References

  1. J. Almeida (1994): Finite semigroups and universal algebra. World Scientific, Singapore, doi:10.1142/2481.
  2. J. Almeida (2005): Profinite semigroups and applications. In: V.B. Kudryavtsev, I.G. Rosenberg & M. Goldstein: Structural theory of automata, semigroups, and universal algebra, NATO Science Series II: Mathematics, Physics and Chemistry 207. Springer, pp. 1–45, doi:10.1007/1-4020-3817-8_1.
  3. M. Arfi (1987): Polynomial Operations on Rational Languages. In: F.-J. Brandenburg, G. Vidal-Naquet & M. Wirsing: STACS, Lecture Notes in Computer Science 247. Springer, pp. 198–206, doi:10.1007/BFb0039607.
  4. J. Brzozowski (1962): Canonical regular expressions and minimal state graphs for definite events. In: Mathematical theory of Automata, Symposia series 12. Research Institute, Brooklyn, pp. 529–561.
  5. J. Brzozowski & B. Li (2013): Syntactic Complexity of R- and J-Trivial Regular Languages. In: H. Jürgensen & R. Reis: DCFS, Lecture Notes in Computer Science 8031. Springer, pp. 160–171, doi:10.1007/978-3-642-39310-5_16.
  6. L. Chaubard, J.-É. Pin & H. Straubing (2006): Actions, wreath products ofıt C-varieties and concatenation product. Theor. Comput. Sci. 356(1-2), pp. 73–89, doi:10.1016/j.tcs.2006.01.039.
  7. R. Cohen & J. Brzozowski (1971): Dot-Depth of Star-Free Events. J. Comput. Syst. Sci. 5(1), pp. 1–16, doi:10.1016/S0022-0000(71)80003-X.
  8. V. Diekert, P. Gastin & M. Kufleitner (2008): A Survey on Small Fragments of First-Order Logic over Finite Words. Int. J. Found. Comput. Sci. 19(3), pp. 513–548, doi:10.1142/S0129054108005802.
  9. S. Eilenberg (1976): Automata, Languages and Machines, vol. B.. Academic Press.
  10. Z. Ésik & M. Ito (2003): Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata. Acta Cybern. 16(1), pp. 1–28. Available at http://www.inf.u-szeged.hu/actacybernetica/edb/vol16n1/Esik_2003_ActaCybernetica.xml.
  11. Z. Ésik & S. Iván (2008): Some Varieties of Finite Tree Automata Related to Restricted Temporal Logics. Fundam. Inform. 82(1-2), pp. 79–103. Available at http://iospress.metapress.com/content/4216mrh7r6477172/.
  12. Z. Ésik & K.G. Larsen (2003): Regular languages definable by Lindström quantifiers. RAIRO - Theoretical Informatics and Applications 37(3), pp. 179–241, doi:10.1051/ita:2003017.
  13. M. Gehrke, S. Grigorieff & J.-É. Pin (2008): Duality and Equational Theory of Regular Languages. In: L. Aceto, I. Damgård, L.A. Goldberg, M.M. Halldórsson, A. Ingólfsdóttir & I. Walukiewicz: ICALP (2), Lecture Notes in Computer Science 5126. Springer, pp. 246–257, doi:10.1007/978-3-540-70583-3_21.
  14. M. Holzer & S. Jakobi (2013): Minimization and characterizations for biautomata. In: S. Bensch, F. Drewes, R. Freund & F. Otto: NCMA 294. Österreichische Computer Gesellschaft, pp. 179–193.
  15. H. Kamp (1968): Tense logic and theory of linear orders. University of California.
  16. O. Klíma & L. Polák (2008): On varieties of meet automata. Theor. Comput. Sci. 407(1-3), pp. 278–289, doi:10.1016/j.tcs.2008.06.005.
  17. O. Klíma & L. Polák (2012): On biautomata. RAIRO - Theor. Inf. and Applic. 46(4), pp. 573–592, doi:10.1051/ita/2012014.
  18. O. Klíma & L. Polák (2013): Alternative Automata Characterization of Piecewise Testable Languages. In: M.-P. Béal & O. Carton: Developments in Language Theory, Lecture Notes in Computer Science 7907. Springer, pp. 289–300, doi:10.1007/978-3-642-38771-5_26.
  19. M. Kufleitner & P. Weil (2012): On logical hierarchies within FO^\voidb@x 2-definable languages. Logical Methods in Computer Science 8(3), doi:10.2168/LMCS-8(3:11)2012.
  20. M. Kunc (2003): Equational description of pseudovarieties of homomorphisms. RAIRO - Theoretical Informatics and Applications 37(3), pp. 243–254, doi:10.1051/ita:2003018.
  21. O. Kupferman & Y. Lustig (2007): Lattice Automata. In: B. Cook & A. Podelski: VMCAI, Lecture Notes in Computer Science 4349. Springer, pp. 199–213, doi:10.1007/978-3-540-69738-1_14.
  22. S. Lombardy & J. Sakarovitch (2008): The universal automaton. In: J. Flum, E. Grädel & T. Wilke: Logic and Automata, Texts in Logic and Games 2. Amsterdam University Press, pp. 457–504.
  23. R. McNaughton & S. Papert (1971): Counter-Free Automata. M.I.T. Press.
  24. J.-É. Pin (1995): A Variety Theorem Without Complementation. Russian Mathematics 39, pp. 80–90. Available at http://www.liafa.jussieu.fr/~jep/publications.html.
  25. J.-É. Pin (1997): Syntactic semigroups. In: G. Rozenberg & A. Salomaa: Handbook of Formal Languages 1. Springer, pp. 679–746, doi:10.1007/978-3-642-59136-5_10. Available at www.liafa.jussieu.fr/~jep/publications.html.
  26. J.-É. Pin (2012): Equational Descriptions of Languages. Int. J. Found. Comput. Sci. 23(6), pp. 1227–1240, doi:10.1142/S0129054112400497.
  27. J.-É. Pin & P. Weil (1996): A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra Universalis 35(4), pp. 577–595, doi:10.1007/BF01243597.
  28. J.-É. Pin & P. Weil (1997): Ponynominal Closure and Unambiguous Product. Theory Comput. Syst. 30(4), pp. 383–422, doi:10.1007/BF02679467.
  29. T. Place & M. Zeitoun (2014): Separating Regular Languages with First-Order Logic. CoRR abs/1402.3277. Available at http://arxiv.org/abs/1402.3277.
  30. L. Polák (2004): A classification of rational languages by semilattice-ordered monoids. Archivum Mathematicum 40(4), pp. 395–406. Available at http://emis.muni.cz/journals/AM/04-4/index.html.
  31. L. Polák (2005): Minimalizations of NFA using the universal automaton. Int. J. Found. Comput. Sci. 16(5), pp. 999–1010, doi:10.1142/S0129054105003431.
  32. J. Reiterman (1982): The Birkhoff theorem for finite algebras. Algebra Universalis 14, pp. 1–10, doi:10.1007/BF02483902.
  33. J. Rhodes & B. Steinberg (2009): The q-theory of Finite Semigroups. Monographs in Mathematics. Springer, doi:10.1007/b104443.
  34. M. P. Schützenberger (1965): On Finite Monoids Having Only Trivial Subgroups. Information and Control 8(2), pp. 190–194, doi:10.1016/S0019-9958(65)90108-7.
  35. T. Schwentick, D. Thérien & H. Vollmer (2001): Partially-Ordered Two-Way Automata: A New Characterization of DA. In: W. Kuich, G. Rozenberg & A. Salomaa: Developments in Language Theory, Lecture Notes in Computer Science 2295. Springer, pp. 239–250, doi:10.1007/3-540-46011-X_20.
  36. I. Simon (1975): Piecewise testable events. In: H. Barkhage: Automata Theory and Formal Languages, Lecture Notes in Computer Science 33. Springer, pp. 214–222, doi:10.1007/3-540-07407-4_23.
  37. J. Stern (1985): Complexity of Some Problems from the Theory of Automata. Information and Control 66(3), pp. 163–176, doi:10.1016/S0019-9958(85)80058-9.
  38. H. Straubing (1981): A Generalization of the Schützenberger Product of Finite Monoids. Theor. Comput. Sci. 13, pp. 137–150, doi:10.1016/0304-3975(81)90036-0.
  39. H. Straubing (2002): On Logical Descriptions of Regular Languages. In: S. Rajsbaum: LATIN, Lecture Notes in Computer Science 2286. Springer, pp. 528–538, doi:10.1007/3-540-45995-2_46.
  40. H. Straubing & P. Weil (2012): An introduction to finite automata and their connection to logic. In: D. D'Souza & P. Shankar: Modern Applications of Automata Theory, IISc Research Monographs Series. World Scientific, doi:10.1142/9789814271059_0001. Available at http://arxiv.org/abs/1011.6491.
  41. D. Thérien (1981): Classification of Finite Monoids: The Language Approach. Theor. Comput. Sci. 14, pp. 195–208, doi:10.1016/0304-3975(81)90057-8.
  42. W. Thomas (1982): Classifying Regular Events in Symbolic Logic. J. Comput. Syst. Sci. 25(3), pp. 360–376, doi:10.1016/0022-0000(82)90016-2.
  43. A. Trahtman (2001): Piecewise and Local Threshold Testability of DFA. In: R. Freivalds: FCT, Lecture Notes in Computer Science 2138. Springer, pp. 347–358, doi:10.1007/3-540-44669-9_33.
  44. P. Weil (2004): Algebraic Recognizability of Languages. In: J. Fiala, V. Koubek & J. Kratochvíl: MFCS, Lecture Notes in Computer Science 3153. Springer, pp. 149–175, doi:10.1007/978-3-540-28629-5_8. Available at http://arxiv.org/abs/cs/0609110.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org