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First Workshop on Focusing (WoF’15)
EPTCS 197, 2015, pp. 1–6, doi:10.4204/EPTCS.197.1

c© Nigam, Reis and Lima
This work is licensed under the
Creative Commons Attribution License.

Towards the Automated Generation of Focused Proof Systems

Vivek Nigam
Federal University of Paraı́ba, Brazil

vivek.nigam@gmail.com

Giselle Reis
Inria & LIX, France

giselle.reis@inria.fr

Leonardo Lima
Federal University of Paraı́ba, Brazil

leonardo.alfs@gmail.com

This paper tackles the problem of formulating and proving the completeness of focused-like proof
systems in an automated fashion. Focusing is a discipline onproofs which structures them into phases
in order to reduce proof search non-determinism. We demonstrate that it is possible to construct a
complete focused proof system from a given un-focused proofsystem if it satisfies some conditions.
Our key idea is to generalize the completeness proof based onpermutation lemmas given by Miller
and Saurin for the focused linear logic proof system. This isdone by building a graph from the rule
permutation relation of a proof system, called permutationgraph. We then show that from the per-
mutation graph of a given proof system, it is possible to construct a complete focused proof system,
and additionally infer for which formulas contraction is admissible. An implementation for building
the permutation graph of a system is provided. We apply our technique to generate the focused proof
systems MALLF, LJF and LKF for linear, intuitionistic and classical logics, respectively.

1 Introduction

In spite of its widespread use, the proposition and completeness proofs of focused proof systems are
still an ad-hocand hard task, done for each individual system separately. For example, the original
completeness proof for the focused linear logic proof system (LLF) [1] is very specific to linear logic.
The completeness proof for many focused proof systems for intuitionistic logic, such as LJF [5], LKQ
and LKT [3], are obtained by using non-trivial encodings of intuitionistic logic in linear logic.

One exception, however, is the work of Miller and Saurin [7],where they propose a modular way to
prove the completeness of focused proof systems based on permutation lemmas and proof transforma-
tions. They show that a given focused proof system is complete with respect to its unfocused version
by demonstrating that any proof in the unfocused system can be transformed into a proof in the focused
system. Their proof technique has been successfully adapted to prove the completeness of a number of
focused proof systems based on linear logic, such as ELL [11], µMALL [2] and SELLF [8].

This paper proposes a method for the automated generation ofa sound and complete focused proof
system from a given unfocused sequent calculus proof system. Our approach uses as theoretical foun-
dations the modular proof given by Miller and Saurin [7]. There are, however, a number of challenges
in automating such a proof for any given unfocused proof system: (1) Not all proof systems seem to
admit a focused version. We define sufficient conditions based on the definitions in [7]; (2) Even if a
proof system satisfies such conditions, there are many design choices when formulating a focused ver-
sion for a system; (3) Miller and Saurin’s proof cannot be directly applied to proof systems that have
contraction and weakening rules, such as LJ; Focused proof systems, such as LJF and LKF, allow only
the contraction of some formulas. This result was obtained by non-trivial encodings in linear logic [6].
Here, we demonstrate that this can be obtained in the system itself, i.e., without a detour through linear
logic; (4) Miller and Saurin did not formalize why their procedure or transforming an unfocused proof
into a focused one terminates. It already seems challengingto do so for MALL as permutations are not
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necessarily size preserving (with respect to the number of inferences). We are still investigating general
conditions and this is left to future work.

In order to overcome these challenges, we introduce in Section 3 the notion of permutation graphs.
Our previous work [9, 10] showed how to check whether a rule permutes over another in an automated
fashion. We use these results to construct the permutation graph of a proof system. This paper then
shows that, by analysing the permutation graph of an unfocused proof system, we can construct possibly
different focused versions of this system, all sound and complete (provided a proof of termination is
given). We sketch in Section 4 how to check the admissibilityof contraction rules.

2 Permutation Graphs

In the following we assume that we are given a sequent calculus proof systemS which is commutative,
i.e., sequents are formed by multi-sets of formulas, and whose non-atomic initial and cut rules are ad-
missible. We will also assume that whenever contraction is allowed then weakening is also allowed, that
is, our systems can be affine, but not relevant. Finally, we assume the reader is familiar with basic proof
theory terminology, such as main and auxiliary formulas, formula ancestors.

Definition 1 (Permutability). Letα andβ be two inference rules in a sequent calculus systemS. We will
say thatα permutes upβ , denoted byα ↑ β , if for everyS derivation of a sequentS in whichα operates
on S andβ operates on one or more ofα ’s premises (but not on auxiliary formulas ofα), there exists
anotherS derivation ofS in whichβ operates onS and α operates on zero or more ofβ ’s premises
(but not onβ ’s auxiliary formulas). Consequently,β permutes downα (β ↓ α).

Note that if there is no derivation in whichβ operates onα ’s premises without acting on its auxiliary
formulas (e.g.,∨r and∧r in LJ), the permutation holds vacuously.

Definition 2 (Permutation graph). LetR be the set of inference rules of a sequent calculus systemS. We
construct the (directed)permutation graphPS = (V,E) for S by taking V= R and E= {(α ,β ) | α ↑ β}.

Definition 3 (Permutation cliques). Let S be a sequent calculus system and PS its permutation graph.
Consider P∗

S
= (V∗

,E∗) the undirected graph obtained from PS = (V,E) by taking V∗ = V and E∗ =
{(α ,β ) | (α ,β ) ∈ E and(β ,α) ∈ E}. Then thepermutation cliquesof S are the maximal cliques1 of P∗

S
.

For LJ, we obtain the following cliquesCL1 = {∧l ,∨l ,→r ,∨r} andCL2 = {∧r ,∨r ,→l}.
Permutation cliques can be thought of as equivalence classes for inference rules. For example, the

rule∧l permutes over all rules inCL1. Permutation cliques are not always disjoint. For example,the rule
∨r appears in both cliques.

Definition 4 (Permutation partition). Let S be a proof system and PS its permutation graph. Then a
permutation partitionP is a partition of PS such that each component is a complete graph. We will call
each component of such partitions apermutation component, motivated by the fact that inferences in the
same component permute over each other.

It is always possible to find such a partition by taking each component to be one single vertex, but
we are mostly interested in bi-partitions.

Although in general cliques are computed in exponential time, it is still feasible to compute them
since the permutation graph is usually small. The partitions can be obtained simply by choosing at most
one partition to those rules present in more than one clique.Therefore, there might be many possible

1A clique in a graphG is a set of vertices such that all vertices are pairwise connected by one edge.
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ways to partition the rules of a system. In what follows (Definition 6) we will define which are the
partitions that will yield a focused proof system. As we willsee, the following partition will lead to LJF,
restricted to multiplicative conjunctions:C1 = {∧l ,∨l ,→r} andC2 = {∧r ,∨r ,→l}.

Definition 5 (Permutation partition hierarchy). Let S be a proof system, PS its permutation graph and
P =C1, ...,Cn a permutation partition. We say that Ci ↓Cj iff for every inferenceαi ∈Ci and α j ∈Cj

we have thatαi ↓ α j , i.e., α j ↑ αi or equivalently(α j ,αi) ∈ PS.

Notice that the partition hierarchy can be easily computed from the permutation graph. For the
partition used above, we haveC1 ↓C2.

3 Focused Proof Systems Generation

We derive a focused proof systemS f from the permutation partitions of a given proof systemS if some
conditions are fulfilled. In this section we explain these conditions and prove that the induced focused
system is sound and complete with respect toS.

Definition 6 (Focusable permutation partition). Let S be a sequent calculus proof system and C1, ...,Cn

a permutation partition of the rules inS. We say that it is afocusable permutation partitionif:

• n= 2 and C1 ↓C2;

• Every rule in component C2 has at most one auxiliary formula in each premise;

• Every non-unary rule in component C2 splits the context among the premises (i.e., there is no
implicit copying of context formulas on branching rules).

We call C1 the negative component and C2 the positive component following usual terminology from
the focusing literature (e.g. [5]) and classify formula occurrences in a proof as negative and positive
according to their introduction rules.

Observe that, in contrast to the usual approach, we do not assign polarities to connectives on their
own. Therefore the polarity of a formula can change depending on whether it occurs on the right or on
the left side of the sequent. As for now, we will only define permutation partitions of logical inference
rules. The structural inference rules will be treated separately. In particular, the role of contraction and
its relation to the partitions is discussed in Section 4.

The partition{C1,C2} for LJ is a focusable permutation partition. Interestingly, LJ allows for other
focusable partitions, for example:C1 = {∧l ,∨l ,→r ,∨r} andC2 = {∧r ,→l}.

We conjecture that all proof systems derived from a focusable permutation partition are sound and
complete. It is not our goal here to justify which partition leads to a more suitable focused proof system,
as this would depend on the context where the proof system would be used.

Based on the focusable permutation partition, we can define afocused proof system forS. This
definition is syntactically different from those usually present in the literature. It will, in particular, force
the store and subsequent selection of a negative formula. This extra step is only for the sake of uniformity
and clear separation between phases (there will always be a “no phase” state between two phases).

Definition 7 (Focused proof system). LetS be a sequent calculus proof system and C1 ↓C2 a focusable
permutation partition of the rules inS. Then we can define thefocusedsystemS f in the following way:

Sequents. S
f sequents are of the shapeΓ;Γ′ ⊢p ∆;∆′, where p∈ {+,−,0} indicates a positive,

negative and neutral polarity sequents respectively. We will call Γ′ and∆′ theactivecontexts.
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Inference Rules. For each ruleα in S belonging to the negative (positive) component,S
f will have a

rule α with conclusion and premises being negative (positive) sequents and main and auxiliary formulas
occurring in the active contexts.

Structural rules. The connection between the phases is done via the following structural rules.
Selection rulesmove a formula F to the active context. If F is negative, then p=−. If F is positive,

then there is no negative F′ ∈ Γ∪∆ and p= +. Store rulesremove a formula F from the active context
if F is negative and p=+ or if F is positive and p= −. Theend ruleremoves the label p= {+,−} of
a sequent by setting it to 0 if the active contexts are empty.

Γ;F ⊢p ∆; ·

Γ,F ; · ⊢0 ∆; ·
sell

Γ; · ⊢p ∆;F

Γ; · ⊢0 ∆,F ; ·
selr

Γ,F ;Λ ⊢p ∆;Π
Γ;Λ,F ⊢p ∆;Π

stl
Γ;Λ ⊢p ∆,F ;Π
Γ;Λ ⊢p ∆;Π,F

str
Γ; · ⊢0 ∆; ·
Γ; · ⊢p ∆; ·

end

AnS
f proof is characterized by sequences of inferences labeled with + or − which we will callphases.

Thus, we can say that selection rules are responsible for starting a phase and the end rule finishes a
phase. Between any two phases there is always a “neutral” state, denoted by a sequent labeled with 0.

We can prove using the machinery given in [7] that the focusedproof system obtained is complete.
There is one catch, however: one also needs to prove that the procedure to convert an unfocused proof
into a focused proof using permutation lemmas terminates. This was not formalized in [7], although one
can prove it. Finding general conditions is more challenging and is subject of current investigation.

Conjecture 1 (Completeness of focused proof systems). A sequentΓ ⊢ ∆ is provable inS iff the sequent
Γ; · ⊢0 ∆; · is provable inS f .

4 Admissibility of contraction

During proof search, it is desirable to avoid unnecessary copying of formulas at each rule application.
Either by not copying the same context in all premises or by not auto-contracting the main formula of a
rule application. The analysis of where the contraction rule lies in the permutation cliques can give us
insights on when it can be avoided.

Definition 8 (Admissibility of contraction). LetS be a sequent calculus system with a set of rulesR. We
say that contraction isadmissiblefor R ′ ⊆ R if for everyS derivationϕ there exists anS derivationϕ ′

such that contraction is never applied to main formulas of inferences inR ′.

The intuitionistic system LJ is an example of a calculus in which contraction is not admissible for all
formulas. It is only complete if the main formula of the implication left rule is contracted [4].

The admissibility of contraction involves transformations which are similar to the rank reduction
rewriting rules of reductive cut-elimination. This is a special case of permutation checking, since the
upper inferencemustbe applied to auxiliary formulas of the lower inference.

Definition 9 (Contraction permutation). LetS be a sequent calculus proof system, c one of its contraction
rules andα a logical rule applied to a formula Fα . We say that c↑c α if a derivation composed by
contraction of Fα followed by applications ofα to the contracted formulas can be transformed into a
derivation whereα is applied to Fα and contraction is applied to the auxiliary formulas ofα .

It is worth noting that many of the cases for contraction permutation rely onα being applied to all
contracted formulas in all premises where they occur. The proofs of such cases require a lemma stating
thatα can be “pushed down” until the correct location.

If c ↑c α for some inferenceα , then it is admissible for that inference, as it can always bereplaced
by contraction on its ancestors To prove full admissibilityof contraction in the calculus, it is necessary
to prove that contraction on atoms can be eliminated. We willnot address this issue in this paper, but we
will analyse the behavior of contraction among the phases ina focused proof.
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Γ,Ai ⊢ ∆
Γ,A1NA2 ⊢ ∆

Nl
Γ,A,B⊢ ∆

Γ,A⊗B⊢ ∆
⊗l

Γ,A⊢ ∆ Γ,B⊢ ∆
Γ,A⊕B⊢ ∆

⊕l
Γ,A⊢ ∆ Γ′

,B⊢ ∆′

Γ,Γ′
,AOB⊢ ∆,∆′

Ol

Γ ⊢ ∆,A Γ ⊢ ∆,B
Γ ⊢ ∆,ANB

Nr
Γ ⊢ ∆,A Γ′ ⊢ ∆′

,B

Γ,Γ′ ⊢ ∆,∆′
,A⊗B

⊗r
Γ ⊢ ∆,Ai

Γ ⊢ ∆,A1⊕A2
⊕r

Γ ⊢ ∆,A,B
Γ ⊢ ∆,AOB

Or

Figure 1: MALL logical inferences

Γ,Ai ⊢ ∆
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∧a
l

Γ,A,B⊢ ∆
Γ,A∧B ⊢ ∆

∧m
l

Γ,A⊢ ∆ Γ,B⊢ ∆
Γ,A∨B ⊢ ∆

∨a
l

Γ,A⊢ ∆ Γ′
,B⊢ ∆′

Γ,Γ′
,A∨B⊢ ∆,∆′

∨m
l

Γ ⊢ ∆,A Γ ⊢ ∆,B
Γ ⊢ ∆,A∧B

∧a
r

Γ ⊢ ∆,A Γ′ ⊢ ∆′
,B

Γ,Γ′ ⊢ ∆,∆′
,A∧B

∧m
r

Γ ⊢ ∆,Ai

Γ ⊢ ∆,A1∨A2
∨a

r
Γ ⊢ ∆,A,B

Γ ⊢ ∆,A∨B
∨m

r

Figure 2: Additive and multiplicative logical inferences of the LK system.

Definition 10 (Admissibility of contraction in a phase). Let S be a sequent calculus proof system and
C1,C2 a focusable permutation partition. We say that contractionis admissible in phase i if everyS proof
can be transformed into a proof where contraction is never applied to main formulas of rulesα ∈Ci.

Theorem 1. LetS be a sequent calculus system, C its contraction rules, C1,C2 a focusable permutation
partition. If for all c ∈C andα ∈Ci , c↑ α and c↑c α , then contraction is admissible in phase i.

The focused proof is obtained by only contracting formulas that can be introduced byC2 rules. It is
easy to extend Definition 7 to enforce this as done in LJF and LKF [5].

5 Case studies

Given the permutation cliques, it is up to the user to analysethem and decide which partition to use for
the focused proof system. As case studies we will show how thefocused proof systems LKF, LJF and
MALLF can be obtained from LK, LJ and MALL respectively usingthe permutation cliques.

MALL MALL stands for multiplicative additive linear logic (without exponentials) and its rules are
depicted in Figure 1. A focused system, MALLF, for this calculus was proposed in [1].

Given the logical inferences of MALL, the permutation cliques found were the following:CL1 =
{⊗l ,⊕l ,Or ,Nr ,Nl ,⊕r} andCL2 = {⊗r ,⊕r ,Ol ,Nl}, with the relationCL1 ↓CL2. The following focus-
able permutation partition corresponds to MALLF:C1 = {⊗l ,⊕l ,Or ,Nr} andC2 = {⊗r ,⊕r ,Ol ,Nl}.
Notice that all invertible rules are inC1, while all positive rules are inC2 as expected.

LK and LJ In order to derive the focused system LKF for classical logicfrom LK, all variations of
inferences must be considered. We need to take into account the additive and multiplicative versions of
each conjunction and disjunction, as depicted in Figure 2. In principle an analysis could be made with
the usual presentation of the LK system, but it would certainly not result in LKF. Asserting that we can
generate a well-known focused system serves as a validationof our method.

The permutation cliques for the inferences in Figure 2 are:CL1= {∧a
r ,∧

m
l ,∨

m
r ,∨

a
l ,∧

a
l ,∨

a
r } andCL2 =

{∧m
r ,∧

a
l ,∨

a
r ,∨

m
l }, whereCL1 ↓CL2. Analogous to MALL, we can drop the two last rules fromCL1 and

obtain a focusable permutation partition which corresponds to the propositional fragment of LKF.
By analysing the permutation relation of contraction to therules in the partitions, we observe that

it permutes up (↑ and↑c) all the inferences inCL1 {∧a
l ,∨

a
r }. Therefore, it is admissible in the negative

phase. For the positive phase, on the other hand, contraction will not permute up, for example,∧a
l . We

can thus conclude that such a system must have contraction for positive formulas2.

2This contraction is implicit on thedeciderule and the positive rules for the usual presentation of LKF.
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The case for LJ is completely analogous as that of LK when considering the partition:CL1 =
{∧m

l ,∧
a
r ,∨l ,→r ,∧

a
l ,∨r} andCL2 = {∧a

l ,∧
m
r ,∨r ,→l}.

6 Conclusion

This paper proposed a method for automatically devising focused proof systems for sequent calculi. Our
aim was to provide a uniform and automated way to obtain the sound and complete systems without
using an encoding in linear logic. The main element in our solution is the permutation graph of a sequent
calculus system. By using this graph we can separate the inferences into positives and negatives and also
reason on the admissibility of contraction. The permutation graph represents the permutation lemmas
used in the proof in [7]. We extended the method developed in [7] to handle contraction.

For future work, we plan to apply/extend our technique to other proof systems in order to obtain
sensible focused proof systems. There are, however, some more foundational challenges in doing so. We
would need to extend the conditions used here for determining whether a partition is focusable. For ex-
ample, non-commutative and bunched proof systems have evenmore complicated structural restrictions.
It is not even clear how would be the focusing discipline for these proof systems. We expect that our
existing machinery may help make some of these decisions by investigating different partitions.

Although we can deduce in which phase the contraction of formulas is admissible, it is still unclear
if the position of this rule in the permutation graph can indicate exactly which rules do not admit con-
traction. We expect to further investigate the permutationgraphs of other systems to find out if this and
other properties can be discovered.
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