1. P. N. Benton & Philip Wadler (1996): Linear Logic, Monads and the Lambda Calculus. In: Logic in Computer Science, doi:10.1109/LICS.1996.561458.
  2. P.N. Benton (1995): A mixed linear and non-linear logic: Proofs, terms and models. In: Computer Science Logic: 8th Workshop, CSL '94, doi:10.1007/BFb0022251.
  3. Kenta Cho & Abraham Westerbaan (2016): Von Neumann Algebras form a Model for the Quantum Lambda Calculus. Available at Manuscript..
  4. Jeff Egger, Rasmus Ejlers Møgelberg & Alex Simpson (2014): The enriched effect calculus: syntax and semantics. J. Log. Comput. 24(3), pp. 615–654, doi:10.1093/logcom/exs025.
  5. Jean-Yves Girard (1987): Linear Logic. Theor. Comput. Sci. 50, pp. 1–102, doi:10.1016/0304-3975(87)90045-4.
  6. Andre Kornell, Bert Lindenhovius & Michael Mislove (2020): Quantum CPOs. Preprint..
  7. Paul Blain Levy (2004): Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation 2. Springer.
  8. Bert Lindenhovius, Michael Mislove & Vladimir Zamdzhiev (2018): Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. In: LICS 2018. ACM, doi:10.1145/3209108.3209196.
  9. Bert Lindenhovius, Michael Mislove & Vladimir Zamdzhiev (2020): Semantics for a Lambda Calculus for String Diagrams. Preprint.
  10. Bert Lindenhovius, Michael W. Mislove & Vladimir Zamdzhiev (2019): Mixed linear and non-linear recursive types. Proc. ACM Program. Lang. 3(ICFP), pp. 111:1–111:29, doi:10.1145/3341715.
  11. Bert Lindenhovius, Michael W. Mislove & Vladimir Zamdzhiev (2020): LNL-FPC: The Linear/Non-linear Fixpoint Calculus. Available at Preprint.
  12. Maria Emilia Maietti, Paola Maneggia, Valeria de Paiva & Eike Ritter (2005): Relating Categorical Semantics for Intuitionistic Linear Logic. Applied Categorical Structures 13(1), doi:10.1007/s10485-004-3134-z.
  13. Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92, doi:10.1016/0890-5401(91)90052-4.
  14. Michele Pagani, Peter Selinger & Benoît Valiron (2014): Applying quantitative semantics to higher-order quantum computing. In: POPL, doi:10.1145/2535838.2535879.
  15. Romain Péchoux, Simon Perdrix, Mathys Rennela & Vladimir Zamdzhiev (2020): Quantum Programming with Inductive Datatypes. Preprint.
  16. Romain Péchoux, Simon Perdrix, Mathys Rennela & Vladimir Zamdzhiev (2020): Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory. In: Foundations of Software Science and Computation Structures 2020, pp. 562–581, doi:10.1007/978-3-030-45231-5_29.
  17. Francisco Rios & Peter Selinger (2017): A categorical model for a quantum circuit description language. In: QPL 2017, pp. 164–178, doi:10.4204/EPTCS.266.11.
  18. Peter Selinger (2004): Towards a quantum programming language. Mathematical Structures in Computer Science 14(4), pp. 527–586, doi:10.1017/S0960129504004256.
  19. Peter Selinger & Benoît Valiron (2008): A Linear-non-Linear Model for a Computational Call-by-Value Lambda Calculus (Extended Abstract). In: FOSSACS 2008, doi:10.1007/978-3-540-78499-9_7.
  20. Peter Selinger & Benoît Valiron (2009): Quantum Lambda Calculus, doi:10.1017/CBO9781139193313.005. Semantic Techniques in Quantum Computation.
  21. William Wootters & Wojciech Zurek (1982): A single quantum cannot be cloned. Nature 299(5886), doi:10.1038/299802a0.

Comments and questions to:
For website issues: