References

  1. Reynald Affeldt & Cyril Cohen (2017): Formal foundations of 3D geometry to model robot manipulators. In: Yves Bertot & Viktor Vafeiadis: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017. ACM, pp. 30–42, doi:10.1145/3018610.3018629.
  2. P. O. Bell (1955): Generalized Theorems of Desargues for n-Dimensional Projective Space. Proceedings of the American Mathematical Society 6(5), pp. 675–681, doi:10.2307/2032913. Available at http://www.jstor.org/stable/2032913.
  3. Francisco Botana, Markus Hohenwarter, Predrag Janicic, Zoltán Kovács, Ivan Petrovi\'c, Tomas Recio & Simon Weitzhofer (2015): Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning 55, pp. 39–59, doi:10.1007/s10817-015-9326-4.
  4. D. Braun, N. Magaud & P. Schreck (2021): Two New Ways to Formally Prove Dandelin-Gallucci's Theorem. In: ISSAC 2021 : International Symposium on Symbolic and Algebraic Computation. ACM, doi:10.1145/3452143.3465550.
  5. David Braun (2019): Approche combinatoire pour l'automatisation en Coq des preuves formelles en géométrie d'incidence projective. Université de Strasbourg.
  6. David Braun, Nicolas Magaud & Pascal Schreck (2019): Two cryptomorphic formalizations of projective incidence geometry. Ann. Math. Artif. Intell. 85(2-4), pp. 193–212, doi:10.1007/s10472-018-9604-z.
  7. Shang-Ching Chou (1987): Mechanical Geometry Theorem Proving. Kluwer Academic Publishers, Norwell, MA, USA, doi:10.1007/978-94-009-4037-6.
  8. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1994): Machine Proofs in Geometry. Series on Applied Mathematics. World Scientific, doi:10.1142/2196.
  9. Jack Edmonds (1971): Matroids and the greedy algorithm. Mathematical Programming 1(1), pp. 127–136, doi:10.1007/BF01584082.
  10. Laurent Fuchs & Laurent Théry (2010): A Formalization of Grassmann-Cayley Algebra in COQ and Its Application to Theorem Proving in Projective Geometry. In: Pascal Schreck, Julien Narboux & Jürgen Richter-Gebert: Automated Deduction in Geometry - 8th International Workshop, 2010, Munich, Germany, July 22-24, 2010, Revised Selected Papers, Lecture Notes in Computer Science 6877. Springer, pp. 51–67, doi:10.1007/978-3-642-25070-5_3.
  11. H. Gelernter (1959): Realization of a Geometry Theorem-Proving Machine. In: Proc. of the International Conference on Information Processing. UNESCO, pp. 273–281, doi:10.5555/216408.216418.
  12. Ákos G Horváth (2017): Gallucci's axiom revisited. In: arXiv preprint arXiv:1712.04800.
  13. Predrag Janicic, Julien Narboux & Pedro Quaresma (2010): The Area Method. Journal of Automated Reasoning - JAR 48, doi:10.1007/s10817-010-9209-7.
  14. Magaud, Nicolas and Narboux, Julien and Schreck, Pascal (2012): A Case Study in Formalizing Projective Geometry in Coq: Desargues Theorem. Computational Geometry : Theory and Applications 45(8), pp. 406–424, doi:10.1016/j.comgeo.2010.06.004.
  15. Dominique Michelucci & Pascal Schreck (2006): Incidence Constraints: a Combinatorial Approach. Int. Journal of Computational Geometry and Applications 16(5-6), pp. 443–460, doi:10.1142/S0218195906002130.
  16. Forest Ray Moulton (1902): A Simple Non-Desarguesian Plane Geometry. Transactions of the American Mathematical Society 3(2), pp. 192–195, doi:10.1090/S0002-9947-1902-1500595-3.
  17. James G Oxley (2006): Matroid Theory 3. Oxford University Press, USA.
  18. Eugenio Roanes-Macías & Eugenio Roanes-Lozano (2006): A Maple Package for Automatic Theorem Proving and Discovery in 3D-Geometry. In: Francisco Botana & Tomás Recio: Automated Deduction in Geometry, 6th International Workshop, ADG 2006, Pontevedra, Spain, Aug. 31-Sept. 2, 2006. Revised Papers, Lecture Notes in Computer Science 4869. Springer, pp. 171–188, doi:10.1007/978-3-540-77356-6_11.
  19. William Thomas Tutte (1959): Matroids and graphs. Transactions of the American Mathematical Society 90(3), pp. 527–552, doi:10.2307/1993185.
  20. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2010): Visually Dynamic Presentation of Proofs in Plane Geometry: Part 2. Automated Generation of Visually Dynamic Presentations with the Full-Angle Method and the Deductive Database Method. Journal of Automated Reasoning 45, doi:10.1007/s10817-009-9163-4.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org