ term1 : xsd:anyURI Γ ⊢ term2 : range(datatype) Γ ⊢ term3 : datatype

Γ ⊢ term1 term2 term3

Γ ⊢ triples1 Γ ⊢ triples2

Γ ⊢ triples1 triples2

Γ ⊢ term0 : xsd:anyURI Γ ⊢ triples

Γ ⊢ graph term0 { triples}

Γ ⊢ term: range(datatype)

Γ ⊢ term rdfs:range datatype.

Γ ⊢ term: range(xsd:anyURI)

Γ ⊢ term rdf:type owl:ObjectProperty.

We include special type rules for two particular forms of triples. The first, from the RDF Schema
vocabulary [8], allows the range of a property to be explicitly prescribed as a datatype. The second, from
the OWL vocabulary [20], prescribes when the range of a property is a URI. These two rules are useful
for future work in type inference. In particular, when type information is not available, these rules would
help infer the minimum partial functionO ( · ) that allows a dataset to be typed.

http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#ObjectProperty
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The Type System for scripts. Scripts can be type checked using our type system. The rule for the
from named keyword checks that the term to dereference is a URI. The rulefor theselect makes use
of an assumption in the type environment to ensure that the variable is used consistently in the rest of the
script, where the variable is bound.

Γ ⊢ query1 Γ ⊢ query2

Γ ⊢ query1 query2

Γ ⊢ query1 Γ ⊢ query2

Γ ⊢ query1unionquery2

Γ ⊢ query Γ ⊢ script

Γ ⊢ where query script

Γ ⊢ term: xsd:anyURI Γ ⊢ script

Γ ⊢ from named term script

Γ,$x : type⊢ script

Γ ⊢ select $x : type script

Γ ⊢ script

Γ ⊢ do script
Γ ⊢ skip

If a script is well typed with an empty type environment, thenall the variables must be bound using
the rule for theselect quantifier. Furthermore, since theselect quantifiers does not appear in data, no
variables can appear in well typed data. We assume that scripts and data are executable only if they are
well typed with respect to an empty type environment.

4.3 Examples of Well Typed Scripts

We consider some well typed scripts, and suggest some errorsthat our type system avoids.
The following script is well typed. The script finds resources in any named graph that have a label

in the Russian language. It then dereferences the resources. The script is iterated as many times as the
implementation feels necessary, without revisiting data.

do select $g : xsd:anyURI,$x : xsd:anyURI,$y : xsd:string
where

graph $g {$x rdfs:label $y}
langMatches($y,ru)

from named $x

Note that if we use the variable$y instead of$x in thefrom named clause, then the script could not be
typed. The variable$y would need to be both a string and a URI, but it can only be one orthe other. We
assume thatO (rdfs:label) = range(xsd:string).

The following well typed script looks in two named graphs. Innamed graphdbpedia:Kazakhstan, it
looks for properties withdbpedia:Kazakhstanas the object, and in the named graphdbp: it looks for
properties that have either a label or comment that containsthe string"location".

select $p : range(xsd:anyURI) ,$y : xsd:string,$z : xsd:string
where

{

graph dbp: {$p rdfs:label $y}
union

graph dbp: {$p rdfs:comment$y}
}

graph dbpedia:Kazakhstan{$z $p dbpedia:Kazakhstan}
regex ($y,location) && langMatches($y,en)

from named $p

http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2001/XMLSchema#string
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://dbpedia.org/ontology/
http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/ontology/
http://www.w3.org/2000/01/rdf-schema#comment
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/resource/Kazakhstan
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We must assume thatO (rdfs:comment) = range(xsd:string). If we assume otherwise, then the above
query is not well typed. Note also that property$p must be of typerange(xsd:anyURI). We cannot
assign it a more general type such asxsd:anyURI, although we can use it as a resource.

from named dbpedia:Almaty
select $almalat : xsd:decimal,$almalong: xsd:decimal
where

graph dbpedia:Almaty{dbpedia:Almaty geo:lat$almalat}
graph dbpedia:Almaty{dbpedia:Almaty geo:long$almalong}

from named dbpedia:Kazakhstan
do select $loc : xsd:anyURI
where

graph dbpedia:Kazakhstan{$loc dbp:location dbpedia:Kazakhstan}
from named $loc

select $lat : xsd:decimal,$long : xsd:decimal
where

graph $loc {$loc geo:lat $lat}
graph $loc {$loc geo:long $long}
haversine($lat,$long,$almalat,$almalong) < 100

do select $person : xsd:anyURI
where

graph $loc {$person dbp:birthPlace $loc}
from named $person

Figure 3: Get data about people born in places in Kazakhstan less than 100km from Almaty.

Finally, consider the substantial example of Figure 3. We assume that the functionhaversine
calculates the distance (in km) between two points identified by their latitude and longitude. The script
pulls in data about places located in Kazakhstan. It then uses this data to pull in more data about people
born in places less than 100km from Almaty.

4.4 Operational Semantics for the System

In related work, we extensively study the operational semantics of languages for Linked Data that are
related to the language proposed in this work [11, 12, 21, 22,23]. In the remaining space, we briefly
sketch the operational semantics for our scripting language.

Systems are data and scripts composed in parallel by using the ‖ operator. The main rules are the
rules for dereferencing URIs, for selecting bindings, and for interactions between a query and data. The
rules can be applied in any context.

⊢ graphuri {triples}

from named uri script−→ script ‖ graphuri {triples}

⊢ term: type

select $x : type script−→ script
{

term/$x

}

data≤ query

wherequery script‖ data−→ script ‖ data

http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/resource/Almaty
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal
http://dbpedia.org/resource/Almaty
http://dbpedia.org/resource/Almaty
http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://dbpedia.org/resource/Almaty
http://dbpedia.org/resource/Almaty
http://www.w3.org/2003/01/geo/wgs84_pos#long
http://dbpedia.org/resource/Kazakhstan
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/resource/Kazakhstan
http://dbpedia.org/ontology/location
http://dbpedia.org/resource/Kazakhstan
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01/geo/wgs84_pos#long
http://www.w3.org/2001/XMLSchema#anyURI
http://dbpedia.org/ontology/birthPlace
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The rules for dereferencing data involves a dynamic type check of arbitrary data that arrives as a result of
dereferencing a URI. Theselect rule also performs a dynamic check to ensure that the term substituted
for a variable is of the correct type. The query rule reads data that matches the query pattern (using a
preorder≤ over queries), without removing the data.

The following result proves that a well typed term will always reduce to a well typed term. Thus the
type system is sound with respect to the operational semantics.

Theorem 4.1. If ⊢ system1 and system1 −→ system2, then⊢ system2.

Proof. We provide a proof sketch covering the cases for only the three rules above.
Consider the operational rule forfrom named. Assume that both⊢ from named uri script and

⊢ graphuri {triples} hold. By the type rule forfrom named, ⊢ script must hold. Thus, by the type rule
for parallel composition,⊢ script ‖ graphuri {triples}.

Lemma.If ⊢ term: typeand$x : type⊢ script, then⊢ script
{term/$x

}

, by structural induction. �

Consider the operational rule forselect. Assume that⊢ term: typeand⊢ select $x : type script
hold. By the type rule forselect, $x : type⊢ script must hold. Hence, by the above lemma,⊢
script

{term/$x
}

holds.
Consider the operational rule forwhere. Assume that⊢ wherequery script‖ dataholds. By the type

rule for parallel composition,⊢ wherequery scriptand⊢ datamust hold, and, by the type rule forwhere,
⊢ queryand⊢ script must hold. Hence⊢ script ‖ dataholds. �

Further cases and results will be covered in an extended paper. Future work includes implementing an
interpreter for the language based on the operational semantics, and developing a minimal type inference
algorithm [29] based on the type system.

5 Conclusion

As the Web of Linked Data grows, the state of the art for commercial Linked Data solutions is also
advancing. State of the art of triple stores allow efficient execution of queries at scale. Furthermore, the
back end of commercial solutions such as Virtuoso [13] and the Information Workbench [15] can extract
data from diverse sources. This allows us to take a liberal view of the Web of Data, where data is drawn
from data APIs provided by popular services from Twitter, Facebook and Google. Through experience
with master students, we found that developers with experience of a Web development platform such
as .NET or Ruby-on-Rails can assemble a front end in a matter of days, simply by shifting their query
language from SQL to SPARQL.

Linked Data enables processes to programmatically crawl the Web of Linked Data, pulling data
from diverse sources and removing boundaries between datasets. The data pulled from the Web forms a
local view of the Web of Linked Data that is tailored to a particular application. We found that existing
programming environments, consisting of a general purposelanguage and a library, obstructed swift
development of such processes with many low level details. This exposes the need for a high level
language that makes scripting background processes that consume Linked Data easy.

In this work, we introduce a domain specific high level language for consuming Linked Data. Do-
main specific languages are designed at a level of abstraction that simplifies programming tasks in the
domain. In our domain specific language, key operations suchas queries are primitive, meaning that ba-
sic syntactic checks can be performed. It is also easier to perform static analysis over a domain specific
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language. We take care to design the syntax of the scripting language such that it resembles the SPARQL
recommendations [17], to appeal to the target Web developers.

We introduce a simple but effective type system for our language. The type system is basedon
the fragment of the SPARQL, RDF Schema and OWL recommendations that deals with simple data
types. The applications can statically identify simple errors such as attempts to dereference a number,
or attempts to match the language tag of a URI. For static typechecking of scripts, the data loaded into
the system must be dynamically type checked to ensure that properties have the correct literal value or a
URI as the object. The dynamic type checks do not impose significant restrictions on the data consumed.
Most datasets, including data from DBpedia, conform to thistyping pattern. Further weight is added by
the Facebook Open Graph protocol, which demands typing at exactly the level we deliver.
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