Unlocking Blocked Communicating Processes

Adrian Francalanza Marco Giunti
CS, ICT, University of Malta RELEASE, DI, Universidade da Beira Interior
NOVA LINCS, DI-FCT, Universidade NOVA de Lisboa

Antonio Ravara
NOVA LINCS, DI-FCT, Universidade NOVA de Lisboa

We study the problem of disentangling locked processesoda cefactoring. We identify and char-
acterise a class of processes that is not lock-free; thenmeadise an algorithm that statically detects
potential locks and propose refactoring procedures tisaidangle detected locks. Our development
is cast within a simple setting of a finite linear CCS variantalthough it suffices to illustrate the
main concepts, we also discuss how our work extends to aithgubhge extensions.

1 Introduction

The scenario. Concurrent programming is nowadays pervasive to most ctatipnal systems and
present in most software development processes. In pariconcurrent programming is prevalent
in cloud platforms and web-servicese., inherently distributed systems that rely heavily on messag
based communication protocols. Unfortunately, this sofl@rogramming is notoriously difficult and
error-prone: concurrency bugs appear frequently and haubstantial impact, as several recent reports
show [7,[2]. Concurrency errors are hard to detect becauseveoy execution interleaving exhibits
them, and this is further compounded by the large number sdiple execution scenarios. Automatic
techniques and tools are thus needed to analyse and enst@& concurrent code.

One common form of bugs is that of (dead)locks [6]: they anben a computational entity holds
exclusive access to a resource without releasing it, whilercentities wait to access that resource. In
this work we characterise them in a very simple model of caetl computation, show how to statically
detect them, and in some cases, even show how to automasoale some of the (dead)locks.

Static analysis to the rescue. Concurrency theory is a well-established discipline, mimg mathe-
matical models of concurrent systems at various degreegoéssiveness, (logical) languages to specify
properties of such systems, suites of verification tectesai both safety and liveness properties, as well
as tools to (automatically) analyse if some property hotasafgiven specification.

We are interested in models centered around communicatimitiges and synchronisation mecha-
nisms, as these are the key characteristics of a concuyrgens. In particular, we are concerned with the
static verification of properties for these models, not drdgause the approach analyses source code, but
also because it is used pre-deployment, in an automatic Tveymodels are useful to specify and verify
communication intensive systems and protocol implemiemisit the static analysis is a light verification
technique that demands less from the user, as (s)he doeavatdibe an expert in logic.

Concretely, herein we use the Calculus of CommunicatindeBys (CCS)[[12] and define a static
analysis and refactoring algorithm that is not only fully@uatic, but also working on “pure” source
code, without further annotations or even types.

M.H. ter Beek and A. Lluch Lafuente (Eds.): 11th InternatibWorkshop © A. Francalanza, M. Giunti and A. Ravara
on Automated Specification and Verification of Web System8(W15). This work is licensed under the
EPTCS 188, 2015, pp. 23932, d0i:10.4204/EPTCS.1.88.4 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.188.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

24 Unlocking Blocked Communicating Processes

Behavioural types. This field of study has gained momentum recently by providtagically more
than the usual safety properties: (dead)lock-freedom en @rogress can be statically established by
relying on a broad spectrum of analysis techniqles![3,(4,/8,/9,11[13, 174]. Despite their utility, such
static detection techniques inevitably approximate thetiem (conservatively) — since they are “decid-
ing undecidable properties” — and reject lock-free progdgive false positives). More importantly,
however, these techniques simply reject programs, withmtiding help as to where the problem might
be, or providing insights on how to solve the problem detkcte

Methodology. Following the approach of Giunti and Ravara [9], in this pape propose that such
techniques go a step further, and provide suggestions ontddiw a detected bug, showing possible
patches. In particular, the work inl[9] focussed on resa@h\self-holding (dead)locks,e., when a thread
holds the resources it wants to use itself. In order to detecth errors, a local analysis within one thread
of computation, such as those discussedlin [9], sufficed.

By contrast, in this paper we investigate methods for résgleircular-wait (dead)locks,e., more
general instances where concurrent entities block onédnanby holding access to a subset of the com-
monly requested resources. Detecting such (dead)locksresganalyses that spread across parallel
threads of computation, and one of the main challenges ig\sel static techniques that are compo-
sitional (thus scalablejvrt. the independent computing entities. For this expositoyepawe do not
consider the full language dfl[9]. Instead we distill minirfeatures of the language — namely synchro-
nisation, prefixes, and parallel composition — that permitofocus the core challenges to be addressed.
However, the ultimate aim of the work is still to address uliac-wait (dead)locks in the full language of
[Q]; in the conclusion, we outline some of the additionaliss that arise in the full language setting.

Contributions. §[2 briefly introduces a concise, yet sufficiently expresgirecess language to rigor-
ously define (dead)locks. 3 we formalise the class of non lock-free processes tardstemlir work
and give an alternative characterisation for this class.pyésent an algorithm for statically detecting
processes in this class §f, and in§[5 we describe disentangling procedures for the detectarbpses.
§[6l concludes. We note that wheredd presents formal result§[4 and§ B deal with ongoing work. In
particular, they present our general approach by fornmglipiotential algorithms for static analysis and
resolution, and outlining the properties that these allgots are expected to satisfy.

2 Language

We consider a very basic language. Assume a countablesset dlof namesranged over by, b, ...,
and a disjoint countable sBIaAMES of co-namessuch that for evera € NAMES there is @ € NAMES;
the co-action operation is idempotére., a= a, and leta, 8 € (NAM ESUNAM Es) denote actions.

The grammar in Fid.]1 defines the syntax of the language, &psagebra containing only prefixing
and parallel composition, together with action synchratiiss akin to CCS[12]. Let’[Q] (resp.£'[Q])
be the process obtained by substituting the feleoccurring in the contex¥ (resp.&’) with Q.

The semantics is standard, relying on a structural equicaleelation= (the smallest congruence
including the relation inductively generated by the ruletoty the grammar) and on a reduction re-
lation —, inductively generated by the rules of Fig. 1. Let:* denote the reflexive and transitive
closure of—.

A. Francalanza, M. Giunti and A. Ravara 25

P,Q,Re PrOC::= 0 (inert) | a.P (prefix) | P||Q (composition
E=[-]|P|&| &P (Evaluation Contexts)
¢ =[-]|P||€|F|P|la.F (Process Contexts)
SNIL P[0 =P sCom P|Q = Q||P sAss P[(Q|IR) = (P|Q)|R
o =y Tl

Figure 1: The language (finite CCS): syntax and operaticeralamtics

Finally, assume henceforth a type system enforcing a linsarof named, F P, along the lines of
the work of Kobayashi[[10]. In well-typed processes, no nappears more than once with a given
capability (input or output)i.e.,a name occurs at most twice in a process, or none at all. Thés&ic
is the subset of Rocinduced by the typing system

3 Lock Freedom

Our point of departure ibck-freedomas defined and studied by Kobayashi and by Padovani[10, 13].
Definition 3.1 (Synchronisation predicates [13])

in(a,P) £ 3P .P".P=P | aP’ out(a,P) £ 3P P".-P=F | aP’

sync(a,P) £ in(a,P) and out(a,P) wait(a,P) £ in(a,P) exor out(a,P)
Definition 3.2 (Lock-Free [18]) We defind.F £ {P € PRoC| Ifree(P)} where:
Ifree(P) P Q andwait(a,Q) implies JR-Q —" R andsync(a,R)

Following Def.[3.2, locked processes, REC\ LF, are those thateverprovide theresp. co-action
for some waiting action. In the setting 9B, this could be due to either of two caséiy:the co-action is
not present in the proces§i) the co-action is present, but stuck underneath a blockdtk pi&hereas
in the case of(i), the context may unlocki.e., catalyse [[4]) the process by providing the necessary
co-action, in the case dfi) no context can do swithout violating the linear disciplinef the process.
Our work targets the unblocking of this second class of Idgk@cesses, specifically lbgfactoringthe
prefixing of the existing process. To this aim, we introduee iotion of acompleteprocess.

Definition 3.3 (Complete Processes).PrRoc > CMP £ {P | cmp(P)} where:
cmp(P) £ va. (cin(a,P) iff cout(a,P)) and
cin(a,P) £ 3¢[-],Q-P=¢[Q] andin(a,Q) cout(a,P) £ 3¢[-],Q-P =%¢[Q] and out(a,Q)

26 Unlocking Blocked Communicating Processes

Remark 3.4. In contrast toin(a,P) and out(a, P) of Def[3.1, the predicatesn(a, P) and cout(a,P) of
Def.[3.3 consider actionsnder contextsis well.

Example 3.5. The process P- a.b.0 || b.C.0 is not completesince,e.g.,cin(a, P) butnot cout(a, P). The
process is also locked, but can be unlocked by the catalygéia.c.0 without violating channel linearity
i.e.,[P]||a.c.0 —* 0. The inert procesq) is clearly lock-free and complete.

P,=ab0| bc0|ca0 P, =d.(ab0]|/b.cO) | d.ca0
P, =aa0 P, =a.(ha0| b.0)

By contrast, processes ™, P; and B (above) are both complete bobt lock-free. Note that we rule
out complete processes such aaa0 since they violate linearity and are thus not typeable &2k B

Our work targets the process cla3sIP \ LF. In what follows we provide a characterisation for this
class that is easier to work with.

Definition 3.6 (Deadlock) dlock(P) = (AQ-P — Q) and P#0
Definition 3.7 (Top-Complete)

temp(P) £ (in(a, P) implies cout(a,P)) and (out(a, P) impliescin(a, P))
Definition 3.8 (Potentially Self-Locking) PSL < {P € CMP | psl(P)} where:

sl(P) el dlock(P) and tcmp(P)
psl(P) £ 36[-],Q- (P —* £[Q] ands/(Q))

A self-deadlocked processesP), denotes a deadlocked process that cannot be unlocked oy a co
text without violating the linearity discipline, since thesp. actions are already present in the process,
i.e., tcmp(P). This, together withdlock(P), also guarantees that thesesp. actions will neverbe re-
leased. A potentially self-locking procegsl(P), contains an execution that leads to a top-level sub-
processj.e., Qin &[Q], that is self-deadlocked|(Q): tcmp(Q) then guarantee® cannot interact with
any of the future reductions @f[—]|.

Example 3.9. Recall the processes in Hx. B.5. ProcegdsPself-locking,s/(P;), and thus potentially
self-locking as wellps/(Py). Although B is not self-locking, —s/(P,) — it is not deadlocked and can
reduce by interacting on name d — itpstentially self-locking,ps/(P,), since B — P.

Both R and R are self-locking as well, but constitute instances of thelsdlding deadlocked pro-
cesses studied inl[9]: in both cases, the locked resource g)ds blocked by the co-action under the
prefix of the same process. Such locks may be detected bylafwgsis of the process prefixed by
the blocked action. By contrast, in order to determps&P;) and ps/(P»), the analysis needs to spread
across parallel processes. |

The main result of the section is tha$L characterise€MP \ LF.

Theorem 3.10. PSL = CMP\ LF

Proof. See§[Al O

A. Francalanza, M. Giunti and A. Ravara 27

Environment Operations

M+r=rs agdom(ly) M+Ma="r3
r+0=r (Tnaip)+To=Tgap FLaptizap=rsap+p

Layered Environments and Verdicts, and Operations

A€ LAYEREDENV =¢ | ;A @< VERDICT:=A | V
A +D0p = A3 Al =T'
A+e=A I'1;A1+F2;A2:(F1+I'2);A3 ’8‘:0 |F;A|:F+F’
Fop® v if 9= or (¢ =Aanddlock(I") andl” C |A|)
B ;@ otherwise
v fog=vorgp=v
aef | vV if @ =T1;01,0 =20, dlock(M1+2) andlM i+ C [A1+Ay|

D= .
AR AV YAY) if ([)_]_:rl;Al,QDz:rg;Az andcmp(F1+F2)

@+ @ otherwise (sincep = A1, @ =)
Compositional Static Analysis Rules

P> P> Pi>@ P> @
DNIL DIN DOUT—— DPAR
0>0 aPr(a:l:@) aPr>(a: 1) PiPrro @

Figure 2: Static Analysis for Potential Self-Deadlock

4 Static Detection for Potentially Self-Locking Processes

We devise an algorithm for detecting potentially self-lmgkprocesses. To be scalable, the algorithm is
compositional The intuition behind is that of constructitayersof permission environments;...;IM,,
approximatingthe prefixing found in the process being analysed, and theokallg whether this struc-
ture satisfies the two conditions defining self-deadlock ¢fe-) in Def.[3.8), namely that the top envi-
ronmentl 1 represents deadlockand that the layered structure is, in some setmgecomplete

Example 4.1. We determine that the processfm Ex[3.5 is (potentially) self-locking by constructing
the list of layered environments

(a:\Lab :Tac \L) ; (a:T>b :~L>C T) , €

M1 M2

and checking that

e the top environmerit; does not contain any matching permissiois, J¢ cod(I" 1) — this implies
that the (composite) process is deadlocked;

o thatall the resp.dual permissions are ih, — this implies that the (composite) process is blocking
itself and cannot be unblocked by an external process coedposparallel with it.

28 Unlocking Blocked Communicating Processes

The main challenge of our compositional analysis is to deggentual self-deadlocks in cases when the
constituent are dispersed across a number of parallel (gses. In the case of Bf Ex.[3.5, we need
to analyse the parallel (sub) processesa.0|| b.c.0) andd.c.a.0 in isolation and then determine the
eventual deadlock once we merge the sub-analyses; reeati, Ex[3.9, that fPreduces to Pfrom the
respective continuations prefixed by d ahd |

Formally, permissiongp, u € {|, 1,1}, denoteresp.input, output and input-output capabilities. The
merge,p + U, and complemenp, (partial) operations are defined as:

L1 =otE 1=

Environments], are partial maps from names to permissions. We assumeltbwifay overloaded no-
tation: complementatiort;,, inverts the respective permissionsid(I") whereas deadlock and complete
predicates are defined as:

dlock(T) & cod(I') = {1, 1} emp(I") < cod(I) = {1}

The rules in Fig[R define the merge operation over environsn€n + ", (we elide symmetric rules).
Layered environmentd), are lists of environments. Our static analysis sequetts tiae formPr> ¢
whereg is averdict it can either be a layered environment.0rdenoting a detection. Layered environ-
ments may be merged; + A, or flattened into a single environmeit|; see Fig[R.

The static analysis rules are given in Hi§. 2, and rely on tewlict operations. Prefixind; :: ¢,
collapses to the definite verdiet if ¢ was definite or els€ is deadlockeddlock(I"), and top-complete,
[C |A|, but creates aextendedayered environment otherwise. Verdict merging,® ¢, collapses
to v if either subverdict is a definite detection, or the combimhepl environments[; + I, satisfy
environment deadlock and top-completenesd;ift- I, is complete, then it is safe to discard it and
check for self-deadlock in the sub-layers (see Rem. 4.3ratilse the verdicts (which must both be
layered environments) are merged.

Example 4.2. Recall process Ffrom Ex[4.1. We can derive the sequents:

(d:l); (axl,b:1);(b:l,ci)); € 1)
(d:1);(c);(at); € ()
For instance, in the case dfl), we first derive the judgementd® > a:|;b:|; € and b.CO> b A o >
using rulesbNiIL, DIN and DOUT. ApplyingDPAR on these two judgements requires us to calculate
(a:lib:lig) @ (brticitie) = (a:libilie)+(bitscitie) = (alb:)i(bil,cil)ie

using the definition of, & @ from Fig.[2. We thus obtaiffl) by applyingdbIN on the resultant judgement.

Importantly, when we use ru2PAR again, this time to merge judgemerft§ and (2), the definition
of @ @ @ allows us to reexamine the environments in the sub-layerse $he merged top-layer is com-
plete,cmp(d:| +d:7), from which we infer that the top actions guarding the mergadillel processes
will safely interact and release the processes in the sybfla Stated otherwise, we obtain:

(d:l; (@ b);(bilcil)ie) @ (d:ticilate) = ((@d,b);(bil,cil)e) @ (cilate) = v

sincedlock((a:l,b:1)+(c:})) and a:l,b:f,c:L C |((b:l,c:l);e) + (arte)| = (bil,cil,ait). W

A. Francalanza, M. Giunti and A. Ravara

def

rMjho=o0

a.(f'd,P) otherwise

def

29

def

ro;PQ=(ro:P)|(rH1Q)

ro,ap® ao|P Ma) =l
a(rf'd;P) otherwise

def

Fbz0=0 M 02P||Q (T D2P) || (M 02Q)
ao0|(rd,P) Tr(a) =t B
3 p % o Ja(lFO2P)||la0 I(a) =
ro,aP®{ (ro,p) ra) =, ro,ap) 2 H2P)] (a)={
_) a(lf0:P) otherwise
a(rd,P) otherwise

Figure 3: Disentangling for Potential Self-Deadlock

Remark 4.3. When merging verdicts, it is unsafe to ignore individual ptete mappingse.g.,a:J,
even though this makes the analysis imprecise. It is only teaignore them (and check for potential
deadlocks in lower layers) when theatire top environment is completée., cmp(I'). As a counter-
example justifying this, consider the lock-free procesb.0| b.0)||a.0. We currently deduce

(a.B.OHb.O) > (a:l,b:));b:t;e and aOpe af;e where a:l,b:l +a:t=a],b:1Z bt

However, eliding a] from the analysisj.e., assuming thata:|,b:]) +a:t = b:t, yields an unsound
detection. Precisely, when merging the sub-verdicts fée nPAR, ((a:l,b:l);b:t;¢) @ (a:t;e),
we would first obtairdlock((a:|,b:]) +a:1) and moreover thata:|,b:|) +a:T = b:1 is a subset of
|(b:1;€) + €| = b1, which yieldsv/ according to Fig[2. |

We expect the judgemeRt> v to imply psl(P), which would in turn imply-lIfree(P) by Thm.[3.10. We
leave the proof of the first implication for future work.

5 Disentangling Potentially Self-Locking Processes

To illustrate the ultimate aim of our study, we outline pbssidisentangling functions that refactor a
potentially self-deadlocked process into a correspontbiog-free process. These disentangling func-
tions are meant to be used in conjunction with the detectigarighm of § [4 as a static analysis tool
for automating the disentangling of processes. There atardar of requirements that a disentangling
algorithm should satisfy. For instance, it should not vielany safety property that is already satisfied by
the entangled process.§.,if an entangled proced$3type-checked according to some typing discipline,
i.e.,I" =P, the resulting disentangled processes, @aghould still typecheckvrt. the same type disci-
pline/environmentj.e., I - Q). Additionally, one would also expect the resultant disegted process
to be lock-free, as expressed in DOef.]3.2, or at the very keastsolve a subset of the locks detected.
But there are also a number of additional possibilities foatwconstitutes a valid process disentangling.
Within the simple language @fi2, we can already identify at least two (potentially coniilig) criteria:

1. the order of name usage respects that dictated by thenmséprefixing of the entangled process.
Stated otherwise, any locks are assumed to be caused byimgefbthe top-level of the process.

2. the order of input prefixes in the entangled process shmulareserved.

30 Unlocking Blocked Communicating Processes

We envisage a straightforward extension to the sydtenp of § [4, with extended detection reports,
(v',I"). The tuple(v/,I"), in some sensexplainsthe source of the problem detected by including the
offending top-layer environment of a self-deadloEkthis information is then used by the disentangling
procedure to refactor the detected process.

Fig.[3 defines two disentangling functions that take thip-{ayer) environment and thesp. de-
tected process as input, and return a refactored proceag@a#.oThe first function]” (01 P, translates
problematic prefixing (as dictated 16y into parallel compositions. The second functionl, P operates
asymmetrically on input and output prefixes: whereas proat& outputs are treated as before, blocked
inputs arenot parallelised; instead thesp.output ispulled outat input level.

Example 5.1. The algorithm of;[4 could detect £(below) as B> (v',(a:l,c:71)), wherel' = (a:|,c:7)
R =ab.cO || chao

Using the offending top-layer environmdntwe can apply the two disentangling algorithms of . 3
and obtain the following:

r01Ps = (20| b.c.0) | (€0[ba0) 3)
[O2Ps = (20]|a.b.c.0)|| (€0 b.0) (4)

While both refactored processes are lock-free, it turnstbat the first disentangling function observes
the first criteria: in the refactored proces@), interactions on a and ¢ happefterinteractions on b,
since these names are (both) prefixed by b (@ndt the innermost level ofsP Conversely, the second
disentangling function observes the second criteria dised above: in the refactored proce), the
input prefixing that orders a before ¢ ins B preserved (this was not the case(®)). Note that both
refactorings preserve channel linearity (a safety crig¢nivhile returning lock-free processes. |

6 Conclusion

We have outlined our strategy for automating correct desggitng of locked processes, generalising pre-
liminary results previously presented [9]. Although weitied our discussion to a very simple language
— the variant of the finite CCS without recursion, choice aneascoping — this was expressive enough
to focus on the usefulness of the concepts and techniqguesrapese,i.e., resolving circular locks
across parallel compositions. We define precisely the cb&ead)locked processes within this setting,
and provide a faithful characterisation of them in terms absel notion: potentially self-locking pro-
cesses.We also devised a compositional algorithm to sligtidetect these processes and unlock them,
improving previous results (cf.[9]). In particular, Giuahd Ravara[9] used a different technigue (based
on balanced session types) and could only disentangldskling deadlocks such as those in processes
P; and P, of Ex.[3.8. The technique does not support reasoning abadt dgentangle) locks across
parallel compositions, such as those shown for procdgsasdP, of Ex.[3.5 andPs of Ex.[5.1.

We expect the concepts and techniques developed to camryooweore expressive languages. We
are considering language extensions such as processioecunsrestricted channel names (to allow non-
determinism), and value-passing. For instance, diselt@nthe value-passing program (an extension
of the proces®s in Ex.[5.1)P; = a(x).b(x+ 1).c(y).0 || ¢(5).b(z).a{7).0 may not be possible for certain
disentangling functions (and criteria)g.,I” (11 P, whereas others may require auxiliary machinery,,
thefindVal (—) function used by[[9] for pulling out theesp.output values i [, P; in (complete) linear
settings, there is a unique output for any particular chianvigch can be obtained through a linear scan

A. Francalanza, M. Giunti and A. Ravara 31

of the process. The input binding structure may also makmiogprocesses impossible to disentangle.
E.g.,consider a modification iRs above where the value 7 is changed to the bound \altidis would
create a circular binding dependency: one between the mmpehanneh and the output o through
variablex, but also another one between the inputboaind the output o through variablez. These
issues will all be considered in future work.

Acknowledgements

Adrian Francalanza was supported by the grants ECOST-SIC301-280114-038254 and ECOST-
STSM-IC1201-250115-054509. Marco Giunti was supportethbygrant ECOST-STSM-1C1201-220713-
032903 and by the Software Testing Center, Centro de NegaziServicos Partilhados do Fundao.
Antonio Ravara was supported by the grant ECOST-STSM-0C4210713-033367. Marco Giunti and
Anténio Ravara were also supported by the grant FCT/MEC NONWCS PEst UID/CEC/04516/2013.

References

[1] M. Coppo et al. (2013):Inference of Global Progress Properties for Dynamicallyeiieaved Multiparty
Sessionsin: COORDINATION, LNCS 7890, pp. 45-59, d0i:10.1007/978-3-642-38492-6

[2] Shan Lu et al (2008)Learning from mistakes: a comprehensive study on real wasttturrency bug char-
acteristics In: ASPLOS’08 pp. 329-339, d0i:10.1145/1346281.1346323.

[3] Luis Caires & Hugo Torres Vieira (2010 onversation typesTheoretical Computer Sciendd 1(51-52),
pp. 4399-4440, d0i:10.1016/j.tcs.2010.09/010.

[4] Marco Carbone, Ornela Dardha & Fabrizio Montesi (201ogress as Compositional Lock-Freedom:
COORDINATION, LNCS 8459, pp. 49-64, d0i:10.1007/978-3-662-43374-8

[5] Marco Carbone & Fabrizio Montesi (2013peadlock-freedom-by-design: multiparty asynchronoabgl
programming In: POPL, pp. 263-274, d0i:10.1145/2429069.2429101.

[6] Edward G. Coffman, Melanie Elphick & Arie Shoshani (197%ystem deadlockdCM Computing Surveys
3(2), pp. 67-78, d0i:10.1145/356586.356588.

[7] Pedro Fonseca, Cheng Li, Vishal Singhal & Rodrigo Rodeig) (2010)A study of the internal and external
effects of concurrency bugk: DSN, pp. 221-230, d0i:10.1109/DSN.2010.5544315.

[8] Elena Giachino, Naoki Kobayashi & Cosimo Laneve (201Beadlock Analysis of Unbounded Process
Networks In: CONCUR LNCS8704, pp. 63—77,d6i:10.1007/978-3-662-44588-6

[9] Marco Giunti & Antbnio Ravara (2014)fowards Static Deadlock Resolution in the Pi-Calculas TGC’13
LNCS8358, pp. 136-155, d0i:10.1007/978-3-319-05119)-2

[10] Naoki Kobayashi (2000)Type Systems for Concurrent Processes: From Deadlocldbrago Livelock-
Freedom, Time-Boundedne$BIP TCS1872, pp. 365—-389, d0i:10.1007/3-540-4492979

[11] Naoki Kobayashi (2006)A New Type System for Deadlock-Free ProcessesCONCUR LNCS4137, pp.
233-247,d0i:10.1007/11817948.

[12] Robin Milner (1980):A Calculus of Communicating Systemh&CS 92, doi:10.1007/3-540-10235-3.

[13] Luca Padovani (2014): Deadlock and lock freedom in the linear pi-calculus In: LICS,
doi{10.1145/2603088.2603116.

[14] Hugo Torres Vieira & Vasco Thudichum Vasconcelos (201Byping progress in communication-centred
systemsin: COORDINATION, LNCS 7890, pp. 236—-250, d0i:10.1007/978-3-642-3849B¢6

http://dx.doi.org/10.1007/978-3-642-38493-6_4
http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1016/j.tcs.2010.09.010
http://dx.doi.org/10.1007/978-3-662-43376-8$_$4
http://dx.doi.org/10.1145/2429069.2429101
http://dx.doi.org/10.1145/356586.356588
http://dx.doi.org/10.1109/DSN.2010.5544315
http://dx.doi.org/10.1007/978-3-662-44584-6_6
http://dx.doi.org/10.1007/978-3-319-05119-2_9
http://dx.doi.org/10.1007/3-540-44929-9_27
http://dx.doi.org/10.1007/11817949_16
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1145/2603088.2603116
http://dx.doi.org/10.1007/978-3-642-38493-6_17

32 Unlocking Blocked Communicating Processes

A Proofs

This section is devoted to the proof of Theorem B.10. We stitht some auxiliary definitions and
lemmas.

Given a procesB of Figure[l, we indicate with NMES(P) the subset of WMES induced by the rule
NAMES(a.P) = {a} UNAMES(P): the remaining cases are homomorphic. Weluder disjoint union
of sets.

We remember that we assume that the proca3sdsur interest are linear, that is they never contain
two or more inputs or outputs on the same channel, and delpdofotlowing results.
Lemma A.1. If P — P’ then there is port, a, such th&taMES(P) LI {a} = NAMES(P) andsync(a, P).

Proof. By induction on the rules of Figure 1; straightforward. O

Corollary A.2. If P —* Q then the following holds:
1. NAMES(Q) € NAMES(P)

2. if NAMES(P)\NAMES(Q) = {a,... } then there exists a;Rnd a B such that P»* P, — P, —* Q
with NAMES(P}) U {a} = NAMES(P,) andsync(a,P,).
Lemma A.3. If cin(a,P) (cout(a,P)) and P—* Q then exactly one of the following cases holds:
1. cin(a,Q) (cout(a,Q))
2. a¢ NAMES(Q) and there exists anfand an R such that P»* Ry — R, —* Q andNAMES(R,) L
{a} = NAMES(R;) andsync(a,Ra).

Proof. We have two cases corresponding t@(@ NAMES(Q) or (i) a¢ NAMES(Q). In case (i), assume
P— P, —1- —nQn— Q. We proceed by induction am From Lemma&A.ll we know that there exists
b such that MMES(P;) LI {b} = NAMES(P) andsync(b,P). Since N\MES(Q) C NAMES(P;), we infer
a€ NAMES(Py) and in turna # b. From this anctin(a,P) we deduce thatin(a,P’). Now assume that
cin(a,Qn). From Lemma 1 we deduceAMES(Q) LI {c} = NAMES(Q,) for somec # a: thuscin(a, Q).
The caseout(a, P) is analogous. Case (ii) is a direct consequence of Cordfidtly

]

LemmaA.4. If P € CMPand P—* Q then Qe CMP.
Lemma A.5. For any P there exists Q such that-P* Q and Q4.

Proof of Theorem[3.10 To show the right to the left direction, assufe CMP \ LF. By definition:
CMP\LF £ {Pe CMP | 3(Q,a) . P —»* Q A wait(a,Q) = VR. Q »* R= —sync(a,R)}

Let Q, be a distinctive redex oP: thusin(a,Qa) exor out(a,Qa). Assumein(a, Q) and consider
Rstop such thatQa —* Rsiop 7+, Which does exists by Lemnia_A.5. By Lemrha A.3 we know that
in(a, Rstop): from —sync(a, Rstop) We infer—out(a, Rstop). From Lemma Al we infeRsiop € CMP: thus
cout(a, Rstop). Thereforedlock(Rstop) andtecmp(Rstop), as required. The casat(a, Qa) is analogous.

To see the left to the right direction, assume tha CMP and thatP —* &[Q] with dlock(Q) and
temp(Q). Note that this excludes the cale= 0: therefore MMES(Q) # 0, and in turn MMES(P) # 0,
because of Corollafy Al2. FromAWES(Q) # 0 and the rules of structural congruence we infer that there
is a € NAMES(Q) such that ()Q=a.Q || Q" or (i) Q=a.Q || Q". In case (i) we infein(a,Q); from
Q /4 we deduce-out(a,Q); in case (ii) we inferout(a, Q) ; from Q 4 we deduce-in(a,Q). In both
cases we infewvait(a,Q), and in turn—sync(a, Q) which completes the proof sine@ has no redexes:
that is,P € CMP\ LF. O

	1 Introduction
	2 Language
	3 Lock Freedom
	4 Static Detection for Potentially Self-Locking Processes
	5 Disentangling Potentially Self-Locking Processes
	6 Conclusion
	A Proofs

