References

  1. N. Boccara & H. Fuk\'s (2002): Number-conserving cellular automata rules. Fundamenta Informaticae 52, pp. 1–13.
  2. M. Cook (2004): Universality in elementary cellular automata. Complex Syst. 15, pp. 1–40.
  3. B. Durand, E. Formenti & Z. Róka (2003): Number-conserving cellular automata I: decidability. Theoret. Comput. Sci. 299, pp. 523–535, doi:10.1016/S0304-3975(02)00534-0.
  4. E. Formenti & A. Grange (2003): Number conserving cellular automata II: dynamics. Theoret. Comput. Sci. 304, pp. 269–290, doi:10.1016/S0304-3975(03)00134-8.
  5. H. Fuk\'s & K. Sullivan (2007): Enumeration of number-conserving cellular automata rules with two inputs. J. Cell. Autom. 2, pp. 141–148.
  6. F. García-Ramos (2012): Product decomposition for surjective 2-block NCCA. In: DMTCS Proc. on AUTOMATA 2011, pp. 147–158.
  7. T. Hattori & S. Takesue (1991): Additive conserved quantities in discrete-time lattice dynamical systems. Physica D 49, pp. 295–322, doi:10.1016/0167-2789(91)90150-8.
  8. K. Imai, B. Martin & R. Saito (2012): On radius 1 nontrivial reversible and number-conserving cellular automata. In: Proc. RC 2012, pp. 54–60.
  9. J. Kari & S. Taati (2008): Particle displacement representation for conservative laws in two-dimensional cellular automata. In: Proc. JAC 2008, pp. 65–73.
  10. A. Moreira (2003): Universality and decidability of number-conserving cellular automata. Theoret. Comput. Sci. 292, pp. 711–721, doi:10.1016/S0304-3975(02)00065-8.
  11. K. Morita (2008): Reversible computing and cellular automata — A survey. Theoret. Comput. Sci. 395, pp. 101–131, doi:10.1016/j.tcs.2008.01.041.
  12. K. Morita (2011): Simulating reversible Turing machines and cyclic tag systems by one-dimensional reversible cellular automata. Theoret. Comput. Sci., pp. 3856–3865, doi:10.1016/j.tcs.2011.02.022.
  13. K. Morita & M. Harao (1989): Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE Japan E72, pp. 758–762.
  14. K. Morita & K. Imai (2001): Number-conserving reversible cellular automata and their computation-universality. Theoret. Informat. Appl. 35, pp. 239–258, doi:10.1051/ita:2001118.
  15. A. Schranko & P.P.B. de Oliveira (2010): Derivation and representation of one-dimensional, reversible, number-conserving cellular automata rules. J. Cell. Autom. 6, pp. 77–89.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org