References

  1. Adithya Balaji & Alexander Allen (2018): Benchmarking Automatic Machine Learning Frameworks. ArXiv abs/1808.06492.
  2. Tianqi Chen & Carlos Guestrin (2016): XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, doi:10.1145/2939672.2939785.
  3. Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum & Frank Hutter (2019): Auto-sklearn: Efficient and Robust Automated Machine Learning, pp. 113–134. Springer International Publishing, Cham, doi:10.1007/978-3-030-05318-5_6.
  4. P. J. A. Gijsbers, Erin LeDell, Janek Thomas, S'ebastien Poirier, Bernd Bischl & Joaquin Vanschoren (2019): An Open Source AutoML Benchmark. ArXiv abs/1907.00909.
  5. H2O.ai (2017): H2O AutoML. Available at http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html. H2O version 3.30.0.1.
  6. Tuomas Halvari: AutoML comparison. Available at https://github.com/thalvari/AutoML_comparison.
  7. Haifeng Jin, Qingquan Song & Xia Hu (2019): Auto-Keras: An Efficient Neural Architecture Search System. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 19. Association for Computing Machinery, New York, NY, USA, pp. 19461956, doi:10.1145/3292500.3330648.
  8. Mark J. van der Laan, Eric C Polley & Alan E. Hubbard (2007): Super Learner. Statistical Applications in Genetics and Molecular Biology 6(1), doi:10.2202/1544-6115.1309. Available at https://www.degruyter.com/view/journals/sagmb/6/1/article-sagmb.2007.6.1.1309.xml.xml.
  9. Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras & Adrian Vladu (2018): Towards Deep Learning Models Resistant to Adversarial Attacks. ArXiv abs/1706.06083.
  10. S. Moosavi-Dezfooli, A. Fawzi & P. Frossard (2016): DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582, doi:10.1109/CVPR.2016.282.
  11. Jukka K Nurminen, Tuomas Halvari, Juha Harviainen, Juha Mylläri, Antti Röyskö, Juuso Silvennoinen & Tommi Mikkonen (2019): Software Framework for Data Fault Injection to Test Machine Learning Systems. In: Proceedings of 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE 2019) Workshops. IEEE, pp. 294–299, doi:10.1109/ISSREW.2019.00087.
  12. Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz & Jason H. Moore (2016): Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 16. Association for Computing Machinery, New York, NY, USA, pp. 485492, doi:10.1145/2908812.2908918.
  13. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot & Édouard Duchesnay (2011): Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 12(null), pp. 28252830, doi:10.5555/1953048.2078195.
  14. Uri Shaham, Yutaro Yamada & Sahand Negahban (2018): Understanding adversarial training: Increasing local stability of supervised models through robust optimization. Neurocomputing 307, pp. 195 – 204, doi:10.1016/j.neucom.2018.04.027. Available at http://www.sciencedirect.com/science/article/pii/S0925231218304557.
  15. A. Truong, A. Walters, J. Goodsitt, K. Hines, C. B. Bruss & R. Farivar (2019): Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1471–1479, doi:10.1109/ICTAI.2019.00209.
  16. Tsui-Wei Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan Boopathy, Ivan Oseledets & Luca Daniel (2019): PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach. In: Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research 97, pp. 6727–6736.
  17. Han Xiao, Kashif Rasul & Roland Vollgraf (2017): Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. ArXiv abs/1708.07747.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org