
Olivier Danvy & Ugo de’Liguoro (Eds.): WoC’15 Postproceedings
EPTCS 212, 2016, pp. 1–17, doi:10.4204/EPTCS.212.1

c© T. Crolard
This work is licensed under the
Creative Commons Attribution License.

A verified abstract machine for
functional coroutines

Tristan Crolard
CEDRIC, CNAM, Paris, France

tristan.crolard@cnam.fr

Functional coroutines are a restricted form of control mechanism, where each coroutine is repre-
sented with both a continuation and an environment. This restriction was originally obtained by
considering a constructive version of Parigot’s classical natural deduction which is sound and com-
plete for the Constant Domain logic. In this article, we present a refinement of de Groote’s abstract
machine for functional coroutines and we prove its correctness. Therefore, this abstract machine also
provides a direct computational interpretation of the Constant Domain logic.

1 Introduction

The Constant Domain logic (CD) is a well-known intermediate logic due to Grzegorczyk [30] which
can be characterized as a logic for Kripke frames with constant domains. Although CD is semantically
simpler than intuitionistic logic, its proof theory is quite difficult : no conventional cut-free axiomatiza-
tion is known [37], and it took more than three decades to prove that the interpolation theorem does not
hold either [40]. However, CD is unavoidable when the object of study is duality in intuitionistic logic.
Indeed, consider the following schema (called either D [30] or DIS [50]), where x does not occur free in
B:

∀x(A∨B) ` (∀xA)∨B

The dual of this schema is (∃xA)∧B ` ∃x(A∧B) which is clearly valid in intuitionistic logic. Thus
bi-intuitionistic logic (also called Heyting-Brouwer logic [50] or subtractive logic [12]), which contains
both intuitionistic logic and dual intuitionistic logic, includes both schemas.

Görnemann proved that the addition of the DIS-schema to intuitionistic predicate logic is sufficient to
axiomatize CD [25] (and also that the disjunction and existence properties hold, so CD is still a construc-
tive logic). Moreover, Rauszer proved that bi-intuitionistic logic is conservative over CD [50] (Section 3,
p. 56), which means that the theorems of bi-intuitionistic logic with no occurence of subtraction are
exactly the theorems of CD. As a consequence, we should expect at least the same difficulties with the
proof-theoretical study of bi-intuitionistic logic as with CD. In particular, if we want to understand the
computational content of bi-intuitionistic logic, it is certainly worth spending some time on CD.

Although there is no conventional cut-free axiomatization of CD, there are some non-conventional
deduction systems which do enjoy cut elimination. The first such system was defined by Kashima and
Shimura [32, 53] as a restriction of Gentzen’s sequent calculus LK based on dependency relations. Inde-
pendently, we described [10] a similar restriction using Parigot’s classical natural deduction [44] instead
of LK. Another difference lies in the fact that our restriction can also be formulated at the level of proof
terms (terms of the λ µ-calculus in Parigot’s system), independently of the typing derivation. Such proof
terms, which are terms of Parigot’s λ µ-calculus, are called safe in our calculus [13]. The intuition behind
this terminology is presented informally in the introduction of this article as follows:

http://dx.doi.org/10.4204/EPTCS.212.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A verified abstract machine for functional coroutines

“[...] we observe that in the restricted λ µ-calculus, even if continuations are no longer
first-class objects, the ability of context-switching remains (in fact, this observation is easier
to make in the framework of abstract state machines). However, a context is now a pair
〈environment, continuation〉. Note that such a pair is exactly what we expect as the context
of a coroutine, since a coroutine should not access the local environment (the part of the
environment which is not shared) of another coroutine. Consequently, we say that a λ µ-
term t is safe with respect to coroutine contexts (or just safe for short) if no coroutines of t
access the local environment of another coroutine.”

In this paper, we provide some evidence to support this claim in the framework of abstract state
machines. As a starting point, we take an environment machine for the λ µ-calculus, which is defined
and proved correct by de Groote [28] (a very similar machine was defined independently by Streicher and
Reus [55]). Then we define a new variant of this machine dedicated to the execution of safe terms which
works exactly as hinted above (let us call it the coroutine machine). Note that this modified machine is
surprisingly simpler than what we would expect form the negative proof-theoretic results. We actually
obtain a direct, meaningful, computational interpretation of the Constant Domain logic, even though
dependency relations were at the beginning only a complex technical device.

As usual with environment machines, it is more convenient to encode variables as de Bruijn indices
(in particular for correctness proofs). Since safe λ µ-terms have different scoping rules than regular λ µ-
terms, the translation into de Bruijn terms should yield different terms: safe λ µ-terms need to use local
indices to access the local environment of the current coroutine, whereas arbitrary terms use the usual
global indices to access the usual global environment.

As a consequence of this remark, we obtain a proof of correctness of the coroutine machine which is
two-fold. We first introduce an intermediate machine which works with local indices, global environment
and indirection tables, then we show that this intermediate machine:

• is simulated by de Groote’s machine,

• is simulated by the coroutine machine.

We prove that both simulations are sound and complete, and as a consequence, we obtain the correctness
of the coroutine machine with respect to de Groote’s machine.

The plan of the paper is the following. In Section 2, we first recall the notion of safety [10], and
then we present a simpler (but equivalent) definition of safety which is more convenient for correctness
proofs. In Section 3, we present our variant of de Groote’s machine and the coroutine machine. Finally,
in Section 4, we detail the proof of correctness: we describe the intermediate machine and the two
simulations together with their properties (all the proofs were mechanically checked with the Coq proof
assistant, and the formalization is available in the companion technical report [14]).

1.1 Related work

Computational interpretation of classical logic

Since Griffin’s pioneering work [27], the extension of the well-known formulas-as-types paradigm to
classical logic has been widely investigated for instance by Murthy [43], Barbanera and Berardi [3],
Rehof and Sørensen [51], de Groote [29], and Krivine [35]. We shall consider here Parigot’s λ µ-calculus
mainly because it is confluent and strongly normalizing in the second order framework [44]. Note that
Parigot’s original CND is a second-order logic, in which ∨,∧,∃,∃2 are definable from →,∀,∀2. An

T. Crolard 3

extension of CND with primitive conjunction and disjunction has also been investigated by Pym, Ritter
and Wallen [48] and de Groote [29].

The computational interpretation of classical logic is usually given by a λ -calculus extended with
some form of control (such as the famous call/cc of Scheme or the catch/throw mechanism of Lisp)
or similar formulations of first-class continuation constructs. Continuations are used in denotational
semantics to describe control commands such as jumps [58, 54]. They can also be used as a programming
technique to simulate backtracking and coroutines. For instance, first-class continuations have been
successfully used to implement Simula-like cooperative coroutines in Scheme [23] or to provide simple
and elegant implementations of light-weight processes (or threads) [20]. This approach has also been
applied in Standard ML of New Jersey [52] using the typed counterpart of Scheme’s call/cc [31]. The
key point in these implementations is that control operators make it possible to switch between coroutine
contexts, where the context of a coroutine is encoded as its continuation.

Coroutines

The concept of coroutine is usually attributed to Conway [9] who introduced it to describe the interaction
between a lexer and a parser inside a compiler. They were also used by Knuth [34] (Section 1.4.2, p. 193)
who saw them as a mechanism that generalizes subroutines (procedures without parameters). Coroutines
first appeared in a mainstream language in Simula-67 [17] and a formal framework for proving the
correctness of simple Simula programs containing coroutines has even been developed [8]. Coroutine
mechanisms were later introduced in several programming languages, for instance in Modula-2 [59], and
more recently in the functional language Lua [41, 42].

Marlin’s thesis [38], which is cited as a reference for coroutines implementations [41], summarizes
the characteristics of a coroutine as follows:

1. the values of data local to a coroutine persist between successive occasions on which control enters
it (that is, between successive calls), and

2. the execution of a coroutine is suspended as control leaves it, only to carry on where it left off
when control re-enters the coroutine at some later stage.

That is, a coroutine is a subroutine with a local state which can suspend and resume execution. This
informal definition is of course not sufficient to capture the various implementations that have been
developed in practice. To be more specific, the main differences between coroutine mechanisms can be
described as follows [41]:

• the control-transfer mechanism, which can provide symmetric or asymmetric coroutines.

• whether coroutines are provided in the language as first-class objects, which can be freely manip-
ulated by the programmer, or as constrained constructs;

• whether a coroutine is a stackful construct, i.e., whether it is able to suspend its execution from
within nested calls.

Symmetric coroutines generally offer a single control-transfer operation that allows coroutines to pass
control between them. Asymmetric control mechanisms, sometimes called semi-coroutines [16], rely on
two primitives for the transfer of control: the first to invoke a coroutine, the second to pause and return
control to the caller.

A well-known illustration of the third point above, called “the same-fringe problem”, is to determine
whether two trees have exactly the same sequence of leaves using two coroutines, where each coroutine
recursively traverses a tree and passes control to the other coroutine when it encounters a leaf. The

4 A verified abstract machine for functional coroutines

x : Γ,Ax ` ∆;A

t : Γ,Ax ` ∆;B
λx.t : Γ ` ∆;A→ B

(I→)
t : Γ ` ∆;A→ B u : Γ ` ∆;A

t u : Γ ` ∆;B
(E→)

t : Γ ` ∆;A
throw α t : Γ ` ∆,Aα ;B

(WR)
t : Γ ` ∆,Aα ;A

catch α t : Γ ` ∆;A
(CR)

Table 1: Classical Natural Deduction

elegance of this algorithm lies in the fact that each coroutine uses its own stack, which permits for two
simple recursive tree traversals.

Although the first occurrence of the same-fringe problem in the litterature seems indeed to be an
illustration of a coroutine mechanism [47], researchers did not agree on whether coroutines were really
required to solve this problem. In fact, several “iterative” solutions were then proposed for instance
by Greussay [26], Anderson [1] and McCarthy [39]. In fact, a variety of inter-derivable solutions of
this problem exist that do not solely rely on coroutines [6]. However, since we are also interested in
program logics, it is relevant to quote McCarthy’s conclusion about his own solution: “A program with
only assignments and goto’s may have the most easily modified control structure. Of course, elegance,
understandability and a control logic admitting straightforward proofs of correctness are also virtues”.

More recently, Anton and Thiemann described a static type system for first-class, stackful coroutines
[2] that may be used in both, symmetric and asymmetric ways. They followed Danvy’s method [18] to
derive definitional interpreters for several styles of coroutines from the literature (starting from reduction
semantics for Lua). This work is clearly very close to our formalization, and it should help shed some
light on these mechanisms. However, we should keep in mind that logical deduction systems come
with their own constraints which might not be fully compatible with existing programming paradigms:
nobody knows to what extent what Griffin did for continuations [22] can be done for coroutines.

Remark. Asymmetric coroutines often correspond to the coroutines mechanism made directly accessi-
ble to the programmer (as in Simula or Lua), sometimes as a restricted form of generators (as in C#). On
the other hand, symmetric coroutines are generally chosen as a low-level mechanism used to implement
more advanced concurrency mechanisms (as in Modula). An other such example is the Unix Stan-
dard [56] where the recommended low-level primitives for implementing lightweight processes (users
threads) are getcontext, setcontext, swapcontext and makecontext. This is the terminology we have previ-
ously adopted for our coroutines [13]. However, since we are working in a purely functional framework,
we shall write “functional coroutines” to avoid any confusion with other mechanisms.

2 Dependency relations

Parigot’s original CND is a deduction system for the second-order classical logic. Since we are mainly
interested here in the computational content of untyped terms, we shall simply recall the restriction in
the propositional framework corresponding to classical logic with the implication as only connective (in
Table 1). We refer the reader to [10, 13] for the full treatment of primitive conjunction, disjunction and
quantifiers (including the proof that the restricted system is sound and complete for CD).

T. Crolard 5

Remark. We actually work with a minor variant of the original λ µ-calculus, called the λct-calculus,
with a primitive catch/throw mechanism [11]. These primitives are however easily definable in the λ µ-
calculus as catch α t ≡ µα[α]t and throw α t ≡ µδ [α]t where δ is a name which does not occur in
t.

Since Parigot’s CND is multiple-conclusioned sequent calculus, it is possible to apply so-called Dra-
galin restriction to obtain a sound and complete system for CD. This restriction requires that the succe-
dent of the premise of the introduction rule for implication have only one formula:

Γ,A ` B
Γ ` ∆,A→ B

Unfortunately, the Dragalin restriction is not stable under proof reduction. However, a weaker restriction
which is stable under proof reduction, consists in allowing multiple conclusions in the premise of this
rule, with the proviso that these other conclusions do not depend on A. These dependencies between
occurrences of hypotheses and occurrences of conclusions in a sequent are defined by induction on the
derivation.

Example. Consider a derived sequent A,B,C ` D,E,F,G with the following dependencies:

D, E, F, GA, B, C `

Using named hypotheses Ax,By,Cz ` D,E,F,G, this annotated sequent may be represented as:

Ax,By,Cz ` {z} : D,{x,z} : E,{} : F,{x,z} : G

Let us assume now that t is the proof term corresponding to the above derivation, i.e., we have derived in
CND the following typing judgment:

t : Ax,By,Cz ` Dα ,Eβ ,Fγ ;G

then we could also obtain the same dependencies directly from t, by computing sets of variables used by
the various coroutines (where [] refers to the distinguished conclusion), and we would get:

• Sα(t) = {z}
• Sβ (t) = {x,z}
• Sγ(t) = {}
• S[](t) = {x,z}

Remark. Deduction systems which rely on the Dragalin restriction usually do not enjoy the cut elimi-
nation property: there are some derivable sequents for which no cut-free proof exists. Pinto and Uustalu
[45] recently presented such a counter-example (which is also mentionned by Goré and Postniece [24])
for Rauszer’s sequent calculus for bi-intuitionistic logic [49]. They show that there is no cut-free proof
of the following sequent in Rauszer calculus:

p ` q,(r→ ((p−q)∧ r))

6 A verified abstract machine for functional coroutines

There is however a cut-free proof of this sequent in various extended sequent calculi [24, 45, 46] and, as
expected, there is also a cut-free proof in the dependency-based system for bi-intuitionistic logic [13]:

p ` q,(p−q) r ` r

p,r ` q,((p−q)∧ r)

p ` q,(r→ ((p−q)∧ r))

The above presentation assumes that dependencies are explicitly displayed in derivations. In fact,
there is no need to actually annotate sequents with dependency relations: the relevant information is
already present inside the proof term. Let us recall how these dependencies can be extracted [13]. In
the following definition Sδ (t) corresponds to the set of variables of t which are used by coroutine δ ,
whereas S[](t) corresponds to the set of variables of t which are used by the “current” coroutine.

Definition 1. Given a term t, for any free µ-variable δ of t, the sets of variables Sδ (v) and S[](u) are
defined inductively as follows:

• S[](x) = {x}
Sδ (x) = /0

• S[](λx.u) = S[](u)\{x}
Sδ (λx.u) = Sδ (u)\{x}

• S[](u v) = S[](u)∪S[](v)
Sδ (u v) = Sδ (u)∪Sδ (v)

• S[](catch α u) = S[](u)∪Sα(u)
Sδ (catch α u) = Sδ (u)

•
S[](throw α u) = /0
Sα(throw α u) = Sα(u)∪S[](u)
Sδ (throw α u) = Sδ (u) for any δ 6= α

Definition 2. A term t is safe if and only if for any subterm of t which has the form λx.u, for any free
µ-variable δ of u, x /∈Sδ (u) .

Example. The term λx.catch α λy.throw α x is safe, since x was declared before catch α and x is thus
visible in throw α x. On the other hand, λx.catch α λy.throw α y is not safe, because y is not visible
in throw α y. More generally, for any α , a term of the form λy.throw α y is the reification of α as a
first-class continuation and such a term is never safe. This can also be understood at the type level since
the typing judgment of such a term is the law of excluded middle ` Aα ;¬A.

Remark. You can thus decide a posteriori if a proof in CND is valid in CD simply by checking if the
(untyped) proof term is safe.

T. Crolard 7

Example. Here is a derivation of schema DIS in CND (using a primitive disjunction):

u : ∀x(A∨B)u ` ∀x(A∨B)
u : ∀x(A∨B)u ` A∨B Aa ` A

b : Bb ` B
inr b : Bb ` (A∨B)

inr b : Bb ` ∀x(A∨B)
throw α (inr b) : ∀x(A∨B)u ` ∀x(A∨B)α ;A

case u of inl a→ a | inr b→ throw α (inr b) : ∀x(A∨B)u ` ∀x(A∨B)α ;A
case u of inl a→ a | inr b→ throw α (inr b) : ∀x(A∨B)u ` ∀x(A∨B)α ;∀xA

inl (case u of inl a→ a | inr b→ throw α (inr b)) : ∀x(A∨B)u ` ∀x(A∨B)α ;(∀xA)∨B
catch α (inl (case u of inl a→ a | inr b→ throw α (inr b))) : ∀x(A∨B)u ` (∀xA)∨B

It is possible to extend the definition of safety to the primitive disjunction and then check that this
proof term is safe [10, 13]. An alternative consists in relying on the usual definition of disjunction in
Heyting arithmetic:

A∨B≡ ∃x : int(x = 0⇒ A∧ x 6= 0⇒ B)

In this case, the proof term would be:

catch α (inl (if π0(u) = 0 then π1(u) else throw α (inr π2(u))))

One can then check that this proof term is indeed safe (where integers, tuples and projections can be
encoded in the pure λ -calculus). Note however that the standard second-order encoding of the disjunc-
tion in the pure λ -calculus [22] does not work for this derivation, since the second branch of the case
statement is not safe when encoded as a λ -abstraction.

Remark. As already noted in Troelstra’s monograph [57] (Section 1.11.3, p. 92), adding the DIS-
schema to Heyting Arithmetic yields classical arithmetic (Peano’s Arithmetic). To be more specific, if
atomic formulas are decidable (which is the case in HA), one can prove using DIS that any formula is
decidable. Fortunately, there is another way to combine DIS with intuitionistic arithmetic which does not
suffer from this drawback. Indeed, Leivant introduced system IT(N) [36] as an intuitionistic first-order
theory where “being a natural number” is expressed using a unary predicate and where quantifiers over
natural numbers need to be relativized. One can check using standard Kripke semantics that IT(N) can
be extended with (non-relativized) DIS and that the resulting system is still conservative over Heyting
Arithmetic (when restricted to relativized formulas).

2.1 Safety revisited

In the conventional λ -calculus, there are two standard algorithms to decide whether a term is closed:
either you build inductively the set of free variables (as a synthesized attribute) and then check that it is
empty, or you define a recursive function which takes as argument the set of declared variables (as an
inherited attribute), and checks that each variable has been declared.

Similarly, for the λ µ-calculus there are two ways of defining safety: the previous definition refined
the standard notion of free variable (by defining a set per free µ-variable). In the following definition,
Safe takes as arguments the sets of visible variables for each coroutine, and then decides for each variable,
if the variable is visible in the current coroutine. For a closed term, Safe is called with V ,Vµ both empty.

8 A verified abstract machine for functional coroutines

Definition 3. The property SafeV ,Vµ (t) is defined by induction on t as follows:

SafeV ,Vµ (x) = x ∈ V

SafeV ,Vµ (t u) = SafeV ,Vµ (t)∧SafeV ,Vµ (u)

SafeV ,Vµ (λx.t) = Safe(x::V),Vµ (t)

SafeV ,Vµ (catch α t) = SafeV ,(α 7→V ;Vµ)(t)

SafeV ,Vµ (throw α t) = SafeVµ (α),Vµ (t)

where:

• V is a list of variables

• Vµ maps µ-variables onto lists of variables

Remark. This definition can also be seen as the reformulation, at the level of proof terms, of the “top-
down” definition of the restriction of CND from [7] which was introduced in the framework of proof
search.

As expected, we can show that the above two definitions of safety are equivalent. More precisely, the
following propositions are provable.

Proposition 4. For any term t and any mapping Vµ such that FVµ(t)⊆ dom(Vµ), we have: SafeV ,Vµ (t)
implies S[](t)⊆ V and Sδ (t)⊆ Vµ(δ) for any δ ∈ dom(Vµ) and t is safe.

Proposition 5. For any safe term t, for any set V such that S[](t) ⊆ V , for any mapping Vµ such that
FVµ(t)⊆ dom(Vµ) and Sδ (t)⊆ Vµ(δ) for any δ ∈ FVµ(t), we have SafeV ,Vµ (t).

3 Abstract machines

In this section, we recall Groote’s abstract machine for the λ µ-calculus [28], then we present the modi-
fied machine for safe terms and we prove its correctness. But before we describe the abstract machines,
we need to move to a syntax using de Bruijn indices, and to adapt the definition of safety.

Remark. Note that it is also possible to start with an abstract machine for λ µ-terms with names (in-
stead of de Bruijn indices) as proposed by Streicher and Reus [55], and then define a variant of this
machine tailored for safe λ µ-terms. The main advantage of this approach would be to keep a single
syntax (since safety is just a predicate and no compilation is required). However, this apparent simplicity
is misleading: it actually more difficult to formally prove the correctness of such a machine (since we
have to deal with bound variables and α-conversion).

3.1 Safe λct-terms

We rely on de Bruijn indices for both kind of variables (the regular variables and the µ-variables) but
they correspond to different name spaces. Let us now call vector a list of indices (natural numbers), and
table a list of vectors. The definition of Safe given for named terms can be rephrased for de Bruijn terms
as follows. For a closed term, Safe is called with I , Iµ both empty and n = 0.

T. Crolard 9

Notation 6. We write 8g8 for the term consisting only of the variable with index g (this is just an explicit
notation for the constructor that takes an index and builds a term). The rest of the syntax is standard for
de Bruijn terms. In particular, since catch is also a binder, it takes only a term as argument in de Bruijn
notation (this is similar to the λ -abstraction).

Definition 7. Given t: term, I : vector, Iµ : table and n: nat, the property SafeI ,Iµ

n (t) is defined
inductively by the following rules:

n−g = k k ∈I

SafeI ,Iµ

n (8g8)

SafeI ,Iµ

n (t) SafeI ,Iµ

n (u)

SafeI ,Iµ

n (t u)

Safe(n+1::I),Iµ

n+1 (t)

SafeI ,Iµ

n (λ t)

SafeI ,(I ::Iµ)
n (t)

SafeI ,Iµ

n (catch t)

Iµ(α) = I ′ SafeI ′,Iµ

n (t)

SafeI ,Iµ

n (throw α t)

Remark. Note that n is used to count occurrences of λ from the root of the term (seen as a tree), and
such a number clearly uniquely determines a λ on a branch. Since they are the numbers stored in I ,
Iµ , a difference is computed for the base case since de Bruijn indices count λ beginning with the leaf.

3.2 From local indices to global indices

In the framework of environment machines, de Bruijn indices are used to represent variables in order to
point directly to their denotation in the environment (the closure which is bound to the variable). On the
other hand, the intuition behind the safety property is that for each continuation, there is only a fragment
of the environment which is visible (the local environment of the coroutine).

In the modified machine, these indices should point to locations in the local environment. Although
the abstract syntaxes are isomorphic, it is more convenient to introduce a new calculus (since indices in
terms have different semantics), where we can also rename catch/throw as get-context/set-context (to
be consistent with the new semantics). Let us call λgs-calculus the resulting calculus, and let us now
define formally the translation of λgs-terms onto (safe) λct-terms.

Remark. In the Coq proof assistant, it is often more convenient to represent partial functions as rela-
tions (since all functions are total in Coq we would need option types to encode partial functions). In the
sequel, we call “functional” or “deterministic” any relation which has been proved functional.

Definition 8. The functional relation ↓I ,Iµ

n (t) = t ′, with t: λgs-term, t ′: λct-term, I : vector, Iµ : table
and n: nat, is defined inductively by the following rules:

n−I (l) = g

↓I ,Iµ

n (8l8) = (8g8)

10 A verified abstract machine for functional coroutines

↓I ,Iµ

n (t) = t ′ ↓I ,Iµ

n (u) = u′

↓I ,Iµ

n (t u) = (t ′ u′)

↓(n+1::I),Iµ

n+1 (t) = t ′

↓I ,Iµ

n (λ t) = (λ t ′)

↓I ,(I ::Iµ)
n (t) = t ′

↓I ,Iµ

n (get-context t) = (catch t ′)

Iµ(α) = I ′ ↓I
′,Iµ

n (t) = t ′

↓I ,Iµ

n (set-context α t) = (throw α t ′)
The shape of this definition is obviously very similar to the definition of safety. Actually, we can

prove that a λct-term is safe if and only if it is the image of some λgs-term by the translation.

Lemma 9. ∀ I Iµ n t ′, SafeI ,Iµ

n (t ′) ↔ ∃t,↓I ,Iµ

n (t) = t ′.

3.3 The Kct-machine for λct-terms

De Groote’s machine [28] is an extension of the well-known Krivine’s abstract machine (K-machine)
which has already been studied extensively in the literature [19]. Moreover, this abstract machine has also
been derived mechanically from a contextual semantics of the λ µ-calculus with explicit substitutions
using the method developed by Biernacka and Danvy [5], and it is thus correct by construction. The
Kct-machine we describe below is a variant de Groote’s machine tailored for λct-terms.

3.3.1 Closure, environment, stack and state of the Kct-machine

Definition 10. A closure is an inductively defined tuple [t,E ,Eµ] with t : term, E : environment (where
an environment is a closure list), Eµ : stack list (where a stack is a closure list).
Definition 11. A state is defined as a tuple 〈 t, E , Eµ , S 〉 where [t,E ,Eµ] is a closure and S is a stack.

3.3.2 Evaluation rules for the Kct-machine

Definition 12. The deterministic transition relation σ1 σ2, with σ1, σ2: state, is defined inductively
by the following rules (where E (k) is the k-th closure in E and Eµ(α) is the α-th stack in Eµ):

E (k) = [t,E ′,E ′µ]
〈8k8,E ,Eµ ,S 〉 〈t,E ′,E ′µ ,S 〉

〈(tu) ,E ,Eµ ,S 〉 〈t,E ,Eµ , [u,E ,Eµ] :: S 〉

〈λ t,E ,Eµ ,c :: S 〉 〈t,(c :: E),Eµ ,S 〉

〈catch t,E ,Eµ ,S 〉 〈t,E ,(S :: Eµ),S 〉

Eµ(α) = S ′

〈throw α t,E ,Eµ ,S 〉 〈t,E ,Eµ ,S ′〉

T. Crolard 11

3.4 The Kgs-machine for λgs-terms (with local environments)

As mentioned in the introduction, the modified abstract machine for λgs-terms is a surprisingly simple
variant of de Groote’s abstract machine, where a µ-variable is mapped onto a pair 〈environment, contin-
uation〉 (a context) and not only a continuation. As expected, the primitives get-context and set-context
respectively capture and restore the local environment together with the continuation.

3.4.1 Closure, environment, stack and state of the Kgs-machine

Definition 13. A closurel is an inductively defined tuple [t,L ,Lµ ,Eµ] where t: term, L : environmentl
(where an environmentl is a closurel list), Lµ : environmentl list, and Eµ : stackl list (where a stackl is
closurel list).

Remark. For simplicity, we keep two distinct mappings in a closure, Lµ and Eµ , but they have the
same domain, which is the set of free µ-variables. A µ-variable is then mapped onto a pair 〈environment,
continuation〉 as expected: the environment is obtained from Lµ and the continuation is obtained from
Eµ .

Definition 14. A statel is defined as a tuple 〈 t,L ,Lµ ,Eµ ,S 〉 where [t,L ,Lµ ,Eµ] is a closurel and
S is a stackl .

3.4.2 Evaluation rules for the Kgs-machine

Definition 15. The deterministic transition relation σ1 l σ2, with σ1, σ2: statel , is defined inductively
by the following rules:

L (k) = [t,L ′,L ′
µ ,E

′
µ]

〈8k8,L ,Lµ ,Eµ ,S 〉 l 〈t,L ′,L ′
µ ,E

′
µ ,S 〉

〈(tu) ,L ,Lµ ,Eµ ,S 〉 l 〈t,L ,Lµ ,Eµ , [u,L ,Lµ ,Eµ] :: S 〉

〈λ t,L ,Lµ ,Eµ ,c :: S ′〉 l 〈t,(c :: L),Lµ ,Eµ ,S
′〉

〈get-context t,L ,Lµ ,Eµ ,S 〉 l 〈t,L ,(L :: Lµ),(S :: Eµ),S 〉

Lµ(α) = L ′ Eµ(α) = S ′

〈set-context α t,L ,Lµ ,Eµ ,S 〉 l 〈t,L ′,Lµ ,Eµ ,S ′〉

4 Bisimulations

We first introduce the intermediate machine for λgs-terms, called the Kit
gs-machine, and we define two

simulations (−)? and (−)� showing that this Kit
gs-machine is simulated by both the Kct-machine and the

Kgs-machine. Moreover, we shall prove that both simulations are sound and complete.

12 A verified abstract machine for functional coroutines

4.1 The Kit
gs-machine for λgs-terms (with indirection tables)

This intermediate machine for λgs-terms works with local indices, global environment and indirection
tables. The indirection tables are exactly the same as for the static translation of λgs-terms to safe λct-
terms. However, the translation is now performed at runtime. The lock-step simulation (−)? shows
that translating during evaluation is indeed equivalent to evaluating the translated term. The lock-step
simulation (−)� shows that we can “flatten away” the indirection tables and the global environment, and
work only with local environments.

4.1.1 Closure, environment, stack and state of the Kit
gs-machine

Definition 16. A closurei is an inductively defined tuple [t,n,I ,Iµ ,E ,Eµ], with t : term, n : nat, I :
vector, Iµ : table, E : environmenti (where an environmenti is a closurei list), Eµ : stacki list (where a
stacki is a closurei list).
Definition 17. A statei is defined as a tuple 〈 t, n, I , Iµ , E , Eµ , S 〉 where [t,n,I ,Iµ ,E ,Eµ] is a
closurei and S is a stacki.

4.1.2 Evaluation rules for the Kit
gs-machine

Definition 18. The deterministic transition relation σ1 i σ2, with σ1, σ2: statei, is defined inductively
by the following rules:

n−I (l) = g E (g) = [t,n′,I ′,I ′
µ ,E

′,E ′µ]

〈8l8,n,I ,Iµ ,E ,Eµ ,S 〉 i 〈t,n′,I ′,I ′
µ ,E

′,E ′µ ,S 〉

〈(tu) ,n,I ,Iµ ,E ,Eµ ,S 〉 i 〈t,n,I ,Iµ ,E ,Eµ , [u,n,I ,Iµ ,E ,Eµ] :: S 〉

〈λ t,n,I ,Iµ ,E ,Eµ ,c :: S ′〉 i 〈t,(Sn),((Sn) :: I),Iµ ,c :: E ,Eµ ,S
′〉

〈get-context t,n,I ,Iµ ,E ,Eµ ,S 〉 i 〈t,n,I ,(I :: Iµ),E ,(S :: Eµ),S 〉

Iµ(α) = I ′ Eµ(α) = S ′

〈set-context α t,n,I ,Iµ ,E ,Eµ ,S 〉 i 〈t,n,I ′,Iµ ,E ,Eµ ,S ′〉

4.2 Lock-step simulation (−)? of the Kit
gs-machine by the Kct-machine

Definition 19. The functional relation c? =c c′, with c: closurei, c′: closure, is defined by the following
rule:

↓I ,Iµ

n (t) = u E ? =e E ′ E ?
µ =k E ′µ

[t,n,I ,Iµ ,E ,Eµ]? =c [u,E ′,E ′µ]

where E ? and E ?
µ are defined by element-wise application of ?.

Definition 20. The functional relation σ? =σ σ ′, with σ : statei, σ ′: state, is defined by the following
rule:

[t,n,I ,Iµ ,E ,Eµ]
? =c [u,E ′,E ′µ] S ? =s S ′

〈t,n,I ,Iµ ,E ,Eµ ,S 〉? =σ 〈u,E ′,E ′µ ,S ′〉
where S ? is defined by element-wise application of ?.

T. Crolard 13

4.2.1 Soundness of simulation (−)?

The following theorem states that the Kit
gs-machine is sound with respect to the Kct-machine.

Theorem 21. ∀ σ1 σ2 σ ′1, σ1 i σ2 → σ?
1 =σ σ ′1 → ∃σ ′2, σ ′1 σ ′2 ∧ σ?

2 =σ σ ′2.

4.2.2 Completeness of simulation (−)?

The following theorem states that the Kit
gs-machine is complete with respect to the Kct-machine.

Theorem 22. ∀ σ ′1 σ ′2 σ1, σ ′1 σ ′2 → σ?
1 =σ σ ′1 → ∃σ2, σ1 i σ2 ∧ σ?

2 =σ σ ′2.

Remark. Since simulation (−)? is sound and complete, and since both the Kit
gs-machine and Kgs-

machine evaluate the same λgs-terms, simulation (−)? is actually a bi-simulation.

4.3 Lock-step simulation (−)� of the Kit
gs-machine by the Kgs-machine

Definition 23. The functional relation c� =k c′ with c: closurei, c′: closurel , is defined by the following
rule:

flatten n E I = L map (flatten n E) Iµ = Lµ E �µ =k E ′µ
[t,n,I ,Iµ ,E ,Eµ]� =c [t,L ,Lµ ,E ′µ]

where S � and E �µ are defined by element-wise application of �, and flatten is a functional relation
inductively defined by the following rules:

flatten n E nil = nil
E (n− k) = c c� =c c′ flatten n E I = L

flatten n E (k :: I) = (c′ :: L)

Definition 24. The functional relation σ� =σ σ ′, with σ : statei, σ ′: statel , is defined by the following
rule:

[t,n,I ,Iµ ,E ,Eµ]
� =c [u,L ,Lµ ,E ′µ] S � =s S ′

〈t,n,I ,Iµ ,E ,Eµ ,S 〉� =σ 〈u,L ,Lµ ,E ′µ ,S ′〉

4.3.1 Soundness of simulation (−)�

The following theorem states that the Kit
gs-machine is sound with respect to the Kgs-machine.

Theorem 25. ∀ σ1 σ2 σ ′1, σ1 i σ2 → σ�1 =σ σ ′1 → ∃σ ′2, σ ′1
l σ ′2 ∧ σ�2 =σ σ ′2.

4.3.2 Completeness of simulation (−)�

The following theorem states that the Kit
gs-machine is complete with respect to the Kgs-machine.

Theorem 26. ∀ σ ′1 σ ′2 σ1, σ ′1
l σ ′2 → σ�1 =σ σ ′1 → ∃σ2, σ1 i σ2 ∧ σ�2 =σ σ ′2.

Remark. Since simulation (−)� is sound and complete, (−)� is a bi-simulation when the initial states
of the Kct-machine are restricted to safe λct-terms (by Lemma 9). However, the Kct-machine can also
evaluate arbitrary λct-terms.

14 A verified abstract machine for functional coroutines

4.4 Lock-step simulation of the Kgs-machine by the Kct-machine

We have proved that the Kit
gs-machine is simulated by both the Kct-machine and the Kgs-machine (and

that both simulations are sound and complete). These properties are illustrated by the following diagram:

Kct-machine σ?
0 · · · σ?

n σ?
n+1 · · ·

↑ ? ↑ ? ↑ ?
Kit

gs-machine σ0 · · · σn σn+1 · · ·
↓ � ↓ � ↓ �

Kgs-machine σ�0 · · · σ�n σ�n+1 · · ·

The composition of simulation (−)� and (−)? gives us a sound and complete lock-step simulation of the
Kgs-machine by the Kct-machine.

5 Conclusion and future work

We have defined and formally proved the correctness of an abstract machine which provides a direct
computational interpretation of the Constant Domain logic. However, as mentioned in the introduction,
this work is a stepping stone towards a computational interpretation of duality in intuitionistic logic.
Starting from the reduction semantics of proof terms of bi-intuitionistic logic (subtractive logic) [13], it
should be possible to extend the coroutine machine to account for first-class coroutines.

These future results should then be compared with other related works, such as Curien and Herbelin’s
pioneering article on the duality of computation [15], or more recently, Bellin and Menti’s work on the
π-calculus and co-intuitionistic logic [4], Kimura and Tatsuta’s Dual Calculus [33] and Eades, Stump
and McCleeary’s Dualized simple type theory [21].

Acknowledgments. I would like to thank Nuria Brede for numerous discussions on the “safe” λ µ-
calculus and useful comments on earlier versions of this work. I am also very grateful to Olivier Danvy
and Ugo de’Liguoro for giving me the opportunity to present these results at WoC 2015, and for their
work as editors of this special issue. Finally, I would like to thank anonymous referees for their very
constructive comments, which helped me to substantially improve the manuscript.

References
[1] B. Anderson (1976): The Samefringe Problem. SIGART Bull. 60, pp. 4–4.

[2] K. Anton & P. Thiemann (2010): Towards Deriving Type Systems and Implementations for Coroutines. In
Kazunori Ueda, editor: Programming Languages and Systems – 8th Asian Symposium, APLAS 2010, LNCS
6461, Springer, Shanghai, China, pp. 63–79, doi:10.1007/ 978-3-642-17164-2 6.

[3] F. Barbanera & S. Berardi (1994): Extracting Constructive Content from Classical Logic via Control-like
Reductions. In: LNCS, 662, Springer-Verlag, pp. 47–59, doi:10.1.1.120.386.

[4] G. Bellin & A. Menti (2014): On the π-calculus and Co-intuitionistic Logic. Notes on Logic for Concurrency
and λP Systems. Fundamenta Informaticae 130(1), pp. 21–65, doi:10.3233/FI-2014-981.

[5] M. Biernacka & O. Danvy (2007): A Syntactic Correspondence between Context-Sensitive Calculi and Ab-
stract Machines. Theoretical Computer Science 375, doi:10.1016/j.tcs.2006.12.028.

[6] D. Biernacki, O. Danvy & C. Shan (2006): On the Static and Dynamic Extents of Delimited Continuations.
Science of Computer Programming 60(3), pp. 274–297, doi:10.1016/j.scico.2006.01.002.

http://dx.doi.org/10.1007/ 978-3-642-17164-2_6
http://dx.doi.org/10.1.1.120.386
http://dx.doi.org/10.3233/FI-2014-981
http://dx.doi.org/10.1016/j.tcs.2006.12.028
http://dx.doi.org/10.1016/j.scico.2006.01.002

T. Crolard 15

[7] N. Brede (2009): λ µPRL - A Proof Refinement Calculus for Classical Reasoning in Computational Type
Theory. Master’s thesis, University of Potsdam. Available at http://www.cs.uni-potsdam.de/~brede.

[8] M. Clint (1973): Program proving: Coroutines. Acta Informatica 2(1), pp. 50–63, doi:10.1007/BF00571463.

[9] M. E. Conway (1963): Design of a separable transition-diagram compiler. Commun. ACM 6(7), pp. 396–
408, doi:10.1145/366663.366704.

[10] T. Crolard (1996): Extension de l’Isomorphisme de Curry-Howard au Traitement des Exceptions (application
d’une étude de la dualité en logique intuitionniste). Thèse de Doctorat. Université Paris 7.

[11] T. Crolard (1999): A confluent lambda-calculus with a catch/throw mechanism. Journal of Functional Pro-
gramming 9(6), pp. 625–647, doi:10.1017/S0956796899003512.

[12] T. Crolard (2001): Subtractive Logic. Theoretical Computer Science 254(1–2), pp. 151–185,
doi:10.1016/S0304-3975(99)00124-3.

[13] T. Crolard (2004): A Formulæ-as-Types Interpretation of Subtractive Logic. Journal of Logic and Computa-
tion 14(4), pp. 529–570, doi:10.1093/logcom/14.4.529.

[14] T. Crolard (2015): A verified abstract machine for functional coroutines - Coq formalization. Technical
Report, CEDRIC - Conservatoire National des Arts et Métiers. Available at http://cedric.cnam.fr/
cpr/crolard/publications.

[15] P.-L. Curien & H. Herbelin (2000): The duality of computation. In: Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP’00), ACM Press, New York, USA, pp. 233–
243, doi:10.1145/351240.351262.

[16] O. J. Dahl, E. W. Dijkstra & C. A. R. Hoare (1972): Structured programming. Academic Press.

[17] O.-J. Dahl & K. Nygaard (1966): SIMULA: an ALGOL-based simulation language. Commun. ACM 9(9),
pp. 671–678, doi:10.1145/365813.365819.

[18] O. Danvy (2008): Defunctionalized Interpreters for Programming Languages. In: Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP’08), ACM Press, New York, USA,
pp. 131–142, doi:10.1145/1411204.1411206.

[19] O. Danvy, editor (2007): Special Issue on the Krivine Machine. Higher-Order and Symbolic Computation
20(3), doi:10.1007/s10990-007-9021-1.

[20] R. K. Dybvig & R. Hieb (1989): Engines From Continuations. Comput. Lang 14(2), pp. 109–123,
doi:10.1016/0096-0551(89)90018-0.

[21] H. Eades, A. Stump & R. McCleeary (2016): Dualized simple type theory. Submitted to Logical Methods in
Computer Science.

[22] S. Fortune, D. Leivant & M. O’Donnell (1983): The Expressiveness of Simple and Second-Order Type Struc-
tures. J. ACM 30(1), pp. 151–185, doi:10.1145/322358.322370.

[23] D. P. Friedman, C. T. Haynes & M. Wand (1986): Obtaining Coroutines with Continuations. Journal of
Computer Languages 11(3/4), pp. 143–153, doi:10.1016/0096-0551(86)90007-X.

[24] R. Goré & L. Postniece (2010): Combining derivations and refutations for cut-free completeness in bi-
intuitionistic logic. Journal of Logic and Computation, doi:10.1093/logcom/exn067.

[25] S. Görnemann (1971): A logic stronger than intuitionism. The Journal of Symbolic Logic 36, pp. 249–261,
doi:10.2307/2270260.

[26] P. Greussay (1976): An Iterative Lisp Solution to the Samefringe Problem. SIGART Bull. 59, pp. 14–14,
doi:10.1145/1045270.1045273.

[27] T. G. Griffin (1990): A formulæ-as-types notion of control. In: Conference Record of the 17th Annual ACM
Symposium on Principles of Programming Langages, pp. 47–58, doi:10.1145/96709.96714.

[28] P. de Groote (1998): An environment machine for the lambda-mu-calculus. Mathematical Structure in Com-
puter Science 8, pp. 637–669, doi:10.1017/S0960129598002667.

http://www.cs.uni-potsdam.de/~brede
http://dx.doi.org/10.1007/BF00571463
http://dx.doi.org/10.1145/366663.366704
http://dx.doi.org/10.1017/S0956796899003512
http://dx.doi.org/10.1016/S0304-3975(99)00124-3
http://dx.doi.org/10.1093/logcom/14.4.529
http://cedric.cnam.fr/cpr/crolard/publications
http://cedric.cnam.fr/cpr/crolard/publications
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1145/365813.365819
http://dx.doi.org/10.1145/1411204.1411206
http://dx.doi.org/10.1007/s10990-007-9021-1
http://dx.doi.org/10.1016/0096-0551(89)90018-0
http://dx.doi.org/10.1145/322358.322370
http://dx.doi.org/10.1016/0096-0551(86)90007-X
http://dx.doi.org/10.1093/logcom/exn067
http://dx.doi.org/10.2307/2270260
http://dx.doi.org/10.1145/1045270.1045273
http://dx.doi.org/10.1145/96709.96714
http://dx.doi.org/10.1017/S0960129598002667

16 A verified abstract machine for functional coroutines

[29] P. de Groote (2001): Strong Normalization of Classical Natural Deduction with Disjunction. In S. Abramsky,
editor: Typed Lambda Calculi and Applications, LNCS 2044, Springer, pp. 182–196, doi:10.1007/3-540-
45413-6 17.

[30] A. Grzegorczyk (1964): A philosophically plausible formal interpretation of intuitionistic logic. Nederl.
Akad. Wet., Proc., Ser. A 67, pp. 596–601, doi:10.2307/2271877.

[31] R. Harper, B. F. Duba & D. MacQueen (1993): Typing first-class continuations in ML. Journal of Functional
Programming 3(4), pp. 465–484, doi:10.1017/S095679680000085X.

[32] R. Kashima (1991): Cut-Elimination for the intermediate logic CD. Research Report on Information Sciences
C100, Institute of Technology, Tokyo.

[33] D. Kimura & M. Tatsuta (2009): Dual Calculus with Inductive and Coinductive Types. In Ralf Treinen,
editor: Rewriting Techniques and Applications, 20th International Conference, RTA 2009, Brası́lia, Brazil,
LNCS 5595, Springer, pp. 224–238, doi:10.1007/978-3-642-02348-4 16.

[34] D. E. Knuth (1997): The Art of Computer Programming, Volume I: Fundamental Algorithms, 3rd edition
edition. Addison-Wesley.

[35] J.-L. Krivine (1994): Classical logic, storage operators and second order λ -calculus. Ann. of Pure and Appl.
Logic 68, pp. 53–78, doi:10.1016/0168-0072(94)90047-7.

[36] D. Leivant (2002): Intrinsic reasoning about functional programs I: first order theories. Annals of Pure and
Applied Logic 114(1-3), pp. 117–153, doi:10.1016/S0168-0072(01)00078-1.

[37] E. G. K. Lopez-Escobar (1983): A Second Paper “On the Interpolation Theorem for the Logic of Constant
Domains”. The Journal of Symbolic Logic 48(3), pp. 595–599, doi:10.2307/2273451. Available at http:
//www.jstor.org/stable/2273451.

[38] C. D. Marlin (1980): Coroutines: A Programming Methodology, a Language Design and an Implementation.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, doi:10.1007/3-540-10256-6.

[39] J. McCarthy (1977): Another SAMEFRINGE. SIGART Bull. 61, pp. 4–4.
[40] G. Mints, G. Olkhovikov & A. Urquhart (2013): Failure of Interpolation in Constant Domain Intuitionistic

Logic. The Journal of Symbolic Logic 78, pp. 937–950, doi:10.2178/jsl.7803120. Available at http://
journals.cambridge.org/article_S0022481200126672.

[41] A. L. de Moura & R. Ierusalimschy (2004): Revisiting Coroutines. MCC 15/04, PUC-Rio, Rio de Janeiro,
RJ, doi:10.1145/1462166.1462167.

[42] A. L. de Moura, N. Rodriguez & R. Ierusalimschy (2004): Coroutines in Lua. Journal of Universal Computer
Science 10(7), pp. 910–925, doi:10.3217/jucs-010-07-0910.

[43] C. R. Murthy (1991): Classical proofs as programs: How, when, and why. Technical Report 91-1215, Cornell
University, Department of Computer Science.

[44] M. Parigot (1993): Strong normalization for second order classical natural deduction. In: Proceedings of the
eighth annual IEEE symposium on logic in computer science, pp. 39–46, doi:10.1109/LICS.1993.287602.

[45] L. Pinto & T. Uustalu (2009): Proof Search and Counter-Model Construction for Bi-intuitionistic Proposi-
tional Logic with Labelled Sequents. Automated Reasoning with Analytic Tableaux and Related Methods,
pp. 295–309, doi:10.1007/978-3-642-02716-1 22.

[46] L. Pinto & T. Uustalu (2010): Relating Sequent Calculi for Bi-intuitionistic Propositional Logic. In S. van
Bakel, S. Berardi & U. Berger, editors: Proc. of the 3rd Workshop on Classical logic and Computation,
Masarykova Univ., pp. 68–85, doi:10.4204/EPTCS.47.7.

[47] C. J. Prenner (1971): The Control Structure Facilities of ECL. SIGPLAN Not. 6(12), pp. 104–112,
doi:10.1145/800006.807990.

[48] D. Pym, E. Ritter & L. Wallen (2000): On the intuitionistic force of classical search. Theoretical Computer
Science 232(1-2), pp. 299–333, doi:10.1016/S0304-3975(99)00178-4.

[49] C. Rauszer (1974): Semi-Boolean algebras and their applications to intuitionistic logic with dual operations.
In: Fundamenta Mathematicae, 83, pp. 219–249.

http://dx.doi.org/10.1007/3-540-45413-6_17
http://dx.doi.org/10.1007/3-540-45413-6_17
http://dx.doi.org/10.2307/2271877
http://dx.doi.org/10.1017/S095679680000085X
http://dx.doi.org/10.1007/978-3-642-02348-4_16
http://dx.doi.org/10.1016/0168-0072(94)90047-7
http://dx.doi.org/10.1016/S0168-0072(01)00078-1
http://dx.doi.org/10.2307/2273451
http://www.jstor.org/stable/2273451
http://www.jstor.org/stable/2273451
http://dx.doi.org/10.1007/3-540-10256-6
http://dx.doi.org/10.2178/jsl.7803120
http://journals.cambridge.org/article_S0022481200126672
http://journals.cambridge.org/article_S0022481200126672
http://dx.doi.org/10.1145/1462166.1462167
http://dx.doi.org/10.3217/jucs-010-07-0910
http://dx.doi.org/10.1109/LICS.1993.287602
http://dx.doi.org/10.1007/978-3-642-02716-1_22
http://dx.doi.org/10.4204/EPTCS.47.7
http://dx.doi.org/10.1145/800006.807990
http://dx.doi.org/10.1016/S0304-3975(99)00178-4

T. Crolard 17

[50] C. Rauszer (1980): An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. In:
Dissertationes Mathematicae, 167, Institut Mathématique de l’Académie Polonaise des Sciences, pp. 1–67.

[51] N. J. Rehof & M. H. Sørensen (1994): The λ∆-calculus. In: Theoretical Aspects of Computer Software,
LNCS 542, Springer-Verlag, pp. 516–542, doi:10.1007/3-540-57887-0 113.

[52] J. H. Reppy (1995): First-class Synchronous Operations. In: Proceedings of the International Workshop
on Theory and Practice of Parallel Programming, LNCS 907, Springer-Verlag, London, UK, pp. 235–252,
doi:10.1007/BFb0026573.

[53] T. Shimura & R. Kashima (1994): Cut-Elimination Theorem for the Logic of Constant Domains. Math. Log.
Q 40, pp. 153–172, doi:10.1002/malq.19940400203.

[54] C. Strachey & C. P. Wadsworth (1974): Continuations: A Mathematical Semantics for Handling Full Jumps.
Technical Monograph PRG-11, Oxford University Computing Laboratory, Programming Research Group,
Oxford, England. Reprinted in Higher-Order and Symbolic Computation 13(1/2):135–152, 2000, with a
foreword [58].

[55] T. Streicher & B. Reus (1998): Classical Logic, Continuation Semantics and Abstract Machines. Journal of
Functional Programming 8(6), pp. 543–572, doi:10.1017/S0956796898003141.

[56] The Open Group (1997): The Single UNIX Specification, Version 2. Available at http://www.

UNIX-systems.org/online.html.
[57] A. S. Troelstra (1973): Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture

Notes in Mathematics 344, Springer-Verlag, Berlin, doi:10.1007/BFb0066742.
[58] C. P. Wadsworth (2000): Continuations revisited. Higher-Order and Symbolic Computation 13(1/2), pp.

131–133, doi:10.1023/A:1010074329461.
[59] N. Wirth & J. Mincer-Daszkiewicz (1980): Modula-2. ETH Zurich, Schweiz, doi:10.3929/ethz-a-000189918.

http://dx.doi.org/10.1007/3-540-57887-0_113
http://dx.doi.org/10.1007/BFb0026573
http://dx.doi.org/10.1002/malq.19940400203
http://dx.doi.org/10.1017/S0956796898003141
http://www.UNIX-systems.org/online.html
http://www.UNIX-systems.org/online.html
http://dx.doi.org/10.1007/BFb0066742
http://dx.doi.org/10.1023/A:1010074329461
http://dx.doi.org/10.3929/ethz-a-000189918

	1 Introduction
	1.1 Related work

	2 Dependency relations
	2.1 Safety revisited

	3 Abstract machines
	3.1 Safe ct-terms
	3.2 From local indices to global indices
	3.3 The Kct-machine for ct-terms
	3.3.1 Closure, environment, stack and state of the Kct-machine
	3.3.2 Evaluation rules for the Kct-machine

	3.4 The Kgs-machine for gs-terms (with local environments)
	3.4.1 Closure, environment, stack and state of the Kgs-machine
	3.4.2 Evaluation rules for the Kgs-machine

	4 Bisimulations
	4.1 The Kitgs-machine for gs-terms (with indirection tables)
	4.1.1 Closure, environment, stack and state of the Kitgs-machine
	4.1.2 Evaluation rules for the Kitgs-machine

	4.2 Lock-step simulation (-) of the Kitgs-machine by the Kct-machine
	4.2.1 Soundness of simulation (-)
	4.2.2 Completeness of simulation (-)

	4.3 Lock-step simulation (-) of the Kitgs-machine by the Kgs-machine
	4.3.1 Soundness of simulation (-)
	4.3.2 Completeness of simulation (-)

	4.4 Lock-step simulation of the Kgs-machine by the Kct-machine

	5 Conclusion and future work

