References

  1. Nuno Baeta & Pedro Quaresma (2013): The full angle method on the OpenGeoProver. In: C. Lange, D. Aspinall, J. Carette, J. Davenport, A. Kohlhase, M. Kohlhase, P. Libbrecht, P. Quaresma, F. Rabe, P. Sojka, I. Whiteside & W. Windsteiger: MathUI, OpenMath, PLMMS and ThEdu Workshops and Work in Progress at the Conference on Intelligent Computer Mathematics, CEUR Workshop Proceedings 1010, Aachen. Available at http://ceur-ws.org/Vol-1010/paper-08.pdf.
  2. Nuno Baeta, Pedro Quaresma & Zoltán Kovács (2020): Towards a Geometry Automated Provers Competition. In: Proceedings 8th International Workshop on Theorem proving components for Educational software, Electronic Proceedings in Theoretical Computer Science 313, pp. 93–100, doi:10.4204/EPTCS.313.6. (ThEdu'19), Natal, Brazil, 25th August 2019,.
  3. Francisco Botana, Markus Hohenwarter, Predrag Janiči\'c, Zoltán Kovács, Ivan Petrovi\'c, Tomás Recio & Simon Weitzhofer (2015): Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning 55(1), pp. 39–59, doi:10.1007/s10817-015-9326-4.
  4. Francisco Botana, Zoltán Kovács & Tomás Recio (2020): A Mechanical Geometer. Mathematics in Computer Science, doi:10.1007/s11786-020-00497-7.
  5. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1996): Automated Generation of Readable Proofs with Geometric Invariants, II. Theorem Proving With Full-Angles. Journal of Automated Reasoning 17(13), pp. 349–370, doi:10.1007/BF00283134.
  6. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (2000): A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning 25, pp. 219246, doi:10.1023/A:1006171315513.
  7. The Anh Han, Lúis Moniz Pereira & Tom Lenaerts (2019): Modelling and Influencing the AI Bidding War: A Research Agenda. In: AAAI/ACM conference on AI, Ethics and Society 2019, doi:10.1145/3306618.3314265. Available at http://www.aies-conference.com/wp-content/papers/main/AIES- 19_paper_28.pdf.
  8. Gila Hanna, David Reid & Michael de Villiers (2019): Proof Technology in Mathematics Research and Teaching. Springer, doi:10.1007/978-3-030-28483-1.
  9. Yannis Haralambous & Pedro Quaresma (2014): Querying Geometric Figures Using a Controlled Language, Ontological Graphs and Dependency Lattices. In: S. Watt et al.: CICM 2014, LNAI 8543. Springer, pp. 298–311, doi:10.1007/978-3-319-08434-3_22.
  10. Yannis Haralambous & Pedro Quaresma (2018): Geometric Search in TGTP. In: Hongbo Li: Proceedings of the 12th International Conference on Automated Deduction in Geometry. SMS International. Available at http://adg2018.cc4cm.org/ADG2018Proceedings.
  11. Predrag Janiči\'c (2006): GCLC A Tool for Constructive Euclidean Geometry and More Than That. In: Andrés Iglesias & Nobuki Takayama: Mathematical Software - ICMS 2006, Lecture Notes in Computer Science 4151. Springer, pp. 58–73, doi:10.1007/11832225_6.
  12. Predrag Janiči\'c, Julien Narboux & Pedro Quaresma (2012): The Area Method: a Recapitulation. Journal of Automated Reasoning 48(4), pp. 489–532, doi:10.1007/s10817-010-9209-7.
  13. Z. Kovács & B. Parisse (2015): Computer algebra and polynomials, chapter Giac and GeoGebra – improved Gröbner basis computations, pp. 126–138, LNCS 8942. Springer Cham, doi:10.1007/978-3-319-15081-9_7.
  14. Z. Kovács, T. Recio & C. Sólyom-Gecse (2019): Rewriting input expressions in complex algebraic geometry provers. Annals of Mathematics and Artificial Intelligence 85(2-4), pp. 73–87, doi:10.1007/s10472-018-9590-1.
  15. Zltan Kovács, Tomas Recio & Maria Pilar. Vélez (2018): Using Automated Reasoning Tools in GeoGebra in the Teaching and Learning of Proving in Geometry. International Journal for Technology in Mathematics Education 25(2), pp. 33–50, doi:10.1564/tme_v25.2.03.
  16. Zoltán Kovács (2014): The portfolio prover in GeoGebra 5. In: Proceedings of the 10th International Workshop on Automated Deduction in Geometry (ADG 2014).
  17. Zoltán Kovács (2015): The Relation Tool in GeoGebra 5. In: Francisco Botana & Pedro Quaresma: Automated Deduction in Geometry, Lecture Notes in Computer Science 9201. Springer International Publishing, pp. 53–71, doi:10.1007/978-3-319-21362-0_4.
  18. Zoltán Kovács, Tomás Recio & M. Pilar Vélez (2019): Detecting truth, just on parts. Revista Matemática Complutense 32(2), pp. 451–474, doi:10.1007/s13163-018-0286-1.
  19. Zoltan Kovács, Tomas Recio & Maria Pilar Vélez (2022): Mathematics Education in the Age of Artificial Intelligence, chapter Automated Reasoning Tools with GeoGebra: What are they? What are they good for?. Springer Nature. (to appear).
  20. Zoltán Kovács & Tomas Recio (2020): GeoGebra Reasoning Tools for Humans and for Automatons. In: Electronic Proceedings of the 25th Asian Technology Conference in Mathematics. Radford University, Radford, Virginia, USA, and Suan Sunandha Rajabhat University, Thailand. Mathematics and Technology, LLC, pp. 16–30, doi:10.13140/RG.2.2.26851.58407. Available at http://atcm.mathandtech.org/EP2020/invited/21786.pdf.
  21. Manuel Ladra, Pilar Páez-Guillán & Tomás Recio (2020): Dealing with negative conditions in automated proving: tools and challenges. The unexpected consequences of Rabinowitsch's trick. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 114(4), doi:10.1007/s13398-020-00874-8.
  22. Zoltán Kovács & Predrag Janiči\'c Mladen Nikoli\'c, Vesna Marinkovi\'c (2019): Portfolio theorem proving and prover runtime prediction for geometry. Annals of Mathematics and Artificial Intelligence 85(2-4), pp. 119–146, doi:10.1007/s10472-018-9598-6.
  23. Julien Narboux (2004): A Decision Procedure for Geometry in Coq. Lecture Notes in Computer Science 3223, pp. 225–240, doi:10.1007/b100400. Available at http://portal.acm.org/citation.cfm?id=1784950.1784959.
  24. Pedro Quaresma (2011): Thousands of Geometric Problems for Geometric Theorem Provers (TGTP). In: Pascal Schreck, Julien Narboux & Jürgen Richter-Gebert: Automated Deduction in Geometry, Lecture Notes in Computer Science 6877. Springer, pp. 169–181, doi:10.1007/978-3-642-25070-5_10.
  25. Pedro Quaresma & Nuno Baeta (2019): Geometry Automated Theorem Provers Systems Competition 0.2 Report. techreport 1. CISUC. Available at https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR 2019- 01.pdf.
  26. Pedro Quaresma, Walther Neuper & João Marcos (2020): Proceedings 8th International Workshop on Theorem Proving Components for Educational Software 313. Open Publishing Association, doi:10.4204/EPTCS.313.
  27. Pedro Quaresma, Vanda Santos & Nuno Baeta (2018): Exchange of Geometric Information Between Applications. Electronic Proceedings in Theoretical Computer Science 267, pp. 108–119, doi:10.4204/eptcs.267.7.
  28. Pedro Quaresma, Vanda Santos & Milena Mari\'c (2018): WGL, a web laboratory for geometry. Education and Information Technologies 23(1), pp. 237–252, doi:10.1007/s10639-017-9597-y.
  29. T. Recio & M. P. Vélez (1999): Automatic Discovery of Theorems in Elementary Geometry. J. Autom. Reason. 23, pp. 63–82, doi:10.1023/A:1006135322108. Available at http://dl.acm.org/citation.cfm?id=594128.594243.
  30. G. Sutcliffe (2017): The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), pp. 483–502, doi:10.1007/s10817-017-9407-7.
  31. Róbert Vajda & Zoltán Kovács (2020): GeoGebra and theıtshape realgeom Reasoning Tool. In: P. Fontaine, K. Korovin, I. S. Kotsireas, P. Rümmer & S. Tourret: PAAR+SC-Square 2020. Workshop on Practical Aspects of Automated Reasoning and Satisfiability Checking and Symbolic Computation Work shop 2020, pp. 204–219. ArXiv:http://ceur-ws.org/Vol-2752/paper15.pdf.
  32. Christoph Weidenbach (2017): Do Portfolio Solvers Harm?. In: Giles Reger & Dmitriy Traytel: ARCADE 2017. 1st International Workshop on Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements, EPiC Series in Computing 51. EasyChair, pp. 76–81, doi:10.29007/vpxm.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org