References

  1. R. Alur (2015): Principles of Cyber-Physical Systems. The MIT Press.
  2. A. D. Ames & S. Sastry (2005): A homology theory for hybrid systems: Hybrid homology. In: Proceedings of the 2005 International Workshop on Hybrid Systems Computation and Control (HSCC). Springer, doi:10.1007/978-3-540-31954-2_6.
  3. W. R. Ashby (1991): Principles of the self-organizing system. In: Facets of systems science. Springer, doi:10.1007/978-1-4899-0718-9_38.
  4. J. C. Baez & J. Erbele (2015): Categories in control. Theory and Applications of Categories. Available at http://www.tac.mta.ca/tac/volumes/30/24/30-24.pdf.
  5. S. Breiner, O. Marie-Rose, B. S. Pollard & E. Subrahmanian (2020): Operadic diagnosis in hierarchical systems. In: Proceedings of the 2019 Applied Category Theory Conference (ACT), doi:10.4204/EPTCS.323.5.
  6. S. Breiner, R. D. Sriram & E. Subrahmanian (2019): Compositional Models for Complex Systems. In: Artificial Intelligence for the Internet of Everything. Elsevier, doi:10.1016/B978-0-12-817636-8.00013-2.
  7. B. T. Carter, G. Bakirtzis, C. R. Elks & C. H. Fleming (2018): A systems approach for eliciting mission-centric security requirements. In: Proceedings of the 2018 Annual IEEE International Systems Conference (SysCon). IEEE, doi:10.1109/SYSCON.2018.8369539.
  8. F. Durán, R. Heinrich, D. Pérez-Palacín, C. L. Talcott & S. Zschaler (2020): Composing Model-Based Analysis Tools (Dagstuhl Seminar 19481). In: Dagstuhl Reports. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. Available at https://drops.dagstuhl.de/opus/volltexte/2020/11985/.
  9. J. L. Fiadeiro & T. Maibaum (1995): Interconnecting formalisms: supporting modularity, reuse and incrementality. In: Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE), doi:10.1145/222124.222141.
  10. B. Fong & D. I. Spivak (2019): An Invitation to Applied Category Theory: Seven Sketches in Compositionality. Cambridge University Press, doi:10.1017/9781108668804.
  11. S. Gebreyohannes, W. Edmonson & A. Esterline (2018): Formalization of the responsive and formal design process using category theory. In: Proceedings of the 2018 Annual IEEE International Systems Conference (SysCon). IEEE, doi:10.1109/SYSCON.2018.8369508.
  12. M. Gell-Mann (1994): Complex adaptive systems. Complexity: Metaphors, Models, and Reality. Available at https://authors.library.caltech.edu/60491/.
  13. M. Gell-Mann & S. Lloyd (2010): Effective complexity. In: Murray Gell-Mann: Selected Papers. World Scientific, doi:10.1142/9789812836854_0027.
  14. J. A. Goguen (1991): A categorical manifesto. Mathematical structures in computer science, doi:10.1017/S0960129500000050.
  15. I. Hasuo (2017): Metamathematics for systems design. New Generation Computing, doi:10.1007/s00354-017-0023-1.
  16. N. Kibret, W. W. Edmonson & S. Gebreyohannes (2019): Category Theoretic Based Formalization of the Verifiable Design Process. In: Proceedings of the 2019 IEEE International Systems Conference (SysCon). IEEE, doi:10.1109/SYSCON.2019.8836804.
  17. N. G. Leveson (2004): A new accident model for engineering safer systems. Safety science, doi:10.1016/S0925-7535(03)00047-X.
  18. N. G. Leveson (2017): Rasmussen's legacy: A paradigm change in engineering for safety. Applied ergonomics, doi:10.1016/j.apergo.2016.01.015.
  19. B. Messner, D. Tilbury, R. Hill & J. D. Taylor (2020): Control Tutorials for Matlab and Simulink: Aircraft Pitch. https://web.archive.org/web/20200509164711/http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SystemModeling.
  20. J. S. Nolan, B. S. Pollard, S. Breiner, D. Anand & E. Subrahmanian (2020): Compositional Models for Power Systems. In: Proceedings of the 2019 Applied Category Theory Conference ACT, Electronic Proceedings in Theoretical Computer Science, doi:10.4204/EPTCS.323.10.
  21. R. Rajkumar, I. Lee, L. Sha & J. Stankovic (2010): Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference (DAC). IEEE, doi:10.1145/1837274.1837461.
  22. J. Rasmussen (1985): The role of hierarchical knowledge representation in decisionmaking and system management. IEEE Transactions on systems, man, and cybernetics, doi:10.1109/TSMC.1985.6313353.
  23. A. L. Sangiovanni-Vincentelli, W. Damm & R. Passerone (2012): Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European Journal of Control, doi:10.3166/ejc.18.217-238.
  24. M. Saravi, L. Newnes, A. R. Mileham & Y. M. Goh (2008): Estimating cost at the conceptual design stage to optimize design in terms of performance and cost. In: Proceedings of the 15th ISPE International Conference on Concurrent Engineering (CE). Springer, doi:10.1007/978-1-84800-972-1_11.
  25. P. Schultz, D. I. Spivak & C. Vasilakopoulou (2020): Dynamical systems and sheaves. Applied Categorical Structures, doi:10.1007/s10485-019-09565.
  26. D. I. Spivak (2016): The steady states of coupled dynamical systems compose according to matrix arithmetic. ArXiv:1512.00802 [math.CT].
  27. D. I. Spivak (2020): Poly: An abundant categorical setting for mode-dependent dynamics. ArXiv:2005.01894 [math.CT].
  28. D. Vagner, D. I. Spivak & E. Lerman (2015): Algebras of open dynamical systems on the operad of wiring diagrams. Theory and Applications of Categories. Available at http://www.tac.mta.ca/tac/volumes/30/51/30-51.pdf.
  29. L. Von Bertalanffy (1950): An outline of general system theory.. British Journal for the Philosophy of Science, doi:10.1093/bjps/I.2.134.
  30. W. Young & N. G. Leveson (2014): An integrated approach to safety and security based on systems theory. Communications of the ACM, doi:10.1145/2556938.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org