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This paper tackles the problem of formulating and provirgye¢bmpleteness of focused-like proof
systems in an automated fashion. Focusing is a disciplipeaofs which structures them into phases
in order to reduce proof search non-determinism. We demetesthat it is possible to construct a
complete focused proof system from a given un-focused my&tem if it satisfies some conditions.
Our key idea is to generalize the completeness proof basgeémnutation lemmas given by Miller
and Saurin for the focused linear logic proof system. Thioise by building a graph from the rule
permutation relation of a proof system, called permutagjraph. We then show that from the per-
mutation graph of a given proof system, it is possible to teies a complete focused proof system,
and additionally infer for which formulas contraction ismaidsible. An implementation for building
the permutation graph of a system is provided. We apply alnrtigjue to generate the focused proof
systems MALLF, LJF and LKF for linear, intuitionistic andasisical logics, respectively.

1 Introduction

In spite of its widespread use, the proposition and compéste proofs of focused proof systems are
still an ad-hocand hard task, done for each individual system separatedy.ekample, the original
completeness proof for the focused linear logic proof systeLF) [1] is very specific to linear logic.
The completeness proof for many focused proof systems foitionistic logic, such as LJF [5], LKQ
and LKT [3], are obtained by using non-trivial encodingsmafiitionistic logic in linear logic.

One exception, however, is the work of Miller and Saurin {¥here they propose a modular way to
prove the completeness of focused proof systems based owiaion lemmas and proof transforma-
tions. They show that a given focused proof system is compléth respect to its unfocused version
by demonstrating that any proof in the unfocused system edrabsformed into a proof in the focused
system. Their proof technique has been successfully adlapterove the completeness of a number of
focused proof systems based on linear logic, such as ELL [ANIALL [2] and SELLF [8].

This paper proposes a method for the automated generatmisaind and complete focused proof
system from a given unfocused sequent calculus proof systum approach uses as theoretical foun-
dations the modular proof given by Miller and Saufin [7]. Téare, however, a number of challenges
in automating such a proof for any given unfocused proofesyst(1) Not all proof systems seem to
admit a focused version. We define sufficient conditions dbasethe definitions in[7]; (2) Even if a
proof system satisfies such conditions, there are manyrlebigices when formulating a focused ver-
sion for a system; (3) Miller and Saurin’s proof cannot beadily applied to proof systems that have
contraction and weakening rules, such as LJ; Focused pystéms, such as LJF and LKF, allow only
the contraction of some formulas. This result was obtaineddn-trivial encodings in linear logic [6].
Here, we demonstrate that this can be obtained in the sy$eifjii.e., without a detour through linear
logic; (4) Miller and Saurin did not formalize why their pmdaure or transforming an unfocused proof
into a focused one terminates. It already seems challertigidg so for MALL as permutations are not
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necessarily size preserving (with respect to the numberfefénces). We are still investigating general
conditions and this is left to future work.

In order to overcome these challenges, we introduce in @€8tthe notion of permutation graphs.
Our previous work[[9, 10] showed how to check whether a rukenpées over another in an automated
fashion. We use these results to construct the permutatephgof a proof system. This paper then
shows that, by analysing the permutation graph of an unémtpsoof system, we can construct possibly
different focused versions of this system, all sound andpieta (provided a proof of termination is
given). We sketch in Sectidd 4 how to check the admissihilftgontraction rules.

2 Permutation Graphs

In the following we assume that we are given a sequent caquioof systen$ which is commutative,
i.e,, sequents are formed by multi-sets of formulas, and whoseatmmic initial and cut rules are ad-
missible. We will also assume that whenever contractiofidsvad then weakening is also allowed, that
is, our systems can be affine, but not relevant. Finally, veemg the reader is familiar with basic proof
theory terminology, such as main and auxiliary formulasmfigla ancestors.

Definition 1 (Permutability) Leta and be two inference rules in a sequent calculus sysieltve will
say thato permutes ug, denoted byr 1 (3, if for everyS derivation of a sequen# in whicha operates
on.” and 3 operates on one or more ofs premises (but not on auxiliary formulas o), there exists
anotherS derivation of.# in which 3 operates on¥ and a operates on zero or more @fs premises
(but not onB’s auxiliary formulas). Consequentl@, permutes dowm (3 | o).

Note that if there is no derivation in whigh operates om’s premises without acting on its auxiliary
formulas (e.g.Vv, andA; in LJ), the permutation holds vacuously.

Definition 2 (Permutation graph)LetZ be the set of inference rules of a sequent calculus syStéie
construct the (directed)ermutation grapks = (V,E) for S by taking V=% and E= {(a,3) | a 1 B}.

Definition 3 (Permutation cliques)Let S be a sequent calculus system ardit®e permutation graph.
Consider R = (V*,E*) the undirected graph obtained fromy P- (V,E) by taking V' =V and E' =
{(a,B) ]| (a,B) € E and(B,a) € E}. Then thepermutation cliquesf S are the maximal cliquékof .

For LJ, we obtain the following cliqueBL; = {A, Vi, =,V } andCLy = {Ar, V¢, —1 }.

Permutation cliques can be thought of as equivalence ddss@nference rules. For example, the
rule A; permutes over all rules i@L;. Permutation cliques are not always disjoint. For exantpkerule
V, appears in both cliques.

Definition 4 (Permutation partition) Let S be a proof system ands®ts permutation graph. Then a
permutation partition? is a partition of R such that each component is a complete graph. We will call
each component of such partitionparmutation componentnotivated by the fact that inferences in the
same component permute over each other.

It is always possible to find such a partition by taking eacimgonent to be one single vertex, but
we are mostly interested in bi-partitions.

Although in general cliques are computed in exponentiaktimis still feasible to compute them
since the permutation graph is usually small. The parttioan be obtained simply by choosing at most
one patrtition to those rules present in more than one clidierefore, there might be many possible

1A clique in a graphG is a set of vertices such that all vertices are pairwise octedeby one edge.
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ways to partition the rules of a system. In what follows (Digifim [6) we will define which are the
partitions that will yield a focused proof system. As we \sille, the following partition will lead to LJF,
restricted to multiplicative conjunction€; = {A, V|, —} andCy = {A, Vi, — }.

Definition 5 (Permutation partition hierarchy)etS be a proof system,sHts permutation graph and
& =Cy,...,Cy a permutation partition. We say that CC; iff for every inferencen; € G and a; € C;
we have thaty; | aj, i.e, aj T a; or equivalently(aj, a;) € .

Notice that the partition hierarchy can be easily computethfthe permutation graph. For the
partition used above, we ha@ | C,.

3 Focused Proof Systems Generation

We derive a focused proof systeSh from the permutation partitions of a given proof syst&rif some
conditions are fulfilled. In this section we explain thesaditions and prove that the induced focused
system is sound and complete with resped.to

Definition 6 (Focusable permutation partitionl.etS be a sequent calculus proof system and CC,
a permutation partition of the rules if.. We say that it is docusable permutation partitiah

e n=2and G | Cy;
e Every rule in component£has at most one auxiliary formula in each premise;

e Every non-unary rule in component Gplits the context among the premisés.( there is no
implicit copying of context formulas on branching rules).

We call G the negative component ang @e positive component following usual terminology from
the focusing literature (e.g.[ [5]) and classify formula ocences in a proof as negative and positive
according to their introduction rules

Observe that, in contrast to the usual approach, we do nignagslarities to connectives on their
own. Therefore the polarity of a formula can change dependmwhether it occurs on the right or on
the left side of the sequent. As for now, we will only definerpatation partitions of logical inference
rules. The structural inference rules will be treated ssedy. In particular, the role of contraction and
its relation to the partitions is discussed in Secfibn 4.

The partition{Cy,Cy} for LJ is a focusable permutation partition. Interestingly allows for other
focusable partitions, for exampl€; = {A}, Vi, =,V } andCy = {Ar,— }.

We conjecture that all proof systems derived from a focuesglermutation partition are sound and
complete. Itis not our goal here to justify which partiti@ads to a more suitable focused proof system,
as this would depend on the context where the proof systendvbeuused.

Based on the focusable permutation partition, we can defifoewsed proof system fds. This
definition is syntactically different from those usuallyepent in the literature. It will, in particular, force
the store and subsequent selection of a negative formula.eXtra step is only for the sake of uniformity
and clear separation between phases (there will always be plase” state between two phases).

Definition 7 (Focused proof system).etS be a sequent calculus proof system and €, a focusable
permutation partition of the rules ifi. Then we can define thiecusedsystens' in the following way:

Sequents. S sequents are of the shapel” P A;A', where pe {+,—,0} indicates a positive,
negative and neutral polarity sequents respectively. Weeall " andA’ the activecontexts.
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I nference Rules. For each rulea in S belonging to the negative (positive) compon&htwill have a
rule a with conclusion and premises being negative (positivedisets and main and auxiliary formulas
occurring in the active contexts.

Structural rules. The connection between the phases is done via the followungral rules.
Selection rulesnove a formula F to the active context. If F is negative, thea-p. If F is positive,
then there is no negative’lE ' UA and p= +. Store rulesemove a formula F from the active context
if F is negative and p= + or if F is positive and p= —. Theend ruleremoves the label g {+,—} of

a sequent by setting it to O if the active contexts are empty.

M EEPA;- M FPAF CEARPAN CAFPAF;N r-FoaA;.
. LOA. Se| . .0 . se FrAECLPAM S FALPA-R E S = LpA €N
MF;-HoA;. r-+0nF;- CAFEPAN CAFPATLF T-FPA;-

d

AnS' proof is characterized by sequences of inferences labeidwor — which we will callphases
Thus, we can say that selection rules are responsible fotirsgga phase and the end rule finishes a
phase. Between any two phases there is always a “neutratéstienoted by a sequent labeled with 0.

We can prove using the machinery givenlin [7] that the focymedf system obtained is complete.
There is one catch, however: one also needs to prove thatdhedure to convert an unfocused proof
into a focused proof using permutation lemmas terminathis Was not formalized in [7], although one
can prove it. Finding general conditions is more challeg@nd is subject of current investigation.

Conjecture 1 (Completeness of focused proof systenm&sequent - A is provable irS iff the sequent
;- FOA;- is provable inSf.

4 Admissibility of contraction

During proof search, it is desirable to avoid unnecessapyiog of formulas at each rule application.
Either by not copying the same context in all premises or yanto-contracting the main formula of a
rule application. The analysis of where the contractioe fids in the permutation cliques can give us
insights on when it can be avoided.

Definition 8 (Admissibility of contraction) LetS be a sequent calculus system with a set of ridedVe
say that contraction isdmissiblefor %' C Z if for everyS derivation ¢ there exists a§ derivation¢’
such that contraction is never applied to main formulas &nences inz’.

The intuitionistic system LJ is an example of a calculus inchiltontraction is not admissible for all
formulas. It is only complete if the main formula of the ingation left rule is contracted[4].

The admissibility of contraction involves transformasowhich are similar to the rank reduction
rewriting rules of reductive cut-elimination. This is a sj@ case of permutation checking, since the
upper inferencenustbe applied to auxiliary formulas of the lower inference.

Definition 9 (Contraction permutation)LetS be a sequent calculus proof system, ¢ one of its contraction
rules anda a logical rule applied to a formula = We say that ¢ a if a derivation composed by
contraction of ki followed by applications ofr to the contracted formulas can be transformed into a
derivation whereax is applied to [z and contraction is applied to the auxiliary formulas @f

It is worth noting that many of the cases for contraction pggation rely ona being applied to all
contracted formulas in all premises where they occur. Thefprof such cases require a lemma stating
thata can be “pushed down” until the correct location.

If c1¢ a for some inference, then it is admissible for that inference, as it can alwaysempaced
by contraction on its ancestors To prove full admissibitifycontraction in the calculus, it is necessary
to prove that contraction on atoms can be eliminated. Wenwtlladdress this issue in this paper, but we
will analyse the behavior of contraction among the phasesfatused proof.
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Figure 1: MALL logical inferences
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Figure 2: Additive and multiplicative logical inferencebtbe LK system.

Definition 10 (Admissibility of contraction in a phase).etS be a sequent calculus proof system and
C1,C, afocusable permutation partition. We say that contractiadmissible in phase i if evefyproof
can be transformed into a proof where contraction is neverlieg to main formulas of ruleg € C;.

Theorem 1. LetS be a sequent calculus system, C its contraction rulesC£a focusable permutation
partition. If for all c € C anda € C;, ¢t a and c?¢ a, then contraction is admissible in phase i.

The focused proof is obtained by only contracting formulest tan be introduced W rules. Itis
easy to extend Definitida 7 to enforce this as done in LJF anB |3{

5 Case studies

Given the permutation cliques, it is up to the user to anallygsen and decide which partition to use for
the focused proof system. As case studies we will show hovioitigsed proof systems LKF, LJF and
MALLF can be obtained from LK, LJ and MALL respectively usitige permutation cliques.

MALL MALL stands for multiplicative additive linear logic (withut exponentials) and its rules are
depicted in Figuré]l. A focused system, MALLF, for this célsuwas proposed in[1].

Given the logical inferences of MALL, the permutation clgufound were the followingCL; =
{®1,®1,79r, &, &1, } andCLy = {®r,®r, 91, & }, with the relationCL; | CL,. The following focus-
able permutation partition corresponds to MALLE; = {®, D, ®r, &} andCy = {®, @y, 781, &1 }-
Notice that all invertible rules are 1@, while all positive rules are i@, as expected.

LK and LJ In order to derive the focused system LKF for classical Idgien LK, all variations of
inferences must be considered. We need to take into acdoeiaidditive and multiplicative versions of
each conjunction and disjunction, as depicted in FiglirenZrinciple an analysis could be made with
the usual presentation of the LK system, but it would celyaiot result in LKF. Asserting that we can
generate a well-known focused system serves as a validaitaur method.

The permutation cliques for the inferences in Figure 2@tg:= { A%, A", V", V&, AR, V8} andCL, =
{AP AR VE VMY, whereCLy | CL,. Analogous to MALL, we can drop the two last rules fr@h; and
obtain a focusable permutation partition which corresgdiadhe propositional fragment of LKF.

By analysing the permutation relation of contraction to thkes in the partitions, we observe that
it permutes up{ andf¢) all the inferences i€L; {A{, V2}. Therefore, it is admissible in the negative
phase. For the positive phase, on the other hand, conmastlbnot permute up, for example)?. We
can thus conclude that such a system must have contractipoddive formulas.

2This contraction is implicit on thdeciderule and the positive rules for the usual presentation of LKF
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The case for LJ is completely analogous as that of LK whenideriag the partition:CL; =
{ANM AV, =, ARV} andCly = {AR AT, Ve, — ]

6 Conclusion

This paper proposed a method for automatically devisingded proof systems for sequent calculi. Our
aim was to provide a uniform and automated way to obtain thimd@nd complete systems without
using an encoding in linear logic. The main element in owntsah is the permutation graph of a sequent
calculus system. By using this graph we can separate theides into positives and negatives and also
reason on the admissibility of contraction. The permutaticaph represents the permutation lemmas
used in the proof in [[7]. We extended the method developed]ito[handle contraction.

For future work, we plan to apply/extend our technique tceotbroof systems in order to obtain
sensible focused proof systems. There are, however, somefoumdational challenges in doing so. We
would need to extend the conditions used here for detergiwimether a partition is focusable. For ex-
ample, non-commutative and bunched proof systems havenesemncomplicated structural restrictions.
It is not even clear how would be the focusing discipline fugde proof systems. We expect that our
existing machinery may help make some of these decisionsvegtigating different partitions.

Although we can deduce in which phase the contraction of ddemis admissible, it is still unclear
if the position of this rule in the permutation graph can aadée exactly which rules do not admit con-
traction. We expect to further investigate the permutagjcaphs of other systems to find out if this and
other properties can be discovered.
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