1. Arnon Avron & Ori Lahav (2010): Strict Canonical Constructive Systems. In: Andreas Blass, Nachum Dershowitz & Wolfgang Reisig: Fields of Logic and Computation, Lecture Notes in Computer Science 6300. Springer Berlin Heidelberg, pp. 75–94, doi:10.1007/978-3-642-15025-8_4.
  2. D. Basin, S. Matthews & L. Vigano (1997): Labelled Propositional Modal Logics. Journal of Logic and Computation 7(6), pp. 685–717, doi:10.1093/logcom/7.6.685.
  3. M.L. Bonet, T Pitassi & R. Raz (2000): On Interpolation and Automatization for Frege Systems. SIAM Journal of Computing 29(6), pp. 1939–1967, doi:10.1137/S0097539798353230.
  4. L. Borkowski (1970): Selected Works of JanŁ ukasiewicz. Studies in Logic. North-Holland, Amsterdam.
  5. Cecilia Englander, Edward Hermann Haeusler & Luiz Carlos Pereira (2014): Finitely many-valued logics and natural deduction. Logic Journal of the IGPL 22(2), pp. 333–354, doi:10.1093/jigpal/jzt032.
  6. M. J. Fischer & R. E. Ladner (1979): Propositional dynamic logic of regular programs. Journal of Computer and Systems Science 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1.
  7. J.Y. Halpern & Y. Moses (1990): Knowledge and Common Knowledge in a Distributed Environment. Journal of the ACM 37(3), pp. 549–587, doi:10.1145/79147.79161.
  8. F. Honsell & M. Miculan (1996): A natural deduction approach to dynamic logic. In: S. Berardi & M. Coppo: Types for Proofs and Programs, Lecture Notes in Computer Science 1158. Springer Berlin Heidelberg, pp. 1–16, doi:10.1007/3-540-61780-9_69.
  9. Grzegorz Malinowski (1993): Many-Valued Logics. Oxford University Press.
  10. J. Marcos & C. Caleiro (2009): Classic-like analytic tableaux for finite-valued logics. In: H. Ono, R de Queiroz & M. Kanazawa: Proceedings of WOLLIC 2009, Lecture Notes in Artificial Intelligence 5514. Springer Berlin Heidelberg, pp. 268–280, doi:10.1007/978-3-642-02261-6_22.
  11. S. Martini & A. Masini (1994): A Computational Interpretation of Modal Proofs. In: Proof Theory of Modal Logics. Kluwer, pp. 213–241, doi:10.1007/978-94-017-2798-3_12.
  12. D. Prawitz (1965): Natural deduction: a proof-theoretical study. Philosophy department, University of Stockholm.
  13. D. Prawitz (1979): Proofs and the Meaning and Completeness of the Logical Constants. In: J. Hintikka, I. Niiniluotu & E. Saarinen: Proceedings 4th Scandinavian Logic Symp. reidel, Dordrecht, pp. 25–40, doi:10.1007/978-94-009-9825-4_2.
  14. S. Read (2010): General-Elimination Harmony and the Meaning of the Logical Constants. Journal of Philosophical Logic 39(5), pp. 557–576, doi:10.1007/s10992-010-9133-7.
  15. Peter Schroeder-Heister (1984): A Natural Extension of Natural Deduction. Journal of Symbolic Logic 49(4), pp. 1284–1300, doi:10.2307/2274279.
  16. Alex K. Simpson (1994): The Proof Theory and Semantics of Intuitionistic Modal Logic. Computer Science.
  17. R. Statman (1979): Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science 9(1), pp. 67 – 72, doi:10.1016/0304-3975(79)90006-9.

Comments and questions to:
For website issues: