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The salient feature of delimited-control operators isithbility to modifyanswer types during com-
putation. The feature, answer-type modification (ATM foorh allows one to express various
interesting programs such as typed printf compactly anélyigvhile it makes it difficult to embed
these operators in standard functional languages.

In this paper, we present a typed translation of delimitedtm| operators shift and reset with
ATM into a familiar language with multi-prompt shift and etswithout ATM, which lets us use
ATM in standard languages without modifying the type systébur translation generalizes Kise-
lyov’s direct-style implementation of typed printf, whicises two prompts to emulate the modifica-
tion of answer types, and passes them during computatiorprdie that our translation preserves
typing. As the naive prompt-passing style translation gates and passes many prompts even for
pure terms, we show an optimized translation that generatagts only when needed, which is also
type-preserving. Finally, we give an implementation in thgless-final style which respects typing
by construction.

1 Introduction

Delimited continuations are parts of a continuation, thret of computation, and delimited-control oper-
ators provide programmers a means to access the curremitéelicontinuations. Since the delimited-
control operators control/prompt and shift/reset havenbe®posed around 1990 [11] 9], many re-
searchers have been studying them intensively, to findestiag theory and application in program
transformation, partial evaluation, code generation, @mdputational linguistics. Today, we see their
implementations in many programming languages such amggheacket, SML, OCaml, Haskell, and
Scala.

Yet, there still exists a big gap between theory and pradtize work in typed languages. Theoreti-
cally, the salient feature of delimited-control operatisrtheir ability to modify answer types. The term
reset (3 + shift k -> k) looks as if it has typeint, but the result of this computation is a con-
tinuationfun x -> reset (3 + x) whose type isint -> int, which means that the initial answer
type has been modified during the computation of the shiftt&hile this feature, called Answer-Type
Modification, allows one to express surprisingly intemegtprograms such as typed printf, it is the source
of the problem that we cannot easily embed the delimitedroboperators in standard languages. We
can hardly expect that the whole type system of a full-fledgeduage would be modified in such a
way. With a few exceptions of Scala [18] and OchaCaml [17],caenot directly express the beautiful
examples with ATM as programs in standard languages.

We address this problem, and present a solution for it. N@mal give a translation from a calculus
with ATM shift and reset into a calculus with multi-promptifstand reset without ATM. Our translation
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is a generalization of Kiselyov’s implementatian [14] opgd printf using multi-prompt shift and reset
where he associates each answer type with a prompt (a tadgliorited-control operators. Our trans-
lation also uses prompts to simulate answer types, and tifmedietained by our translation dynamically
generates and passes two prompts during computation, ggalint Prompt-Passing Style (PPS), after
the well known Continuation-Passing Style.

We introduce a PPS translation from a calculus with ATM to ladas without, and prove that it is
type-preserving. We also give an implementation based otramslation in the tagless-final style [6/16],
which allows us to embed a domain-specific language whilsgowing types by construction.

The PPS translation differs from the definitional CPS tratish for shift and reset [9] in that the
generated term by our PPS translation are in direct stylgewite generated terms by the CPS translation
are in continuation-passing style, which makes the sizeerwhs bigger, and may affect performance.
In order to show this aspect better, we refine the naive PRSl&tion to obtain an optimized PPS
translation, where prompts are generated and passed oely mg¢eded. It is based on the idea of one-
pass CPS translation as well as an ad hoc optimization fonpis The optimized translation is also type
preserving and has been implemented in the tagless-fial % show by examples that the optimized
PPS translation generates much smaller terms than the PRSdranslation and the CPS translation.

The rest of this paper is organized as follows: Sedtion 2ampldelimited-control operators and
answer-type modification by a simple example. Sediion 3rimédly states how we simulate answer-
type modification using multi-prompt shift and reset, andt®a(4 gives a formal account to it including
formal properties. Sectidn 5 describes the syntax-didettenslation and its property, and Sectidn 6
introduces an optimized translation with examples. Basethese theoretical developments, Sedfibn 7
gives a tagless-final implementation of shift and reset aitbwer-type modification as well as several
programming examples. Sectioh 9 gives related work andlgdimg) remarks.

2 Delimited-Control Operators and Answer-type Modification

We introduce a simple example which uses delimited-comjpelrators shift and reset where the answer
types are modified through computation.

The following implementation of theppend function is taken from Danvy’s paperi[7]. This program
usesshift operator instead afall/ct operator.

l et rec append Ist = match Ist with
| [1 — shift (fun k — k)
| x :: xs — x :: append xs
in let appendl23 =
reset (append [1;2;3])
in
appendl123 [ 4;5; 6]

The functionappend takes a value of typent list as its input, and traverses the list. When it
reaches the end of the list, it captures the continuatfam (ys -> reset 1 :: 2 :: 3 :: ysin
the functional form) up to the nearest reset, and returnsdgh@nuation as its result. We then apply it to
the list [4;5;6] toobtain[1;2;3;4;5;6], and it is easy to see that the function deserves its name.

Let us check the type afppend. At the beginning, the return type append (called its answer type)
isint list, since in the second branch of the case analysis, it rekurns append xs. However, the
final result is a function from list to list, which is differefrom our initial guess. The answer type has
been modified during the execution of the program.
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Since its discovery, this feature has been used in manyestieg examples with shift and reset, from
typed printf to suspended computations, to coroutinesgaad to computational linguistics. Nowadays,
it is considered as one of the most attractive features &fad reset.

Although the feature, answer-type modification, is intengsand sometimes useful, it is very hard
to directly embed such control operators in conventionakcfional programming languages such as
OCaml, as it requires a big change of the type system; a tyjpolgment in the fornT - e: T must be
changed to a more complex forim-e: 7; a, 3 wherea and 3 designate the answer types before and
after the execution oé. Although adjusting a type system in this way is straightfard in theory, it
is rather difficult to modify existing implementations ofpiy systems, and we therefore need a way to
represent the above features in terms of standard featudésr anild extensions of existing programming
languages.

This paper addresses this problem, and proposes a way stateaway the feature of ATM using
multi-prompt control operators.

3 Simulating ATM with Multi-prompt shift/reset

In this section, we explain the basic ideas of our trangtatiiselyov implemented typed printf in terms
of shift and reset without ATM, and we have generalized it teaaslation from arbitrary terms in the
source language.

Consider a simple example with answer-type modificati(®+.k.k)) in which.# is the delimited-
control operator shift, an@ - -) is reset. Its answer type changes through computatiors eustial answer
type isint while its final answer type i$nt->int.

Let us translate the example whejg and [e] denote the results of the translations of the term
(The precise definition of the translations are given [ater.

We begin with the translation of a reset expression:

((e)) = Zp.2q.(lety = [e] pgin 4z ¥)p

where the primitiveZ’p creates a new prompt and binds the varigbte it. For brevity, the variable
which stores a prompt may also be called a prompt.

The translated term, when it is executed, first creates nempisp andq and its bodye is applied
to the argumentp andg. Its result is stored iy and then we execut&zy, but there is no reset with
the promptg around it. Is it an error ? Actually, no. As we will see in thdidition below, [€] is always
in the formA p.Aqg.€ and during the computation &f, .7}, is alwaysinvoked. Henceg never returns
normally, and the “no-reset” error does not happen. Ourriaaés in the translation are that the first
argument (the prompp) corresponds to the reset surrounding the expression beinglated, and the
second argument (the prongjtcorresponds to the above (seemingly dangerous) shift.

From the viewpoint of typing, for each occurrence of anstype modification froma to 3, we use
two prompts to simulate the behavior. The promptandq generated here correspond to the answer
typesf anda, respectively.

We translate the term 5 {&] = A p.Ag. #pk. (k 5)q and the term(5) is translated (essentially) to:

2p.2q.(lety = Zpk (K5)qin 42 ¥)p

When we execute the resul;, captures its surrounding evaluation cont@&ty =[] in /4. y),, binds
k to its functional formAx.(lety = xin .74z y)p, and continues the evaluation ¢5)4. Then we get:

(((lety=51in.7Z ¥)p)q)p
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and when this7; is invoked, it is surrounded by a reset with the promypand thus it issafe The final
result of this computation is 5. In this case, since the exacwf the term 5 does not modify the answer
type, the promptp andq passed to the terrfb] correspond to the same answer type, but we will soon
see an example in which they correspond to different ansypest

A shift-expression is translated to:

[7k€] = Ap.Ag.ZpK letk = (Ay.((A_Q)(KY))q) in (&)

As we have explained is the prompt for the reset surrounding this expressiongdisfy, in the trans-
lated term will capture a delimited continuation up to theatgwhich, in turn, corresponds to the nearest
reset in the source term). However the delimited contimmationtains a dangerous shift at its top po-
sition, so we must somehow detoxify it. For this purpose, emace the captured continuati@hby
a functionAy.((A_.Q)(K'y))q in which the calls t& is enclosed by a reset with the promptand the
dangerous shift i’ will be surrounded by it, sanitizing the dangerous behavior

Let us consider the types of captured continuations in thisstation. Suppose the tetfik.e mod-
ifies the answer type fromx to 3. We use the promptp and g, whose answer typ@sareﬁ anda,
respectively. In the source term, the continuation capltime shift (and then bound tk) has the type
T — a. In the translated term, the continuation bound'tdas the typer — 3, since the continua-
tion was captured by a shift with the prompt After some calculation, it can be inferred that the term
Ay.((A_.Q)(K'y))q has the typa — a, hence we can substitute it flarf3

We show the mechanism for detoxifying a dangerous shift Bcetng ((5+ .k.k)), which is
equivalent to:

Zp.2q.(lety = Pr.((F1k(K5)q) + (LK letk= Au.(Aw.Q) (K u))r inK)) in Z4zy)p

where the subterm starting witH; is the translation result of 5, and the one with is that of. 7k k. In
general, each subterm may modify answer types. Hence, aier®, needs three prompts correspond-
ing to the initial, final, and intermediate answer types. phamptr generated here corresponds to the
intermediate answer type.

Evaluating this term in call-by-value, and right-to-lefder (after generating all the prompts) leads
to the term: (let k = Au.((Aw.Q)(K'u)), in k)p, wherek' is the delimited continuatiox.(let y =
(k. (k5)q) +xin #4zy)p. The result of this computation &u.((Aw.Q)(k u));, which is essentially
equivalent tody.(5+Y). To see this, applying it to 9 yields:

(Au{(AwQ)((Ax.(lety = (Ak.(k5)q) +Xin L4zZYy)p)u))r)9
~*((AwQ)(lety = (Ak.(k5)q) + 9 In A4ZY) p)r

Z1k.(k5)q captures the context with the dangerous shift

~~*(((Au((AwQ)(lety =u+9in . A4ZY)p)r)S)g)r
~H(((AwQ){lety =5+91in.74zy)p)r)q)r
~*((14)q)r which reduces to 14

Thus, our translation uses two prompts to make connectmtvgd answer types, where prompts are
generated dynamically.

1we assume that, our target language after the translatimhbbi-prompt shift and reset, but no answer-type modificat
Hence, each prompt has a unique answer type.

’HereQ is a term which has an arbitrary type. Such a term can be esquieas, for instance? p..#pk.AX.X. Its operational
behavior does not matter, as it will be never executed.
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(evaluation contexts) E = []|eE|EvV]|(E)
(pure evaluation contexts)F 1= []|eF|Fv
E[(Axe)v] ~ E[e{v/x}]
Elletx=vin € ~~ E[e{v/x}]
E[(v)] ~ E[V
E[(F[.7k.€])] ~ E[(efk:=Ay.(F]Y]) })] yis a fresh variable foF

Figure 1: Operational Semantics of Source Calculus

4 Source and Target Calculi

In this section, we formally define our source and targetutialc

The source calculus is based on Asai and Kameyama'’s polyritogxtension of Danvy and Fil-
inski's calculus for shift and reset, both of which allow aes-type modification[[8,]2]. We slightly
modified it here; (1) we removed fixpoint and conditionalst (ney can be added easily), (2) we use
value restriction for let-polymorphism while they used moglaxed condition, and (3) we use Biernacka
and Biernacki's simplification for the types of delimitedntimuations [[5].

The syntax of values and terms of our source calcAftld’ is defined as follows:

(values) v = x|c|Axe
(terms) e viee |letx=vine|.”k.e|throwk,e) | (e)

wherex is an ordinary variablek is a continuation variable, and thrékve) is application for continu-
ations, which is syntactically different from ordinary dipption e, &. This distinction is technical and
inessential for expressivity, as we can always convert drogetionk to a valueA x.throw(k,x). The
variablesx andk, resp., are bound in the terms.e and.”k.e, resp.,

Figure[1 defines call-by-value operational semantics tdadhguage above, whefg denotes the
empty context andk[e] denotes the usual hole-filling operation. Evaluation cxtstare standard, and
pure evaluation contexts are those evaluation contexth#ve no resets enclosing the hole. We use the
right-to-left evaluation order for the function appliaatito reflect the semantics of the OCaml compiler.

The first two evaluation rules are the standard beta and les,rwheree{v/x} denotes capture-
avoiding substitution. The next two rules are those for mdmperators: if the body of a reset expression
is a value, the occurrence of reset is discarded. If the eebedxis a shift expression, we capture the con-
tinuation up to the nearest resaty((F[y])), and substitute it fok in the body.{k := Ay.(F[y]) } denotes
capture-avoiding substitution for continuation variablehere we define throiik,e){k := Ay.(F[y]) } as
(Ay(Fy])) (efk:=Ay.(F[y])})), namely throwk, e) is the same a&e) in the original formulation[[9].
The other cases of the substitution are the same as the stadefaition.

Types, type schemes and type environments are defined assoll

1,0,0,8:=t|bjlo—71|(0/a—1/B)
Al=T1|VLA
r=0|rx:Alllk:oc—rt

Types are either type variable3, (base typesgb), pure function (continuation) typer(— 1), or effectful
function typeg o /a — 1/8), which represent function types— 1 where the answer type changes from
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x:AelT<A var (cis a constant of typb) const MNepe:t exp
Mep x0T MN-pc:b N-e:71,a,a
Mx:oke:t; B,y fun N-e:(o/a—1/B); B,y NlN-e:o;vy, 0 app
FpAxe: (a/B—1/y) FFee:T; 0,8
N-e:o;, 0,1 rkit—atpe:p Nk:io—thkpe:o
eset shift throw

r

Fp(e):t r-.ske:t; a,B rk:o— 1hpthrowke): 1

MNEpvio rx:Gen(o;MNke:t;a, B
M-letx=vine:t; a, B

let

Figure 2: Typing Rules of the Source Calculus

a to B. Type schemd represents polymorphic types as usual. Type environfmént finite sequence
of variable-type pairs, which possibly contains contimuatvariablesk, that has a pure function type
g—T.

Figure[2 defines the type systemXi™. Type judgments are eithér-, e: 1 (pure judgments) or
I'e:1;a,B (effectful judgments), the latter of which means that eatihg e with the answer typer
yields a value of typa with the answer type being modified o The typing rules are based on Danvy
and Filinski’'s [8] except that we have let-polymorphism arear distinction of pure judgments from
impure judgments following Asai and Kameyarha [2].

In the var rule,T < A means that the typeis an instance of type schemeand the type Gefu;I")
denotesvty, - - - Vin.0 wherety, - - -ty are the type variables that appeawitbut not appear i freely.

The delimited continuations captured by shift expressaregure functions (they are polymorphic in
answer types), and we use the pure function spaeea for this purpose. On the contrary, the functions
introduced by lambda are, in general, effectful. Accortiingre have two rules for applications. Note
that the body of a shift expression is restricted to a pureesgion in order to simplify the definition
of our translation. This restriction is inessential; in #tandard formulation (where the body of shift is
an effectful expression), the terrfx.eis typable if and only if#x.(e) is typable, and their operational
behaviors are the same. The exp rule turns pure terms irgotieff terms where we have chosen an
implicit coercion from a pure term to an effectful one.

The type system of the source calcuR8™ enjoys the subject reduction property. The proof is
standard and omitted.

We introduce the target calculdd"Ps', which is a polymorphic calculus with multi-prompt shiftcan
reset without ATM. The calculus is similar, in spirit, to Ganet al.'s calculus with theupto andset
operators([12]. Besides disallowing ATM, the target calsulliffers from the source calculus in that the
control operators are named, to allow mixing multiple éffén a single program. The names for control
operators are callggromptsfor historical reasons, and denoted fyj, - - - . In our formulation, prompts
are first-class values and can be bound to ordinary variablegompts are given as prompt-constants, or
can be generated dynamically by th&primitive. For instance, evaluating’x.(1+ .7xk.e) first creates
a fresh prompp and substitutes it fox, then it evaluate$l + .#,k.€)p. This choice of the formulation
closely follows Kiselyov’s DelimCC library for multi-propt shift and reset.
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x:AelT<A (cis a constant alb)

N-=x:t var N-c:b const Womega
Nx:okFe:t1 l-et:0—r1 N-e:o
FFaxe o7 N Mee:t PP

MEv:tTpr N-e:1 reset MEv:opr Nx:t—ote:o <hift
FrE(ey:t Mr=Axe:t
NEv:o Mx:Gen(o;MNke:t Mx:opr-e:t
MN-letx=vine: 1 let M- oxe:t prompt

Figure 3: Typing Rules of the Target Calculus

Types and typing environments are defined as follows:

T,0:=t|blo—T1|Tpr
Al=T1|VLA
Fr=0|rx:A

wherert pr is the type for the prompts with the answer typd he syntax of values and terms are defined
as follows:

vi=Xx|c|Axe|p
er=v|ee | Axel(ey| Ixe|letx=vine|Q

wherep is a prompt-constant. The control operators now receivenlyt prompt-constants, but values
which will reduce to prompts. Other values are rejected Ileytyipe system. The term¥x.e creates a
fresh prompt and bindsto it. The termQ denotes a non-terminating computation of arbitrary typies.
may be defined in terms of shift, but for the sake of clarity,aslded it as a primitive.

Evaluation contexts and evaluation rules are given asvistio

=[]1Ee[VE|(E)p
El(Axe) ] ~ Ele{v/x}]
Elletx=vin g ~ E[e{v/x}]
E[Zx.€] ~ Ele{p/X}] p is a fresh prompt-constant
E[(V)p] ~ E[V]
E[(Ep[-7px.€]) p] ~~ E[(e{AY.(Ep[Y]) p/X})p]
E[Q] ~ E[Q]

Note that we us&, in the second last rule, which is an evaluation context thasdot have a reset with
the promptp around the hole, and thus implies that we capture the cattonuup to the nearest reset
with the promptp.

Finally we give typing rules for the target calculus in Figi&. The type system of the target calculus
is mostly standard except for the use of prompts. In the shidt, the prompt expressionmust be of
type o pr whereo is the type of the body of the shift expression. A similar rietibn is applied to the
reset rule. In the prompt rule, we can create an arbitrargnpt@nd bind a variable to it.

The type system enjoys the subject reduction property nedtiel set of dynamically created prompts
which have infinite extents.
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[t;a,B] =[B] pr— [a] pr— [1]
[b] =b
[t] =t
[o— 1] =[o] =[]
[o/a —1/B] =[o] = [1;a,B]
[Vt.A] = Vt.[A]
[o] =0
[Fx:Al=[r],x: [A]
[ k:o—1]=[r],k:[o] —[1]

Figure 4: Translation for Triples, Types, Type Schemes gk Environments

() =x
(c)=c

(Ax.€) = Ax.[€]

(throw(k,e)) = k(e)
((€&)) = Zpa((Ay.q-y) ([l pA))p
[e182] = A pg Zrs.([e]rs)([e2] pr)sq
[letx=vine] =Apgletx= (V) in [ex] pq
[7ke] = A pg. 7K. ((AK.(6) (AY-((A-Q)(KY))q)

[e] = A pa.Zpk.(k(g))q  if e=X, ¢, Ax.€, (€) or throw(k,€)

Figure 5: Translation for Typed Terms

5 The PPS Translation

In this section, we give a Prompt-Passing Style (PPS) @#iog| the syntax-directed translation from
AATM to AMPST which translates away the feature of answer-type modificat

The translation borrows the idea of Kiselyov’s implemeotatof typed printf in terms of multi-
prompt shift and reset, but this paper gives a translatioth® whole calculus and also proves the type
preservation property. Later, we will show a tagless-fimgdllementation based on our translation which
is another evidence that our translation actually presamygng.

Figurel4 defines the translation rules for types, type schetype environments and triples.

As we have explained in earlier sections, we emulate ATM fthentypea to the type in terms of
two prompts whose answer types arg@r andf pr. Hence the tripla; a,  in the typing judgment is
translated to the typ3] pr — [a] pr— [1].

Types are translated in a natural way except the type foctéflefunctionso/a — 1/; it is trans-
lated to a function type whose codomain is the translatiothetriple[7; o, 3]. Type schemes and type
environments are translated naturally.
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Figure[5 defines the translation for typed terma M, which consists of the translatidje) for a
pure terme, and the translatiofie] for an effectful terme. These translations are defined for typed terms
only, since the translation for thrqk; e) (and.”k.e) contains(€), which is defined only for a pure term
e

The first translatior{€) does little for most constructs but reset terms. A reset t@nis translated
to a term which creates two new promteindg, and inserts a combination of reset-p and shift-q as we
explained earlier. Then it suppligsandq to its immediate subterrfe].

The second translatiofe] does a lot; For applicatior; e, it receives two prompt® andq, but
also generates two new promptands and distributes these prompts to its subterms etc. Fortaret-
letx =vin g, it passes two prompts.

The translation of a shift tern¥’k.e is a way more complicated than others; it receives two prempt
p andq and invokes shift to capture the delimited continuation khindsk’ to it. The captured delimited
continuation is slightly different from the one which wouldve been obtained by the shift-operator in
the source term, since we have inserted a combination dfpesed shift-q at the position of reset. As
we have explained in Sectidn 3, this (bad) effect is resolwedetoxifying the continuation, which is
realized by the involved term found in the translation above

The last clause fofe] applies only when the type of the temnis derived by applying the exp rule as
its last rule. In this case, the translation generates awérith receives two prompis andq, detoxify
the effect of the delimited continuation (mentioned abdye)he combination of shift-p and reset-q.

We can show that our translation preserves typing.

Theorem 1 (Type preservation)If I - e: t;a, B is derivable in the source calculus®™, then[I']
[€] : [r;a,B] is derivable in the target calculus™Ps".
Similarly, if I -, e: T is derivable inAA™, so is[I'] - (€) : [] in AMPS",

Proof. We will prove the two statements by simultaneous étida on the derivations. Here we only
show a few interesting cases.
(Casee = (e1)) We have a derivation for:

NFe 00,1
Mep(ey) T

By induction hypothesis, we can derifE] +- [e1] : [o;0,1]. LetT" =[I],p: [t] pr,q: [a] pr, " =
r"y:[a],andl"” =r" x: [1] — [o]. We have the following derivation:

r"+q:[o] pr r"ty:lo] re=p:[t]pr Mt le]: [o;0,1]
& gy 1] r"tq: o] pr MElep: [o] pr— [o]
Ay gy [o] = [1] I+ e pa: [o]
M+ p:[t] pr I (Ay.7gxy) ([e]pg) : [1]

M= ((Ay-7gxy) ([elpa)p : [1]
[F1+Zp.2a.((Av7gxv) ([er] pa))p : [7]
which deriveq[I'] - ((e1)) : [1].
(Casee = .x.e1) We have a deviation for

Mkit—atpe: B

MN-<ke:1;a,p
By induction hypothesigl',k: 7 — a] + (e1) : [B] is derivable. Let™ = [I'],p: [B] pr,q: [a] pr,
" =r"K:[t] — [B], andl'"” =" y: [1], then we have:




I. Kobori, Y. Kameyama & O. Kiselyov 45

M.k [r] = [a] F (ed) : [B] M ((A-Q)(KY))q: [a]
rEAkfer): ([r] = [a]) = [B] T Ay.{(A-Q)(KY))q: [1] — [a]
M+ p:[B] pr M+ (Ak(er)) (Ay-((A-.Q) (K'y))q) : [B]

[ 7oK (Ak (o) (AY.{(A~Q) (KY))q) : [T]
[F1-ApAd.7pK. (Ak (1)) (Ay.((A-.Q) (K'Y))q) - [B] pr— [a] pr— [1]
which deriveq[l'] - [“k.ei] : [T;a,B]. O
Hence our translation preserves typing. We conjecturedinatranslation also preserve operational
semantics but its proof is left for future work.

6 Optimization

The naive PPS translation in Sectidn 5 works in theory, betfieptimal for practical use, as it introduces
too many prompts. To solve this problem, we will introduceoptimized PPS translation in this section.
For the purpose of comparison, we consider the t@sh for a natural numben, wheree, is 1+
2+ + (n+5ﬂk./\x.throw(k,x))---)E Then we can derive &, : int; int, (int/0 — int/a) and
Fp (€n) @ (int/a — int/a) for some typea, in the type system okA™ augmented by the following

type rule for addition:

N-e :int; a, y N-e:int; y, B
N-e+e:int; a, B

The type rule for addition in the target calculus is standard omitted.

We define the (naive) PPS translation for additior[éy+ e;] = A p.Ag.2r. ([ei]rq) + ([e2] pr). It
is easy to see that the naive PPS translation in the prevemi®s translatege,) to a rather big term
which dynamically generatest- 2 prompts (2 for reset, and 1 for each addition) and passesdheund.
This is not ideal and needs improvement.

Eliminating Unnecessary Prompt Passing

We first eliminate unnecessary dynamic passing of promptsxeShe residual terms of the naive
translation often contaife] pg as subterms wherfe] takes the form p.Ag.- - -, they contain many beta
redexes (administrative redexes) that can be eliminatédtedtanslation time, by adjusting the one-pass
CPS translation by Danvy and Filinski [10] to our PPS tratista

Figure[6 gives our one-pass PPS translation where funcppiications are made explicit (by the
infix symbol @), and the overline (e.@) means static constructs which are reduced at the tramslat
time, while the underline (e.g. J@neans dynamic constructs which remain in the residualgerm

The one-pass PPS translation eliminates unnecessary ppasging; Applying one-pass PPS trans-
lation to a term iMA™  and reducing all static beta-redex@sp.e;)@q to e;{q/p}, one obtains a term
without static constructs (constructs with overlines)e Tasidual terms of one-pass PPS translation pass
prompts only for function applications; in Figtire 6, dynarapplication for prompte@p@q appears in
the term[e; ex]1P2SSonly.

The one-pass PPS translation gives a much better resultitearaive one, as it eliminates unneces-
sary prompt passing, but it still generates as many prongaiseanaive one.

Eliminating Unnecessary Prompt Generation

We eliminate unnecessary prompt generation. Our idea glgjrifithe term being translated is pure,
we do not have to generate prompts. In the translatiofept ;] = A p.Aq.22r. ([e1]rq) + ([e2] pr),

3The termsk. Ax.throw(k, x) is written as#’k.k in the standard formulation.
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(]Xl)lpass: X
(]CDlpass: c

(Ax.&)"*%°= AxA pa.[e] P> @p@q

(throw(k, ))'P2**= k@(ez) *P*°
(&))"= 2p.20.((Ay.%4-y) @([€] ***@P@0))
[e1+ €2 "= A pa.2r.([e1] ***@r @) + ([e:] P*@p@r)
[e12] 7%= A pa. 2r. Zs.([ea] P70 @s) @([e2] ***@p@r) @s@q
[letx = vin ] }P3S= A pglet x = (V)1P3Sin [ex] P2 @p@q

[ 7k €]~ X pg. 7K. (Ak. (&) P*9@(Ay.{(A Q) @(K@Y))q)
[€]'P2°= A pa.7pk. (k@(€)P*%Yq  if e=x, ¢, Ax€, (¢) or throw(k,€)

Figure 6: One-Pass PPS Translation

the new prompt is used to bridgge;] and[e;], and if one ofe; ande; is pure, we can reusgandq
to simulate ATM. For instance, # is pure andg;, is effectful, we can definge; +e] = Ap.Aq.(el) +
([e2] pa).

To maximize the benefit of this optimization, we extend th&amoof a pure terne, to aquasi-pure
term (or a g-pure termgy by:

e i=X|c|Axe] (e) | throw(k,e)
g i=¢€p|letx=vin g

Namely, we allow nested let constructs appearing around fgums. For instance, lat= 3 in lety =
5in 7 is not pure, but is g-pure.

Figure[T defines the optimized PPS translatite)°™ for a g-pure terme, and[e]°P for a non g-
pure terme. We omit the cases whose translation is the same as thosedgpass PPS translation.
The optimized PPS translation dispatches if each subtemppigre or not, and in the former case, it
gives an optimized result where prompt generation is sigspak Translation for addition can be defined
similarly, for instance[e; + €] °P = A pq (e1)°P + ([e2] °P'@p@0) if € is g-pure and, is not.

We compute[(e,)] and reduce all static redexes in it, to obtain the followi

Pp.2q. (AY.Fq-Y) (L4 (2+ -+ (n+ (LK . (AK. (Ax.throw(k, X)) °PHY@(AY.(.. .)g))) - )))p

where only two prompts are generated at the beginning ofdhgpatation. The result is quite close to
the source term, and in fact, the source and target terner diffly at the control operators. Although
it is possible to further optimize the results, by applyiragtial evaluation techniques for shift and reset
(e.g. [1]), we believe that our translation is practical afficient. In the next section, we show an
implementation of our translation based on the optimize8 P&nslation.

We can prove that the optimized PPS translation preserpes tyhere the type system of the target
calculusA MPSThas two function types—T (static) ando— 1 (dynamic). Namely, we can prove that, if

4We omitted the underlines in the result.
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Axen)P = AxApq. 7ok (k@(er)°P)q  if e is g-pure
| AxApaleoP@p@q otherwise
(]<e1>[)opt_{ ()P - if e isg-pure
~ | 2p.20(dy.H4-y)@([&]°P'@p@0)),  otherwise
A pa.(e1) °P'@(e) "' @p@q if e ande, are g-pure
[ere]°" = A pg.2r.(el)°P'@([e] °P'@p@r) @r @q if e is g-pure ande; is not
| ApaZr.([e]°P'@p@r)@(ez)°"@r @q if e is g-pure ande; is not

Apa.2r.2s ([e]°P'@r @) @([e:]"'@p@r)@s@q  otherwise
(letx=vin e])°™ =letx= (vV)°" in (e)°"* if ey is g-pure
[letx=vin e]°" = Apgletx= (V)°P in [e]°P'@p@q if e is not g-pure

Figure 7: Optimized PPS Translation (new cases only)

['+e:1;a,B is derivable i A™ andeis not g-pure, so i§ °Pt- [e]°Pt: [B]°Pt pr=[a]°P pr=[1]°
in AMPSL Similarly, if I -e: T;a,a is derivable ana s g-pure, of” -, e: T is derivable, so igrort -
(€)°Pt: [r]°Pt. The details of this development and proofs are omitted.

7 Tagless-final embedding

We have implemented the calculd$™ in Figure[2 and the naive and optimized PPS translations in
Figured 4[5 andl7 for a monomorphic versioméf™M.

Our implementation is based on the tagless-final style [R, Wbich allows one to embed a typed
domain-specific language (DSL) in a metalanguage. In thiis,ghe syntax as well as the typing rules of
DSL are represented by a signature (an interface of modaled)its semantics is given as an interpreta-
tion of this signature. One of the important merits with ttide is that type checking (or type inference)
of DSL is automatically done by the type checker (or the tyyferencer) of the metalanguage. Although
we have already proved the subject reduction property”dt' and the type preservation property for
the PPS translations, implementing them in the taglessdige gives us another indication for well
typedness. It is particularly useful when we extend the @mgalculus and the translation; type errors
are immediately raised by the type system of the metalargguag

We have chosen OCaml plus the DelimCC library as the metataygy where DelimCC gives an ef-
ficient implementation for multi-prompt shift and reset[1%/e also give an implementation in MetaO-
Caml, a multi-stage extension of OCaml, to generate (andsti® translated terms, rather than imme-
diately executing them.

Figure[8 shows the signature called Symantics for our saralmeilusA“™ ., It represents the syntax
and the typing rules oAA™; the typest pure and(t, a, B) eff, resp., represent the relations
NFpe:tandle: 1, a, B,resp. Thetypéo, 1, a, B) efunrepresents the effectful function
type (o/a — 1/B) and( o, 1) pfun the pure function type — 1 for continuations. Since all these
types are kept abstract, we can arbitrarily instantiatentiredifferent implementations. Each function
butr un encodes a typing rule iAA™ . For instance, the functioaxp encodes the exp rule inA™,
and does not have a concrete primitive in DSL. The funatiom does not correspond to a constructor in
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nmodul e type Symantics = sig

type 1 pure (* pure expression x)

type (1, a, B) eff (x effectful expression x)
type (o, 1, a, B) efun (= effectful function type %)
type (o, 1) pfun (* pure function type x)

val const : T — T pure
val lam: (o pure — (1, a, B) eff) — (g, 1, a, B) efun pure
val app : ((o, 1, a, B) efun, B, y) eff
— (g, vy, 'd) eff — (1, a, "d) eff
val throw: (o, 1) pfun pure — o pure — T pure
val shift : ((r, o) pfun pure — B pure) — (1, a, B) eff
val reset : (o, o, 1) eff — 1 pure
val exp : T pure — (1, a, a) eff
val run : 1T pure —» 1
end

Figure 8: Signature of the Embedded Language

DSL,; it converts a DSL value to a value in the metalanguageé jsthus useful to test interpreters.

As an example, a DSL terox’k.A x.throw(k, x) is represented by the term
shift (fun k — lam (fun x — exp (throw k x))), which encodes a type derivation of the
above DSL term using higher-order abstract syntax. Notg tha can represent all and only typable
terms inAA™ using this signatures, and the typability of embedded texraschecked by OCaml; all
representable terms are typabkethey are constructed

In the tagless-final style, operational semantics of theezfded language is given as an interpreta-
tion of the Symantics signature, namely, a module of type &ytius. For this work, we have given two
interpretations for each of two PPS translations, and thteireed four interpreters. The two interpreta-
tions differ in the target; the first one, called the R intetpr, translates the source term and evaluates
the result. The second one, called the S inter;ﬁetanslates the source term and generates the result as
a code in MetaOCaml, which can be executed by tine primitive.

Due to lack of space, we cannot list the source code of thésgpneters, but it should be noted that
the two PPS translations (the naive one and the optimizejllawe been successfully implemented in
the tagless-final style. After extending the source cakulith conditional, recursion and so on, we can
write programming examples such as list-append in SeCtidistiprefix and others, and running these
examples gives correct answers.

Figure[9 shows a few results of the optimized translatiorhwhie S interpreter. We first define
append and a test programes1. Then we translatees1 and run it, to obtain the desired list. We then
translateappend itself (but not run it), to obtain the code<l et rec g_56 ...>. where the variable
g_56 corresponds fothe append function in Sectiorill. The result is instructive; controlecmxor
are used only at the point where shift was there in the so@me, tin particular, no dynamic prompt
generation happens during the recursive calls for apperids résult clearly shows the merit of our
optimized translation over the naive translation as wethasdefinitional CPS translation |[9].

This implementation also provides a good evidence thatranstation is type preserving. Thanks to

5The S interpreter is actually@mpiler
6 MetaOCaml renames all bound variables.
" Delimcc.shift is shift andDelimcc.push_prompt is reset.
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nmodul e Exanple (S: SynPL) = struct
open S
| et append = fixE (fun f x —
ifE (null @exp x) (shift (fun k — k))
(head (exp x) @ app (exp f) (tail @exp x)))

let resl = run @@

throw (reset (app (exp append) (exp @@list [1;2;3])))
(list [4;5;6])

end
#let _ =let nodule M= Exanpl e(SPL_opt) in Mresl;;
— int list =[1; 2; 3; 4; 5; 6]
#let _ = let nodule M= Exanpl e(SPL_opt) in M append;;
— (int list, int list, int list, (int list, int list) SPL opt.pfun)
SPL_opt.efun SPL_opt. pure
= . <
let rec g 56 x 57 p_58 g_59 =
if x 57 =1]
t hen
Delincc.shift p_58
(fun k' _62 —
(fun x_64 — x_64)
(fun y_63 —
Del i ntc. push_pronpt g_59
(fun () —
(fun _ — Pervasives.failwith "Onega") @@ (k' _62
y_63))))
el se
(let v2 60 = g 56 (List.tl x 57) p.58 q. 59 in
let vl 61 = List.hd x 57 in vl 61 :: v2 60) in
g_56>.

Figure 9: Programming Examples

the tagless-final style, our implementation is extensihg in fact, it was easy to add primitives such as
the fixpoint operator to our source language in a type-safe wa

8 The List-prefix Example

The append function in Sectibh 2 is not the only interestxangple which uses shift and reset. Darivy [7]
represented various programming examples using thesetoperators. In this section we take the list-
prefix example from his work, and show that it is correcthngiated and implemented in our system.

The list-prefix functionprefix takes a list as its input, and returns the list of all prefixehe input.
For exampleprefix [1;2;3] yields the list[[1]; [1;2]; [1;2;3]]. Using the control operators
shift and resetprefix can be implemented as follows:

let prefix | =
|l et rec aux = function
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| [1 — shift (fun k — [])
| x :: xs = x :: shift (fun k — k [] :: reset (k (aux xs)))
in reset (aux I)

This implementation is interesting for two reasons; fifstraverses the input only once. Second, it
creates no intermediate lists (explicitly). One can easilggine that a straightforward implementation
of the function would not satisfy these two properties.

Let us infer the type of the inner functiarux. The pattern match has two cases, and on the second
branch, the answer type before the execution of this shdt isi st , since the function returns : :
shift (fun k — ...), which has a list type. Then, the continuation captured by/ghift has the
typea list — a list,whichimpliesthak [] hasthetyper |i st. Finally, the answer type after
the execution of this shift ig 1ist |ist, sinceitreturngk []) :: .... We have just observed
that the answer type changed framl i st toa |i st |i st during the execution of the second branch
of aux.

The functionsaux andprefix are typable im A™ with a few extensions such as lists and recursion.
In fact, our tagless-final implementation can cope with ¢hestensions and we only have to rewrite
pattern matching by conditionals. Our implementation effinctionprefix is shown below:

modul e Ex2 (S: SynPL) = struct
open S
let prefix = fixE (fun f x —
i fE (null @ exp Xx)
(shift (fun k — list []))
(head (exp x) @ shift (fun k —
reset @ (exp (throw k (list [])))
@ (exp (reset @app (exp @@l am (fun x — exp @throw k x))
(app (exp f) (tail @exp x)))))))
let res = run @@reset @@app (exp prefix) (exp @list [1;2;3])
end

The moduleEx2 contains the definition girefix and its example usees. The type of the term is
automatically infered by the OCaml’s type system, whiclpbelebugging.

Running the examplees with our optimized translation, denoted By2 (SPL_opt) in the following
code, we get the correct answer for the inpug 2; 3] as follows:

#let _=1let nodule M= Ex2(SPL_opt) in Mres;;
— cint list list =[[2]; [1; 2]; [1; 2; 3]]

9 Related Work and Conclusion

In this paper, we have proposed type-preserving translédicembedding programs with ATM into those
without. Our translation uses multi-prompt systems andadyio creation of prompts to emulate two
answer types in effectful terms. We proved type presemdtio the naive and optimized translations,
and implemented them in OCaml (and MetaOCaml) using thesagfinal style, which we think add
further assurance for type safety.

One may wonder if the reverse translation is possible. Thaanis no, as our source calcuRi™
is strongly normalizing, while the targ@at™s"is not. An open question is to identify the image of our
translation which corresponds to the source calculus.



I. Kobori, Y. Kameyama & O. Kiselyov 51

Let us briefly summarize related work. Rompf et al.|[18] inmpénted shift and reset in Scala, that
allow answer-type modification. Their source language seethtively heavy type annotations to be
implemented by a selective CPS transformation, and doealloat higher-order functions. Masuko and
Asai [17] designed OchaCaml, which is an extension of Caghkwith shift and reset. OchaCaml fully
supports ATM at the cost of redesigning the whole type systathan extension of the run-time system.
Wadler [19] studied monad-like structures to express sinitt reset with Danvy and Filinski's type sys-
tem [&]. Inspired by his work, Atkey [3,4] propos@drameterised monadss a generalization of mon-
ads. They take two additional type parameters to expresgsmgnd outputs, and therefore, can express
answer-type modification. He studied categorical fourntatf parameterised monads. KiselyovI[13]
independently studied a similar notion, and gave an impigation and programming examples.

For future work, we plan to formally prove the semanticssprgation property mentioned in this
paper. Investigating other delimited-control operatarshsas shiftO/reset0 and control/prompt with
answer-type modification would be also interesting.
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